Merged in feature/2.4.0/precisions (pull request #1)
Better noise model for updateAtA using precisionsrelease/4.3a0
commit
3afc4eb651
|
@ -458,8 +458,8 @@ void HessianFactor::updateATA(const JacobianFactor& update, const Scatter& scatt
|
|||
} else {
|
||||
noiseModel::Diagonal::shared_ptr diagonal(boost::dynamic_pointer_cast<noiseModel::Diagonal>(update.model_));
|
||||
if(diagonal) {
|
||||
Vector invsigmas2 = update.model_->invsigmas().cwiseProduct(update.model_->invsigmas());
|
||||
updateInform.noalias() = updateA.transpose() * invsigmas2.asDiagonal() * updateA;
|
||||
const Vector& precisions = diagonal->precisions();
|
||||
updateInform.noalias() = updateA.transpose() * precisions.asDiagonal() * updateA;
|
||||
} else
|
||||
throw invalid_argument("In HessianFactor::updateATA, JacobianFactor noise model is neither Unit nor Diagonal");
|
||||
}
|
||||
|
|
|
@ -159,15 +159,12 @@ void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const
|
|||
// Diagonal
|
||||
/* ************************************************************************* */
|
||||
Diagonal::Diagonal() :
|
||||
Gaussian(1), sigmas_(ones(1)), invsigmas_(ones(1)) {
|
||||
Gaussian(1), sigmas_(ones(1)), invsigmas_(ones(1)), precisions_(ones(1)) {
|
||||
}
|
||||
|
||||
Diagonal::Diagonal(const Vector& sigmas, bool initialize_invsigmas):
|
||||
Gaussian(sigmas.size()), sigmas_(sigmas) {
|
||||
if (initialize_invsigmas)
|
||||
invsigmas_ = reciprocal(sigmas);
|
||||
else
|
||||
invsigmas_ = boost::none;
|
||||
Diagonal::Diagonal(const Vector& sigmas) :
|
||||
Gaussian(sigmas.size()), sigmas_(sigmas), invsigmas_(reciprocal(sigmas)), precisions_(
|
||||
emul(invsigmas_, invsigmas_)) {
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -198,18 +195,6 @@ void Diagonal::print(const string& name) const {
|
|||
gtsam::print(sigmas_, name + "diagonal sigmas");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Diagonal::invsigmas() const {
|
||||
if (invsigmas_) return *invsigmas_;
|
||||
else return reciprocal(sigmas_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double Diagonal::invsigma(size_t i) const {
|
||||
if (invsigmas_) return (*invsigmas_)(i);
|
||||
else return 1.0/sigmas_(i);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Diagonal::whiten(const Vector& v) const {
|
||||
return emul(v, invsigmas());
|
||||
|
|
|
@ -235,19 +235,19 @@ namespace gtsam {
|
|||
class GTSAM_EXPORT Diagonal : public Gaussian {
|
||||
protected:
|
||||
|
||||
/** sigmas and reciprocal */
|
||||
Vector sigmas_;
|
||||
|
||||
private:
|
||||
|
||||
boost::optional<Vector> invsigmas_; ///< optional to allow for constraints
|
||||
/**
|
||||
* Standard deviations (sigmas), their inverse and inverse square (weights/precisions)
|
||||
* These are all computed at construction: the idea is to use one shared model
|
||||
* where computation is done only once, the common use case in many problems.
|
||||
*/
|
||||
Vector sigmas_, invsigmas_, precisions_;
|
||||
|
||||
protected:
|
||||
/** protected constructor takes sigmas */
|
||||
Diagonal();
|
||||
|
||||
/** constructor to allow for disabling initializaion of invsigmas */
|
||||
Diagonal(const Vector& sigmas, bool initialize_invsigmas=true);
|
||||
Diagonal(const Vector& sigmas);
|
||||
|
||||
public:
|
||||
|
||||
|
@ -292,8 +292,14 @@ namespace gtsam {
|
|||
/**
|
||||
* Return sqrt precisions
|
||||
*/
|
||||
Vector invsigmas() const;
|
||||
double invsigma(size_t i) const;
|
||||
inline const Vector& invsigmas() const { return invsigmas_; }
|
||||
inline double invsigma(size_t i) const {return invsigmas_(i);}
|
||||
|
||||
/**
|
||||
* Return precisions
|
||||
*/
|
||||
inline const Vector& precisions() const { return precisions_; }
|
||||
inline double precision(size_t i) const {return precisions_(i);}
|
||||
|
||||
/**
|
||||
* Return R itself, but note that Whiten(H) is cheaper than R*H
|
||||
|
@ -338,12 +344,12 @@ namespace gtsam {
|
|||
/** protected constructor takes sigmas */
|
||||
// Keeps only sigmas and calculates invsigmas when necessary
|
||||
Constrained(const Vector& sigmas = zero(1)) :
|
||||
Diagonal(sigmas, false), mu_(repeat(sigmas.size(), 1000.0)) {}
|
||||
Diagonal(sigmas), mu_(repeat(sigmas.size(), 1000.0)) {}
|
||||
|
||||
// Keeps only sigmas and calculates invsigmas when necessary
|
||||
// allows for specifying mu
|
||||
Constrained(const Vector& mu, const Vector& sigmas) :
|
||||
Diagonal(sigmas, false), mu_(mu) {}
|
||||
Diagonal(sigmas), mu_(mu) {}
|
||||
|
||||
public:
|
||||
|
||||
|
|
|
@ -17,18 +17,21 @@
|
|||
*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
using namespace boost::assign;
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace noiseModel;
|
||||
using namespace boost::assign;
|
||||
|
||||
static double sigma = 2, s_1=1.0/sigma, var = sigma*sigma, prc = 1.0/var;
|
||||
static Matrix R = Matrix_(3, 3,
|
||||
|
@ -40,7 +43,7 @@ static Matrix Sigma = Matrix_(3, 3,
|
|||
0.0, var, 0.0,
|
||||
0.0, 0.0, var);
|
||||
|
||||
//static double inf = std::numeric_limits<double>::infinity();
|
||||
//static double inf = numeric_limits<double>::infinity();
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(NoiseModel, constructors)
|
||||
|
@ -155,7 +158,12 @@ TEST(NoiseModel, ConstrainedConstructors )
|
|||
Vector sigmas = Vector_(3, sigma, 0.0, 0.0);
|
||||
Vector mu = Vector_(3, 200.0, 300.0, 400.0);
|
||||
actual = Constrained::All(d);
|
||||
// TODO: why should this be a thousand ??? Dummy variable?
|
||||
EXPECT(assert_equal(gtsam::repeat(d, 1000.0), actual->mu()));
|
||||
EXPECT(assert_equal(gtsam::repeat(d, 0), actual->sigmas()));
|
||||
double Inf = numeric_limits<double>::infinity();
|
||||
EXPECT(assert_equal(gtsam::repeat(d, Inf), actual->invsigmas()));
|
||||
EXPECT(assert_equal(gtsam::repeat(d, Inf), actual->precisions()));
|
||||
|
||||
actual = Constrained::All(d, m);
|
||||
EXPECT(assert_equal(gtsam::repeat(d, m), actual->mu()));
|
||||
|
|
Loading…
Reference in New Issue