Modifications to SmartProjectionFactor and unit test: work in progress
parent
bf34b019e9
commit
39ec641c4a
|
|
@ -181,7 +181,46 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& x, const Ordering& ordering) const {
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values, const Ordering& ordering) const {
|
||||
|
||||
std::vector<Matrix> Hx(keys_.size());
|
||||
std::vector<Matrix> Hl(keys_.size());
|
||||
std::vector<Vector> b(keys_.size());
|
||||
|
||||
// Collect all poses (Cameras)
|
||||
std::vector<Pose3> cameraPoses;
|
||||
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
if(body_P_sensor_)
|
||||
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
|
||||
else
|
||||
cameraPoses.push_back(values.at<Pose3>(k));
|
||||
}
|
||||
|
||||
// We triangulate the 3D position of the landmark
|
||||
boost::optional<Point3> point = triangulatePoint3(cameraPoses, measured_, *K_);
|
||||
|
||||
if(point){
|
||||
for(size_t i = 0; i < measured_.size(); i++) {
|
||||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
b.at(i) = ( camera.project(*point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
|
||||
}
|
||||
}
|
||||
else{
|
||||
return HessianFactor::shared_ptr(new HessianFactor());
|
||||
}
|
||||
|
||||
// Allocate m^2 matrix blocks
|
||||
std::vector< std::vector<Matrix> > Hxl(keys_.size(), std::vector<Matrix>( keys_.size()));
|
||||
|
||||
// Allocate inv(Hl'Hl)
|
||||
Matrix3 C;
|
||||
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
||||
C += Hl.at(i1).transpose() * Hl.at(i1);
|
||||
}
|
||||
C = C.inverse();
|
||||
|
||||
|
||||
// fill in the keys
|
||||
std::vector<Index> js;
|
||||
|
|
@ -189,25 +228,32 @@ namespace gtsam {
|
|||
js += ordering[k];
|
||||
}
|
||||
|
||||
// Calculate sub blocks
|
||||
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
||||
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
|
||||
Hxl[i1][i2] = Hx.at(i1).transpose() * Hl.at(i1) * C * Hl.at(i2).transpose();
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Matrix> Gs;
|
||||
|
||||
std::vector<Vector> gs;
|
||||
// Shur complement trick
|
||||
|
||||
// double e = u + b - z , e2 = e * e;
|
||||
// double c = 2 * logSqrt2PI - log(p) + e2 * p;
|
||||
// Vector g1 = Vector_(1, -e * p);
|
||||
// Vector g2 = Vector_(1, 0.5 / p - 0.5 * e2);
|
||||
// Vector g3 = Vector_(1, -e * p);
|
||||
// Matrix G11 = Matrix_(1, 1, p);
|
||||
// Matrix G12 = Matrix_(1, 1, e);
|
||||
// Matrix G13 = Matrix_(1, 1, p);
|
||||
// Matrix G22 = Matrix_(1, 1, 0.5 / (p * p));
|
||||
// Matrix G23 = Matrix_(1, 1, e);
|
||||
// Matrix G33 = Matrix_(1, 1, p);
|
||||
|
||||
// Populate Gs and gs
|
||||
std::vector<Matrix> Gs(keys_.size()*(keys_.size()+1)/2);
|
||||
std::vector<Vector> gs(keys_.size());
|
||||
double f = 0;
|
||||
int GsCount = 0;
|
||||
for(size_t i1 = 0; i1 < keys_.size(); i1++) {
|
||||
gs.at(i1) = Hx.at(i1).transpose() * b.at(i1);
|
||||
|
||||
for(size_t i2 = 0; i2 < keys_.size(); i2++) {
|
||||
gs.at(i1) += Hxl[i1][i2] * b.at(i2);
|
||||
|
||||
if (i2 >= i1) {
|
||||
Gs.at(GsCount) = Hx.at(i1).transpose() * Hx.at(i1) - Hxl[i1][i2] * Hx.at(i2);
|
||||
GsCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -110,9 +110,6 @@ TEST( MultiProjectionFactor, noiseless ){
|
|||
TEST( MultiProjectionFactor, noisy ){
|
||||
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
|
||||
|
||||
Values theta;
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
Symbol x1('X', 1);
|
||||
Symbol x2('X', 2);
|
||||
// Symbol x3('X', 3);
|
||||
|
|
@ -139,24 +136,98 @@ TEST( MultiProjectionFactor, noisy ){
|
|||
Point2 level_uv = level_camera.project(landmark) + pixelError;
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
|
||||
Values value;
|
||||
value.insert(x1, level_pose);
|
||||
value.insert(x2, level_pose_right);
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
||||
values.insert(x2, level_pose_right.compose(noise_pose));
|
||||
|
||||
// poses += level_pose, level_pose_right;
|
||||
vector<Point2> measurements;
|
||||
measurements += level_uv, level_uv_right;
|
||||
|
||||
SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements, noiseProjection, views, K);
|
||||
SmartProjectionFactor<Pose3, Point3, Cal3_S2>::shared_ptr
|
||||
smartFactor(new SmartProjectionFactor<Pose3, Point3, Cal3_S2>(measurements, noiseProjection, views, K));
|
||||
|
||||
double actualError = smartFactor.error(value);
|
||||
double actualError = smartFactor->error(values);
|
||||
double expectedError = sqrt(0.08);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor);
|
||||
graph.add(PriorFactor<Pose3>(x1, level_pose, noisePrior));
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
result.print("results of the optimization \n");
|
||||
// we do not expect to be able to predict the error, since the error on the pixel will change
|
||||
// the triangulation of the landmark which is internal to the factor.
|
||||
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
}
|
||||
|
||||
|
||||
///* ************************************************************************* */
|
||||
TEST( MultiProjectionFactor, 3poses ){
|
||||
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
|
||||
|
||||
Symbol x1('X', 1);
|
||||
Symbol x2('X', 2);
|
||||
Symbol x3('X', 3);
|
||||
|
||||
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
|
||||
|
||||
std::vector<Key> views;
|
||||
views += x1, x2; //, x3;
|
||||
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
||||
SimpleCamera level_camera(level_pose, *K);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
|
||||
SimpleCamera level_camera_right(level_pose_right, *K);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
Point3 landmark(5, 0.5, 1.2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 pixelError(0.2,0.2);
|
||||
Point2 level_uv = level_camera.project(landmark) + pixelError;
|
||||
Point2 level_uv_right = level_camera_right.project(landmark);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
||||
values.insert(x2, level_pose_right.compose(noise_pose));
|
||||
|
||||
// poses += level_pose, level_pose_right;
|
||||
vector<Point2> measurements;
|
||||
measurements += level_uv, level_uv_right;
|
||||
|
||||
SmartProjectionFactor<Pose3, Point3, Cal3_S2>::shared_ptr
|
||||
smartFactor(new SmartProjectionFactor<Pose3, Point3, Cal3_S2>(measurements, noiseProjection, views, K));
|
||||
|
||||
double actualError = smartFactor->error(values);
|
||||
double expectedError = sqrt(0.08);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor);
|
||||
graph.add(PriorFactor<Pose3>(x1, level_pose, noisePrior));
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
result.print("results of the optimization \n");
|
||||
// we do not expect to be able to predict the error, since the error on the pixel will change
|
||||
// the triangulation of the landmark which is internal to the factor.
|
||||
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
}
|
||||
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST( ProjectionFactor, nonStandard ) {
|
||||
// GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
|
||||
|
|
|
|||
Loading…
Reference in New Issue