Merge pull request #1929 from borglab/table-factor-fix

release/4.3a0
Varun Agrawal 2024-12-13 15:40:35 -05:00 committed by GitHub
commit 3af5360ad3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 104 additions and 17 deletions

View File

@ -62,40 +62,99 @@ TableFactor::TableFactor(const DiscreteKeys& dkeys,
: TableFactor(dkeys, DecisionTreeFactor(dkeys, dtree)) {}
/**
* @brief Compute the correct ordering of the leaves in the decision tree.
* @brief Compute the indexing of the leaves in the decision tree based on the
* assignment and add the (index, leaf) pair to a SparseVector.
*
* This is done by first taking all the values which have modulo 0 value with
* the cardinality of the innermost key `n`, and we go up to modulo n.
* We visit each leaf in the tree, and using the cardinalities of the keys,
* compute the correct index to add the leaf to a SparseVector which
* is then used to create the TableFactor.
*
* @param dt The DecisionTree
* @return std::vector<double>
* @return Eigen::SparseVector<double>
*/
std::vector<double> ComputeLeafOrdering(const DiscreteKeys& dkeys,
const DecisionTreeFactor& dt) {
std::vector<double> probs = dt.probabilities();
std::vector<double> ordered;
static Eigen::SparseVector<double> ComputeSparseTable(
const DiscreteKeys& dkeys, const DecisionTreeFactor& dt) {
// SparseVector needs to know the maximum possible index,
// so we compute the product of cardinalities.
size_t cardinalityProduct = 1;
for (auto&& [_, c] : dt.cardinalities()) {
cardinalityProduct *= c;
}
Eigen::SparseVector<double> sparseTable(cardinalityProduct);
size_t nrValues = 0;
dt.visit([&nrValues](double x) {
if (x > 0) nrValues += 1;
});
sparseTable.reserve(nrValues);
size_t n = dkeys[0].second;
std::set<Key> allKeys(dt.keys().begin(), dt.keys().end());
for (size_t k = 0; k < n; ++k) {
for (size_t idx = 0; idx < probs.size(); ++idx) {
if (idx % n == k) {
ordered.push_back(probs[idx]);
/**
* @brief Functor which is called by the DecisionTree for each leaf.
* For each leaf value, we use the corresponding assignment to compute a
* corresponding index into a SparseVector. We then populate sparseTable with
* the value at the computed index.
*
* Takes advantage of the sparsity of the DecisionTree to be efficient. When
* merged branches are encountered, we enumerate over the missing keys.
*
*/
auto op = [&](const Assignment<Key>& assignment, double p) {
if (p > 0) {
// Get all the keys involved in this assignment
std::set<Key> assignmentKeys;
for (auto&& [k, _] : assignment) {
assignmentKeys.insert(k);
}
// Find the keys missing in the assignment
std::vector<Key> diff;
std::set_difference(allKeys.begin(), allKeys.end(),
assignmentKeys.begin(), assignmentKeys.end(),
std::back_inserter(diff));
// Generate all assignments using the missing keys
DiscreteKeys extras;
for (auto&& key : diff) {
extras.push_back({key, dt.cardinality(key)});
}
auto&& extraAssignments = DiscreteValues::CartesianProduct(extras);
for (auto&& extra : extraAssignments) {
// Create new assignment using the extra assignment
DiscreteValues updatedAssignment(assignment);
updatedAssignment.insert(extra);
// Generate index and add to the sparse vector.
Eigen::Index idx = 0;
size_t previousCardinality = 1;
// We go in reverse since a DecisionTree has the highest label first
for (auto&& it = updatedAssignment.rbegin();
it != updatedAssignment.rend(); it++) {
idx += previousCardinality * it->second;
previousCardinality *= dt.cardinality(it->first);
}
sparseTable.coeffRef(idx) = p;
}
}
}
return ordered;
};
// Visit each leaf in `dt` to get the Assignment and leaf value
// to populate the sparseTable.
dt.visitWith(op);
return sparseTable;
}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteKeys& dkeys,
const DecisionTreeFactor& dtf)
: TableFactor(dkeys, ComputeLeafOrdering(dkeys, dtf)) {}
: TableFactor(dkeys, ComputeSparseTable(dkeys, dtf)) {}
/* ************************************************************************ */
TableFactor::TableFactor(const DecisionTreeFactor& dtf)
: TableFactor(dtf.discreteKeys(),
ComputeLeafOrdering(dtf.discreteKeys(), dtf)) {}
ComputeSparseTable(dtf.discreteKeys(), dtf)) {}
/* ************************************************************************ */
TableFactor::TableFactor(const DiscreteConditional& c)

View File

@ -147,6 +147,34 @@ TEST(TableFactor, constructors) {
EXPECT(assert_inequal(f5_with_wrong_keys, f5, 1e-9));
}
/* ************************************************************************* */
// Check conversion from DecisionTreeFactor.
TEST(TableFactor, Conversion) {
/* This is the DecisionTree we are using
Choice(m2)
0 Choice(m1)
0 0 Leaf 0
0 1 Choice(m0)
0 1 0 Leaf 0
0 1 1 Leaf 0.14649446 // 3
1 Choice(m1)
1 0 Choice(m0)
1 0 0 Leaf 0
1 0 1 Leaf 0.14648756 // 5
1 1 Choice(m0)
1 1 0 Leaf 0.14649446 // 6
1 1 1 Leaf 0.23918345 // 7
*/
DiscreteKeys dkeys = {{0, 2}, {1, 2}, {2, 2}};
DecisionTreeFactor dtf(
dkeys, std::vector<double>{0, 0, 0, 0.14649446, 0, 0.14648756, 0.14649446,
0.23918345});
TableFactor tf(dtf.discreteKeys(), dtf);
EXPECT(assert_equal(dtf, tf.toDecisionTreeFactor()));
}
/* ************************************************************************* */
// Check multiplication between two TableFactors.
TEST(TableFactor, multiplication) {