Small fixes, 10 hypotheses

release/4.3a0
Frank Dellaert 2025-01-30 10:57:56 -05:00
parent 3d4d750151
commit 39e4610077
1 changed files with 13 additions and 13 deletions

View File

@ -44,6 +44,7 @@ using symbol_shorthand::M;
using symbol_shorthand::X;
const size_t kMaxLoopCount = 2000; // Example default value
const size_t kMaxNrHypotheses = 10;
auto kOpenLoopModel = noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10);
@ -122,9 +123,14 @@ class Experiment {
/// @brief Perform smoother update and optimize the graph.
void smootherUpdate(HybridSmoother& smoother,
HybridNonlinearFactorGraph& graph, const Values& initial,
size_t maxNrHypotheses, Values* result) {
size_t kMaxNrHypotheses, Values* result) {
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
smoother.update(linearized, maxNrHypotheses);
smoother.update(linearized, kMaxNrHypotheses);
// throw if x0 not in hybridBayesNet_:
const KeySet& keys = smoother.hybridBayesNet().keys();
if (keys.find(X(0)) == keys.end()) {
throw std::runtime_error("x0 not in hybridBayesNet_");
}
graph.resize(0);
// HybridValues delta = smoother.hybridBayesNet().optimize();
// result->insert_or_assign(initial.retract(delta.continuous()));
@ -147,13 +153,9 @@ class Experiment {
// Initialize local variables
size_t discreteCount = 0, index = 0;
size_t loopCount = 0;
size_t nrHybridFactors = 0; // for demonstration; never incremented below
std::list<double> timeList;
// We'll reuse the smoother_, graph_, initial_, result_ from the class
size_t maxNrHypotheses = 3;
// Set up initial prior
double x = 0.0;
double y = 0.0;
@ -165,7 +167,7 @@ class Experiment {
// Initial update
clock_t beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
clock_t afterUpdate = clock();
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
@ -226,7 +228,7 @@ class Experiment {
if (doSmootherUpdate) {
gttic_(SmootherUpdate);
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
gttoc_(SmootherUpdate);
@ -256,14 +258,15 @@ class Experiment {
// Final update
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_);
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
// Final optimize
gttic_(HybridSmootherOptimize);
HybridValues delta = smoother_.hybridBayesNet().optimize();
HybridValues delta = smoother_.optimize();
gttoc_(HybridSmootherOptimize);
result_.insert_or_assign(initial_.retract(delta.continuous()));
std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
@ -293,9 +296,6 @@ class Experiment {
}
outfileTime.close();
std::cout << "Output " << timeFileName << " file." << std::endl;
// Just to show usage of nrHybridFactors
std::cout << nrHybridFactors << std::endl;
}
};