diff --git a/.cproject b/.cproject
index ed2d41ca6..d0c9e6d01 100644
--- a/.cproject
+++ b/.cproject
@@ -5,47 +5,46 @@
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -299,589 +298,605 @@
-
-
- make
- -j2
- install
- true
- true
- true
-
-
- make
- -j2
- check
- true
- true
- true
-
-
- make
-
- clean
- true
- true
- true
-
-
- make
- -k
- check
- true
- false
- true
-
-
- make
- -j2
- testSimpleCamera.run
- true
- true
- true
-
-
- make
- -f local.mk
- testCal3_S2.run
- true
- true
- true
-
-
- make
- -j2
- testVSLAMFactor.run
- true
- true
- true
-
-
- make
- -j2
- testCalibratedCamera.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianConditional.run
- true
- true
- true
-
-
- make
- -j2
- testPose2.run
- true
- true
- true
-
-
- make
- -j2
- testRot3.run
- true
- true
- true
-
-
- make
- -j2
- testNonlinearOptimizer.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianFactor.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianFactorGraph.run
- true
- true
- true
-
-
- make
- -j2
- testNonlinearFactorGraph.run
- true
- true
- true
-
-
- make
- -j2
- testPose3.run
- true
- true
- true
-
-
- make
- -j2
- testVectorMap.run
- true
- true
- true
-
-
- make
- -j2
- testPoint2.run
- true
- true
- true
-
-
- make
- -j2
- testNonlinearFactor.run
- true
- true
- true
-
-
- make
- -j2
- timeGaussianFactor.run
- true
- true
- true
-
-
- make
- -j2
- timeGaussianFactorGraph.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianBayesNet.run
- true
- true
- true
-
-
- make
- testBayesTree.run
- true
- false
- true
-
-
- make
-
- testSymbolicBayesNet.run
- true
- false
- true
-
-
- make
- testSymbolicFactorGraph.run
- true
- false
- true
-
-
- make
- -j2
- testVector.run
- true
- true
- true
-
-
- make
- -j2
- testMatrix.run
- true
- true
- true
-
-
- make
- -j2
- testVSLAMGraph.run
- true
- true
- true
-
-
- make
- -j2
- testNonlinearEquality.run
- true
- true
- true
-
-
- make
- -j2
- testSQP.run
- true
- true
- true
-
-
- make
- -j2
- testNonlinearConstraint.run
- true
- true
- true
-
-
- make
- -j2
- testVSLAMConfig.run
- true
- true
- true
-
-
- make
- -j2
- testOrdering.run
- true
- true
- true
-
-
- make
- -j2
- testRot2.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianBayesTree.run
- true
- true
- true
-
-
- make
- -j2
- testPose3Config.run
- true
- true
- true
-
-
- make
- -j2
- testUrbanMeasurement.run
- true
- true
- true
-
-
- make
- -j2
- testUrbanOdometry.run
- true
- true
- true
-
-
- make
- -j2
- testIterative.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianISAM2.run
- true
- true
- true
-
-
- make
- -j2
- testSubgraphPreconditioner.run
- true
- true
- true
-
-
- make
- -j2
- testBayesNetPreconditioner.run
- true
- true
- true
-
-
- make
- -j2
- testPose2Factor.run
- true
- true
- true
-
-
- make
- -j2
- timeRot3.run
- true
- true
- true
-
-
- make
- -j2
- testPose2SLAM.run
- true
- true
- true
-
-
- make
- -j2
- testPose2Config.run
- true
- true
- true
-
-
- make
- -j2
- testLieConfig.run
- true
- true
- true
-
-
- make
- -j2
- testPlanarSLAM.run
- true
- true
- true
-
-
- make
- testGraph.run
- true
- false
- true
-
-
- make
- -j2
- testPose3SLAM.run
- true
- true
- true
-
-
- make
- -j2
- testTupleConfig.run
- true
- true
- true
-
-
- make
- -j2
- testPose2Prior.run
- true
- true
- true
-
-
- make
- -j2
- testNoiseModel.run
- true
- true
- true
-
-
- make
- -j2
- testISAM.run
- true
- true
- true
-
-
- make
- -j2
- testGaussianISAM.run
- true
- true
- true
-
-
- make
-
- testSimulated2D.run
- true
- false
- true
-
-
- make
- -j2
- timeMatrix.run
- true
- true
- true
-
-
- make
- -j2
- testKey.run
- true
- true
- true
-
-
- make
- -j2
- timeVectorConfig.run
- true
- true
- true
-
-
- make
- -j2
- testHomography2.run
- true
- true
- true
-
-
- make
- -j2
- testVectorBTree.run
- true
- true
- true
-
-
- make
- testErrors.run
- true
- false
- true
-
-
- make
- testDSF.run
- true
- true
- true
-
-
- make
- -j2
- testFactorGraph.run
- true
- true
- true
-
-
- make
- testConstraintOptimizer.run
- true
- true
- true
-
-
- make
-
- testBTree.run
- true
- true
- true
-
-
- make
- testSimulated2DOriented.run
- true
- false
- true
-
-
- make
-
- testDSFVector.run
- true
- true
- true
-
-
- make
-
- testSPQRUtil.run
- true
- true
- true
-
-
- make
-
- testInference.run
- true
- true
- true
-
-
- make
- -j2
- install
- true
- true
- true
-
-
- make
- -j2
- clean
- true
- true
- true
-
-
- make
- -j2
- check
- true
- true
- true
-
-
-
-
+
+
+make
+
+all
+true
+true
+true
+
+
+make
+
+clean
+true
+true
+true
+
+
+make
+-j2
+install
+true
+true
+true
+
+
+make
+-j2
+check
+true
+true
+true
+
+
+make
+clean
+true
+true
+true
+
+
+make
+-k
+check
+true
+false
+true
+
+
+make
+-j2
+testSimpleCamera.run
+true
+true
+true
+
+
+make
+-f local.mk
+testCal3_S2.run
+true
+true
+true
+
+
+make
+-j2
+testVSLAMFactor.run
+true
+true
+true
+
+
+make
+-j2
+testCalibratedCamera.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianConditional.run
+true
+true
+true
+
+
+make
+-j2
+testPose2.run
+true
+true
+true
+
+
+make
+-j2
+testRot3.run
+true
+true
+true
+
+
+make
+-j2
+testNonlinearOptimizer.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianFactor.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianFactorGraph.run
+true
+true
+true
+
+
+make
+-j2
+testNonlinearFactorGraph.run
+true
+true
+true
+
+
+make
+-j2
+testPose3.run
+true
+true
+true
+
+
+make
+-j2
+testVectorMap.run
+true
+true
+true
+
+
+make
+-j2
+testPoint2.run
+true
+true
+true
+
+
+make
+-j2
+testNonlinearFactor.run
+true
+true
+true
+
+
+make
+-j2
+timeGaussianFactor.run
+true
+true
+true
+
+
+make
+-j2
+timeGaussianFactorGraph.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianBayesNet.run
+true
+true
+true
+
+
+make
+
+testBayesTree.run
+true
+false
+true
+
+
+make
+testSymbolicBayesNet.run
+true
+false
+true
+
+
+make
+
+testSymbolicFactorGraph.run
+true
+false
+true
+
+
+make
+-j2
+testVector.run
+true
+true
+true
+
+
+make
+-j2
+testMatrix.run
+true
+true
+true
+
+
+make
+-j2
+testVSLAMGraph.run
+true
+true
+true
+
+
+make
+-j2
+testNonlinearEquality.run
+true
+true
+true
+
+
+make
+-j2
+testSQP.run
+true
+true
+true
+
+
+make
+-j2
+testNonlinearConstraint.run
+true
+true
+true
+
+
+make
+-j2
+testVSLAMConfig.run
+true
+true
+true
+
+
+make
+-j2
+testOrdering.run
+true
+true
+true
+
+
+make
+-j2
+testRot2.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianBayesTree.run
+true
+true
+true
+
+
+make
+-j2
+testPose3Config.run
+true
+true
+true
+
+
+make
+-j2
+testUrbanMeasurement.run
+true
+true
+true
+
+
+make
+-j2
+testUrbanOdometry.run
+true
+true
+true
+
+
+make
+-j2
+testIterative.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianISAM2.run
+true
+true
+true
+
+
+make
+-j2
+testSubgraphPreconditioner.run
+true
+true
+true
+
+
+make
+-j2
+testBayesNetPreconditioner.run
+true
+true
+true
+
+
+make
+-j2
+testPose2Factor.run
+true
+true
+true
+
+
+make
+-j2
+timeRot3.run
+true
+true
+true
+
+
+make
+-j2
+testPose2SLAM.run
+true
+true
+true
+
+
+make
+-j2
+testPose2Config.run
+true
+true
+true
+
+
+make
+-j2
+testLieConfig.run
+true
+true
+true
+
+
+make
+-j2
+testPlanarSLAM.run
+true
+true
+true
+
+
+make
+
+testGraph.run
+true
+false
+true
+
+
+make
+-j2
+testPose3SLAM.run
+true
+true
+true
+
+
+make
+-j2
+testTupleConfig.run
+true
+true
+true
+
+
+make
+-j2
+testPose2Prior.run
+true
+true
+true
+
+
+make
+-j2
+testNoiseModel.run
+true
+true
+true
+
+
+make
+-j2
+testISAM.run
+true
+true
+true
+
+
+make
+-j2
+testGaussianISAM.run
+true
+true
+true
+
+
+make
+testSimulated2D.run
+true
+false
+true
+
+
+make
+-j2
+timeMatrix.run
+true
+true
+true
+
+
+make
+-j2
+testKey.run
+true
+true
+true
+
+
+make
+-j2
+timeVectorConfig.run
+true
+true
+true
+
+
+make
+-j2
+testHomography2.run
+true
+true
+true
+
+
+make
+-j2
+testVectorBTree.run
+true
+true
+true
+
+
+make
+
+testErrors.run
+true
+false
+true
+
+
+make
+
+testDSF.run
+true
+true
+true
+
+
+make
+-j2
+testFactorGraph.run
+true
+true
+true
+
+
+make
+
+testConstraintOptimizer.run
+true
+true
+true
+
+
+make
+testBTree.run
+true
+true
+true
+
+
+make
+
+testSimulated2DOriented.run
+true
+false
+true
+
+
+make
+testDSFVector.run
+true
+true
+true
+
+
+make
+testSPQRUtil.run
+true
+true
+true
+
+
+make
+testInference.run
+true
+true
+true
+
+
+make
+-j2
+install
+true
+true
+true
+
+
+make
+-j2
+clean
+true
+true
+true
+
+
+make
+-j2
+check
+true
+true
+true
+
+
+
+
-
-
+
+
diff --git a/colamd/Makefile b/colamd/Makefile
index 85b1a2243..936880863 100755
--- a/colamd/Makefile
+++ b/colamd/Makefile
@@ -5,9 +5,8 @@
all: libcolamd.a
CC ?= gcc
-CXX ?= g++
-CXXFLAGS += -O2
-CXXFLAGS += -fPIC
+CFLAGS += -O2
+CFLAGS += -fPIC
sources = $(shell ls *.c)
@@ -17,11 +16,9 @@ library = libcolamd.a
#Note: hack was added to ensure that flags are acutally used for compilation
# This should probably be fixed, but will work for 64 bit machines now
-$(library):
- $(CXX) $(CXXFLAGS) -c -o colamd.o colamd.c
- $(CXX) $(CXXFLAGS) -c -DDLONG -o colamd_l.o colamd.c
- $(CXX) $(CXXFLAGS) -c -o colamd_global.o colamd_global.c
- ar crsv $@ colamd.o colamd_l.o colamd_global.o
+$(library): colamd.o colamd_global.o ccolamd.o ccolamd_global.o
+ $(CC) $(CFLAGS) -c -DDLONG -o colamd_l.o colamd.c
+ ar crsv $@ $^ colamd_l.o
ranlib $(library)
clean:
diff --git a/colamd/ccolamd.c b/colamd/ccolamd.c
new file mode 100644
index 000000000..924747126
--- /dev/null
+++ b/colamd/ccolamd.c
@@ -0,0 +1,4620 @@
+/* ========================================================================== */
+/* === CCOLAMD/CSYMAMD - a constrained column ordering algorithm ============ */
+/* ========================================================================== */
+
+/* ----------------------------------------------------------------------------
+ * CCOLAMD, Copyright (C) Univ. of Florida. Authors: Timothy A. Davis,
+ * Sivasankaran Rajamanickam, and Stefan Larimore
+ * See License.txt for the Version 2.1 of the GNU Lesser General Public License
+ * http://www.cise.ufl.edu/research/sparse
+ * -------------------------------------------------------------------------- */
+
+/*
+ * ccolamd: a constrained approximate minimum degree column ordering
+ * algorithm, LU factorization of symmetric or unsymmetric matrices,
+ * QR factorization, least squares, interior point methods for
+ * linear programming problems, and other related problems.
+ *
+ * csymamd: a constrained approximate minimum degree ordering algorithm for
+ * Cholesky factorization of symmetric matrices.
+ *
+ * Purpose:
+ *
+ * CCOLAMD computes a permutation Q such that the Cholesky factorization of
+ * (AQ)'(AQ) has less fill-in and requires fewer floating point operations
+ * than A'A. This also provides a good ordering for sparse partial
+ * pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
+ * factorization, and P is computed during numerical factorization via
+ * conventional partial pivoting with row interchanges. CCOLAMD is an
+ * extension of COLAMD, available as built-in function in MATLAB Version 6,
+ * available from MathWorks, Inc. (http://www.mathworks.com). This
+ * routine can be used in place of COLAMD in MATLAB.
+ *
+ * CSYMAMD computes a permutation P of a symmetric matrix A such that the
+ * Cholesky factorization of PAP' has less fill-in and requires fewer
+ * floating point operations than A. CSYMAMD constructs a matrix M such
+ * that M'M has the same nonzero pattern of A, and then orders the columns
+ * of M using colmmd. The column ordering of M is then returned as the
+ * row and column ordering P of A. CSYMAMD is an extension of SYMAMD.
+ *
+ * Authors:
+ *
+ * Timothy A. Davis and S. Rajamanickam wrote CCOLAMD, based directly on
+ * COLAMD by Stefan I. Larimore and Timothy A. Davis, University of
+ * Florida. The algorithm was developed in collaboration with John
+ * Gilbert, (UCSB, then at Xerox PARC), and Esmond Ng, (Lawrence Berkeley
+ * National Lab, then at Oak Ridge National Laboratory).
+ *
+ * Acknowledgements:
+ *
+ * This work was supported by the National Science Foundation, under
+ * grants DMS-9504974 and DMS-9803599, CCR-0203270, and a grant from the
+ * Sandia National Laboratory (Dept. of Energy).
+ *
+ * Copyright and License:
+ *
+ * Copyright (c) 1998-2005 by the University of Florida.
+ * All Rights Reserved.
+ * COLAMD is also available under alternate licenses, contact T. Davis
+ * for details.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+ * USA
+ *
+ * Permission is hereby granted to use or copy this program under the
+ * terms of the GNU LGPL, provided that the Copyright, this License,
+ * and the Availability of the original version is retained on all copies.
+ * User documentation of any code that uses this code or any modified
+ * version of this code must cite the Copyright, this License, the
+ * Availability note, and "Used by permission." Permission to modify
+ * the code and to distribute modified code is granted, provided the
+ * Copyright, this License, and the Availability note are retained,
+ * and a notice that the code was modified is included.
+ *
+ * Availability:
+ *
+ * The CCOLAMD/CSYMAMD library is available at
+ *
+ * http://www.cise.ufl.edu/research/sparse/ccolamd/
+ *
+ * This is the http://www.cise.ufl.edu/research/sparse/ccolamd/ccolamd.c
+ * file.
+ *
+ * See the ChangeLog file for changes since Version 1.0.
+ */
+
+/* ========================================================================== */
+/* === Description of user-callable routines ================================ */
+/* ========================================================================== */
+
+/* CCOLAMD includes both int and UF_long versions of all its routines. The
+ * description below is for the int version. For UF_long, all int arguments
+ * become UF_long integers. UF_long is normally defined as long, except for
+ * WIN64 */
+
+/* ----------------------------------------------------------------------------
+ * ccolamd_recommended:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ * size_t ccolamd_recommended (int nnz, int n_row, int n_col) ;
+ * size_t ccolamd_l_recommended (UF_long nnz, UF_long n_row,
+ * UF_long n_col) ;
+ *
+ * Purpose:
+ *
+ * Returns recommended value of Alen for use by ccolamd. Returns 0
+ * if any input argument is negative. The use of this routine
+ * is optional. Not needed for csymamd, which dynamically allocates
+ * its own memory.
+ *
+ * Arguments (all input arguments):
+ *
+ * int nnz ; Number of nonzeros in the matrix A. This must
+ * be the same value as p [n_col] in the call to
+ * ccolamd - otherwise you will get a wrong value
+ * of the recommended memory to use.
+ *
+ * int n_row ; Number of rows in the matrix A.
+ *
+ * int n_col ; Number of columns in the matrix A.
+ *
+ * ----------------------------------------------------------------------------
+ * ccolamd_set_defaults:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ * ccolamd_set_defaults (double knobs [CCOLAMD_KNOBS]) ;
+ * ccolamd_l_set_defaults (double knobs [CCOLAMD_KNOBS]) ;
+ *
+ * Purpose:
+ *
+ * Sets the default parameters. The use of this routine is optional.
+ * Passing a (double *) NULL pointer for the knobs results in the
+ * default parameter settings.
+ *
+ * Arguments:
+ *
+ * double knobs [CCOLAMD_KNOBS] ; Output only.
+ *
+ * knobs [0] and knobs [1] behave differently than they did in COLAMD.
+ * The other knobs are new to CCOLAMD.
+ *
+ * knobs [0]: dense row control
+ *
+ * For CCOLAMD, rows with more than
+ * max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n_col))
+ * entries are removed prior to ordering.
+ *
+ * For CSYMAMD, rows and columns with more than
+ * max (16, knobs [CCOLAMD_DENSE_ROW] * sqrt (n))
+ * entries are removed prior to ordering, and placed last in the
+ * output ordering (subject to the constraints).
+ *
+ * If negative, only completely dense rows are removed. If you
+ * intend to use CCOLAMD for a Cholesky factorization of A*A', set
+ * knobs [CCOLAMD_DENSE_ROW] to -1, which is more appropriate for
+ * that case.
+ *
+ * Default: 10.
+ *
+ * knobs [1]: dense column control
+ *
+ * For CCOLAMD, columns with more than
+ * max (16, knobs [CCOLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
+ * entries are removed prior to ordering, and placed last in the
+ * output column ordering (subject to the constraints).
+ * Not used by CSYMAMD. If negative, only completely dense
+ * columns are removed. Default: 10.
+ *
+ * knobs [2]: aggressive absorption
+ *
+ * knobs [CCOLAMD_AGGRESSIVE] controls whether or not to do
+ * aggressive absorption during the ordering. Default is TRUE
+ * (nonzero). If zero, no aggressive absorption is performed.
+ *
+ * knobs [3]: optimize ordering for LU or Cholesky
+ *
+ * knobs [CCOLAMD_LU] controls an option that optimizes the
+ * ordering for the LU of A or the Cholesky factorization of A'A.
+ * If TRUE (nonzero), an ordering optimized for LU is performed.
+ * If FALSE (zero), an ordering for Cholesky is performed.
+ * Default is FALSE. CSYMAMD ignores this parameter; it always
+ * orders for Cholesky.
+ *
+ * ----------------------------------------------------------------------------
+ * ccolamd:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ * int ccolamd (int n_row, int n_col, int Alen, int *A, int *p,
+ * double knobs [CCOLAMD_KNOBS], int stats [CCOLAMD_STATS],
+ * int *cmember) ;
+ *
+ * UF_long ccolamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
+ * UF_long *A, UF_long *p, double knobs [CCOLAMD_KNOBS],
+ * UF_long stats [CCOLAMD_STATS], UF_long *cmember) ;
+ *
+ * Purpose:
+ *
+ * Computes a column ordering (Q) of A such that P(AQ)=LU or
+ * (AQ)'AQ=LL' have less fill-in and require fewer floating point
+ * operations than factorizing the unpermuted matrix A or A'A,
+ * respectively.
+ *
+ * Returns:
+ *
+ * TRUE (1) if successful, FALSE (0) otherwise.
+ *
+ * Arguments (for int version):
+ *
+ * int n_row ; Input argument.
+ *
+ * Number of rows in the matrix A.
+ * Restriction: n_row >= 0.
+ * ccolamd returns FALSE if n_row is negative.
+ *
+ * int n_col ; Input argument.
+ *
+ * Number of columns in the matrix A.
+ * Restriction: n_col >= 0.
+ * ccolamd returns FALSE if n_col is negative.
+ *
+ * int Alen ; Input argument.
+ *
+ * Restriction (see note):
+ * Alen >= MAX (2*nnz, 4*n_col) + 17*n_col + 7*n_row + 7, where
+ * nnz = p [n_col]. ccolamd returns FALSE if this condition is
+ * not met. We recommend about nnz/5 more space for better
+ * efficiency. This restriction makes an modest assumption
+ * regarding the size of two typedef'd structures in ccolamd.h.
+ * We do, however, guarantee that
+ *
+ * Alen >= ccolamd_recommended (nnz, n_row, n_col)
+ *
+ * will work efficiently.
+ *
+ * int A [Alen] ; Input argument, undefined on output.
+ *
+ * A is an integer array of size Alen. Alen must be at least as
+ * large as the bare minimum value given above, but this is very
+ * low, and can result in excessive run time. For best
+ * performance, we recommend that Alen be greater than or equal to
+ * ccolamd_recommended (nnz, n_row, n_col), which adds
+ * nnz/5 to the bare minimum value given above.
+ *
+ * On input, the row indices of the entries in column c of the
+ * matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
+ * in a given column c need not be in ascending order, and
+ * duplicate row indices may be be present. However, ccolamd will
+ * work a little faster if both of these conditions are met
+ * (ccolamd puts the matrix into this format, if it finds that the
+ * the conditions are not met).
+ *
+ * The matrix is 0-based. That is, rows are in the range 0 to
+ * n_row-1, and columns are in the range 0 to n_col-1. ccolamd
+ * returns FALSE if any row index is out of range.
+ *
+ * The contents of A are modified during ordering, and are
+ * undefined on output.
+ *
+ * int p [n_col+1] ; Both input and output argument.
+ *
+ * p is an integer array of size n_col+1. On input, it holds the
+ * "pointers" for the column form of the matrix A. Column c of
+ * the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
+ * entry, p [0], must be zero, and p [c] <= p [c+1] must hold
+ * for all c in the range 0 to n_col-1. The value nnz = p [n_col]
+ * is thus the total number of entries in the pattern of the
+ * matrix A. ccolamd returns FALSE if these conditions are not
+ * met.
+ *
+ * On output, if ccolamd returns TRUE, the array p holds the column
+ * permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
+ * the first column index in the new ordering, and p [n_col-1] is
+ * the last. That is, p [k] = j means that column j of A is the
+ * kth pivot column, in AQ, where k is in the range 0 to n_col-1
+ * (p [0] = j means that column j of A is the first column in AQ).
+ *
+ * If ccolamd returns FALSE, then no permutation is returned, and
+ * p is undefined on output.
+ *
+ * double knobs [CCOLAMD_KNOBS] ; Input argument.
+ *
+ * See ccolamd_set_defaults for a description.
+ *
+ * int stats [CCOLAMD_STATS] ; Output argument.
+ *
+ * Statistics on the ordering, and error status.
+ * See ccolamd.h for related definitions.
+ * ccolamd returns FALSE if stats is not present.
+ *
+ * stats [0]: number of dense or empty rows ignored.
+ *
+ * stats [1]: number of dense or empty columns ignored (and
+ * ordered last in the output permutation p, subject to the
+ * constraints). Note that a row can become "empty" if it
+ * contains only "dense" and/or "empty" columns, and similarly
+ * a column can become "empty" if it only contains "dense"
+ * and/or "empty" rows.
+ *
+ * stats [2]: number of garbage collections performed. This can
+ * be excessively high if Alen is close to the minimum
+ * required value.
+ *
+ * stats [3]: status code. < 0 is an error code.
+ * > 1 is a warning or notice.
+ *
+ * 0 OK. Each column of the input matrix contained row
+ * indices in increasing order, with no duplicates.
+ *
+ * 1 OK, but columns of input matrix were jumbled (unsorted
+ * columns or duplicate entries). CCOLAMD had to do some
+ * extra work to sort the matrix first and remove
+ * duplicate entries, but it still was able to return a
+ * valid permutation (return value of ccolamd was TRUE).
+ *
+ * stats [4]: highest column index of jumbled columns
+ * stats [5]: last seen duplicate or unsorted row index
+ * stats [6]: number of duplicate or unsorted row indices
+ *
+ * -1 A is a null pointer
+ *
+ * -2 p is a null pointer
+ *
+ * -3 n_row is negative. stats [4]: n_row
+ *
+ * -4 n_col is negative. stats [4]: n_col
+ *
+ * -5 number of nonzeros in matrix is negative
+ *
+ * stats [4]: number of nonzeros, p [n_col]
+ *
+ * -6 p [0] is nonzero
+ *
+ * stats [4]: p [0]
+ *
+ * -7 A is too small
+ *
+ * stats [4]: required size
+ * stats [5]: actual size (Alen)
+ *
+ * -8 a column has a negative number of entries
+ *
+ * stats [4]: column with < 0 entries
+ * stats [5]: number of entries in col
+ *
+ * -9 a row index is out of bounds
+ *
+ * stats [4]: column with bad row index
+ * stats [5]: bad row index
+ * stats [6]: n_row, # of rows of matrx
+ *
+ * -10 (unused; see csymamd)
+ *
+ * int cmember [n_col] ; Input argument.
+ *
+ * cmember is new to CCOLAMD. It did not appear in COLAMD.
+ * It places contraints on the output ordering. s = cmember [j]
+ * gives the constraint set s that contains the column j
+ * (Restriction: 0 <= s < n_col). In the output column
+ * permutation, all columns in set 0 appear first, followed by
+ * all columns in set 1, and so on. If NULL, all columns are
+ * treated as if they were in a single constraint set, and you
+ * will obtain the same ordering as COLAMD (with one exception:
+ * the dense row/column threshold and other default knobs in
+ * CCOLAMD and COLAMD are different).
+ *
+ * Example:
+ *
+ * See
+ * http://www.cise.ufl.edu/research/sparse/ccolamd/ccolamd_example.c
+ * for a complete example.
+ *
+ * To order the columns of a 5-by-4 matrix with 11 nonzero entries in
+ * the following nonzero pattern
+ *
+ * x 0 x 0
+ * x 0 x x
+ * 0 x x 0
+ * 0 0 x x
+ * x x 0 0
+ *
+ * with default knobs, no output statistics, and no ordering
+ * constraints, do the following:
+ *
+ * #include "ccolamd.h"
+ * #define ALEN 144
+ * int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
+ * int p [ ] = {0, 3, 5, 9, 11} ;
+ * int stats [CCOLAMD_STATS] ;
+ * ccolamd (5, 4, ALEN, A, p, (double *) NULL, stats, NULL) ;
+ *
+ * The permutation is returned in the array p, and A is destroyed.
+ *
+ * ----------------------------------------------------------------------------
+ * csymamd:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ *
+ * int csymamd (int n, int *A, int *p, int *perm,
+ * double knobs [CCOLAMD_KNOBS], int stats [CCOLAMD_STATS],
+ * void (*allocate) (size_t, size_t), void (*release) (void *),
+ * int *cmember, int stype) ;
+ *
+ * UF_long csymamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
+ * double knobs [CCOLAMD_KNOBS], UF_long stats [CCOLAMD_STATS],
+ * void (*allocate) (size_t, size_t), void (*release) (void *),
+ * UF_long *cmember, UF_long stype) ;
+ *
+ * Purpose:
+ *
+ * The csymamd routine computes an ordering P of a symmetric sparse
+ * matrix A such that the Cholesky factorization PAP' = LL' remains
+ * sparse. It is based on a column ordering of a matrix M constructed
+ * so that the nonzero pattern of M'M is the same as A. Either the
+ * lower or upper triangular part of A can be used, or the pattern
+ * A+A' can be used. You must pass your selected memory allocator
+ * (usually calloc/free or mxCalloc/mxFree) to csymamd, for it to
+ * allocate memory for the temporary matrix M.
+ *
+ * Returns:
+ *
+ * TRUE (1) if successful, FALSE (0) otherwise.
+ *
+ * Arguments:
+ *
+ * int n ; Input argument.
+ *
+ * Number of rows and columns in the symmetrix matrix A.
+ * Restriction: n >= 0.
+ * csymamd returns FALSE if n is negative.
+ *
+ * int A [nnz] ; Input argument.
+ *
+ * A is an integer array of size nnz, where nnz = p [n].
+ *
+ * The row indices of the entries in column c of the matrix are
+ * held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
+ * given column c need not be in ascending order, and duplicate
+ * row indices may be present. However, csymamd will run faster
+ * if the columns are in sorted order with no duplicate entries.
+ *
+ * The matrix is 0-based. That is, rows are in the range 0 to
+ * n-1, and columns are in the range 0 to n-1. csymamd
+ * returns FALSE if any row index is out of range.
+ *
+ * The contents of A are not modified.
+ *
+ * int p [n+1] ; Input argument.
+ *
+ * p is an integer array of size n+1. On input, it holds the
+ * "pointers" for the column form of the matrix A. Column c of
+ * the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
+ * entry, p [0], must be zero, and p [c] <= p [c+1] must hold
+ * for all c in the range 0 to n-1. The value p [n] is
+ * thus the total number of entries in the pattern of the matrix A.
+ * csymamd returns FALSE if these conditions are not met.
+ *
+ * The contents of p are not modified.
+ *
+ * int perm [n+1] ; Output argument.
+ *
+ * On output, if csymamd returns TRUE, the array perm holds the
+ * permutation P, where perm [0] is the first index in the new
+ * ordering, and perm [n-1] is the last. That is, perm [k] = j
+ * means that row and column j of A is the kth column in PAP',
+ * where k is in the range 0 to n-1 (perm [0] = j means
+ * that row and column j of A are the first row and column in
+ * PAP'). The array is used as a workspace during the ordering,
+ * which is why it must be of length n+1, not just n.
+ *
+ * double knobs [CCOLAMD_KNOBS] ; Input argument.
+ *
+ * See colamd_set_defaults for a description.
+ *
+ * int stats [CCOLAMD_STATS] ; Output argument.
+ *
+ * Statistics on the ordering, and error status.
+ * See ccolamd.h for related definitions.
+ * csymand returns FALSE if stats is not present.
+ *
+ * stats [0]: number of dense or empty row and columns ignored
+ * (and ordered last in the output permutation perm, subject
+ * to the constraints). Note that a row/column can become
+ * "empty" if it contains only "dense" and/or "empty"
+ * columns/rows.
+ *
+ * stats [1]: (same as stats [0])
+ *
+ * stats [2]: number of garbage collections performed.
+ *
+ * stats [3]: status code. < 0 is an error code.
+ * > 1 is a warning or notice.
+ *
+ * 0 to -9: same as ccolamd, with n replacing n_col and n_row,
+ * and -3 and -7 are unused.
+ *
+ * -10 out of memory (unable to allocate temporary workspace
+ * for M or count arrays using the "allocate" routine
+ * passed into csymamd).
+ *
+ * void * (*allocate) (size_t, size_t)
+ *
+ * A pointer to a function providing memory allocation. The
+ * allocated memory must be returned initialized to zero. For a
+ * C application, this argument should normally be a pointer to
+ * calloc. For a MATLAB mexFunction, the routine mxCalloc is
+ * passed instead.
+ *
+ * void (*release) (size_t, size_t)
+ *
+ * A pointer to a function that frees memory allocated by the
+ * memory allocation routine above. For a C application, this
+ * argument should normally be a pointer to free. For a MATLAB
+ * mexFunction, the routine mxFree is passed instead.
+ *
+ * int cmember [n] ; Input argument.
+ *
+ * Same as ccolamd, except that cmember is of size n, and it places
+ * contraints symmetrically, on both the row and column ordering.
+ * Entries in cmember must be in the range 0 to n-1.
+ *
+ * int stype ; Input argument.
+ *
+ * If stype < 0, then only the strictly lower triangular part of
+ * A is accessed. The upper triangular part is assumed to be the
+ * transpose of the lower triangular part. This is the same as
+ * SYMAMD, which did not have an stype parameter.
+ *
+ * If stype > 0, only the strictly upper triangular part of A is
+ * accessed. The lower triangular part is assumed to be the
+ * transpose of the upper triangular part.
+ *
+ * If stype == 0, then the nonzero pattern of A+A' is ordered.
+ *
+ * ----------------------------------------------------------------------------
+ * ccolamd_report:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ * ccolamd_report (int stats [CCOLAMD_STATS]) ;
+ * ccolamd_l_report (UF_long stats [CCOLAMD_STATS]) ;
+ *
+ * Purpose:
+ *
+ * Prints the error status and statistics recorded in the stats
+ * array on the standard error output (for a standard C routine)
+ * or on the MATLAB output (for a mexFunction).
+ *
+ * Arguments:
+ *
+ * int stats [CCOLAMD_STATS] ; Input only. Statistics from ccolamd.
+ *
+ *
+ * ----------------------------------------------------------------------------
+ * csymamd_report:
+ * ----------------------------------------------------------------------------
+ *
+ * C syntax:
+ *
+ * #include "ccolamd.h"
+ * csymamd_report (int stats [CCOLAMD_STATS]) ;
+ * csymamd_l_report (UF_long stats [CCOLAMD_STATS]) ;
+ *
+ * Purpose:
+ *
+ * Prints the error status and statistics recorded in the stats
+ * array on the standard error output (for a standard C routine)
+ * or on the MATLAB output (for a mexFunction).
+ *
+ * Arguments:
+ *
+ * int stats [CCOLAMD_STATS] ; Input only. Statistics from csymamd.
+ *
+ */
+
+
+/* ========================================================================== */
+/* === Scaffolding code definitions ======================================== */
+/* ========================================================================== */
+
+/* Ensure that debugging is turned off: */
+#ifndef NDEBUG
+#define NDEBUG
+#endif
+
+/* turn on debugging by uncommenting the following line
+ #undef NDEBUG
+ */
+
+/* ========================================================================== */
+/* === Include files ======================================================== */
+/* ========================================================================== */
+
+#include "ccolamd.h"
+
+#include
+#include
+#include
+
+#ifdef MATLAB_MEX_FILE
+#include "mex.h"
+#include "matrix.h"
+#endif
+
+#if !defined (NPRINT) || !defined (NDEBUG)
+#include
+#endif
+
+#ifndef NULL
+#define NULL ((void *) 0)
+#endif
+
+/* ========================================================================== */
+/* === int or UF_long ======================================================= */
+/* ========================================================================== */
+
+/* define UF_long */
+#include "UFconfig.h"
+
+#ifdef DLONG
+
+#define Int UF_long
+#define ID UF_long_id
+#define Int_MAX UF_long_max
+
+#define CCOLAMD_recommended ccolamd_l_recommended
+#define CCOLAMD_set_defaults ccolamd_l_set_defaults
+#define CCOLAMD_2 ccolamd2_l
+#define CCOLAMD_MAIN ccolamd_l
+#define CCOLAMD_apply_order ccolamd_l_apply_order
+#define CCOLAMD_postorder ccolamd_l_postorder
+#define CCOLAMD_post_tree ccolamd_l_post_tree
+#define CCOLAMD_fsize ccolamd_l_fsize
+#define CSYMAMD_MAIN csymamd_l
+#define CCOLAMD_report ccolamd_l_report
+#define CSYMAMD_report csymamd_l_report
+
+#else
+
+#define Int int
+#define ID "%d"
+#define Int_MAX INT_MAX
+
+#define CCOLAMD_recommended ccolamd_recommended
+#define CCOLAMD_set_defaults ccolamd_set_defaults
+#define CCOLAMD_2 ccolamd2
+#define CCOLAMD_MAIN ccolamd
+#define CCOLAMD_apply_order ccolamd_apply_order
+#define CCOLAMD_postorder ccolamd_postorder
+#define CCOLAMD_post_tree ccolamd_post_tree
+#define CCOLAMD_fsize ccolamd_fsize
+#define CSYMAMD_MAIN csymamd
+#define CCOLAMD_report ccolamd_report
+#define CSYMAMD_report csymamd_report
+
+#endif
+
+/* ========================================================================== */
+/* === Row and Column structures ============================================ */
+/* ========================================================================== */
+
+typedef struct CColamd_Col_struct
+{
+ /* size of this struct is 8 integers if no padding occurs */
+
+ Int start ; /* index for A of first row in this column, or DEAD */
+ /* if column is dead */
+ Int length ; /* number of rows in this column */
+ union
+ {
+ Int thickness ; /* number of original columns represented by this */
+ /* col, if the column is alive */
+ Int parent ; /* parent in parent tree super-column structure, if */
+ /* the column is dead */
+ } shared1 ;
+ union
+ {
+ Int score ;
+ Int order ;
+ } shared2 ;
+ union
+ {
+ Int headhash ; /* head of a hash bucket, if col is at the head of */
+ /* a degree list */
+ Int hash ; /* hash value, if col is not in a degree list */
+ Int prev ; /* previous column in degree list, if col is in a */
+ /* degree list (but not at the head of a degree list) */
+ } shared3 ;
+ union
+ {
+ Int degree_next ; /* next column, if col is in a degree list */
+ Int hash_next ; /* next column, if col is in a hash list */
+ } shared4 ;
+
+ Int nextcol ; /* next column in this supercolumn */
+ Int lastcol ; /* last column in this supercolumn */
+
+} CColamd_Col ;
+
+
+typedef struct CColamd_Row_struct
+{
+ /* size of this struct is 6 integers if no padding occurs */
+
+ Int start ; /* index for A of first col in this row */
+ Int length ; /* number of principal columns in this row */
+ union
+ {
+ Int degree ; /* number of principal & non-principal columns in row */
+ Int p ; /* used as a row pointer in init_rows_cols () */
+ } shared1 ;
+ union
+ {
+ Int mark ; /* for computing set differences and marking dead rows*/
+ Int first_column ;/* first column in row (used in garbage collection) */
+ } shared2 ;
+
+ Int thickness ; /* number of original rows represented by this row */
+ /* that are not yet pivotal */
+ Int front ; /* -1 if an original row */
+ /* k if this row represents the kth frontal matrix */
+ /* where k goes from 0 to at most n_col-1 */
+
+} CColamd_Row ;
+
+/* ========================================================================== */
+/* === basic definitions ==================================================== */
+/* ========================================================================== */
+
+#define EMPTY (-1)
+#define MAX(a,b) (((a) > (b)) ? (a) : (b))
+#define MIN(a,b) (((a) < (b)) ? (a) : (b))
+
+/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
+#define GLOBAL
+#define PUBLIC
+#define PRIVATE static
+
+#define DENSE_DEGREE(alpha,n) \
+ ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
+
+#define CMEMBER(c) ((cmember == (Int *) NULL) ? (0) : (cmember [c]))
+
+/* True if x is NaN */
+#define SCALAR_IS_NAN(x) ((x) != (x))
+
+/* true if an integer (stored in double x) would overflow (or if x is NaN) */
+#define INT_OVERFLOW(x) ((!((x) * (1.0+1e-8) <= (double) Int_MAX)) \
+ || SCALAR_IS_NAN (x))
+
+#define ONES_COMPLEMENT(r) (-(r)-1)
+#undef TRUE
+#undef FALSE
+#define TRUE (1)
+#define FALSE (0)
+
+/* Row and column status */
+#define ALIVE (0)
+#define DEAD (-1)
+
+/* Column status */
+#define DEAD_PRINCIPAL (-1)
+#define DEAD_NON_PRINCIPAL (-2)
+
+/* Macros for row and column status update and checking. */
+#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
+#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
+#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
+#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
+#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
+#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
+#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
+#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
+#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
+
+
+/* ========================================================================== */
+/* === ccolamd reporting mechanism ========================================== */
+/* ========================================================================== */
+
+#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
+/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
+#define INDEX(i) ((i)+1)
+#else
+/* In C, matrices are 0-based and indices are reported as such in *_report */
+#define INDEX(i) (i)
+#endif
+
+/* All output goes through the PRINTF macro. */
+#define PRINTF(params) { if (ccolamd_printf != NULL) (void) ccolamd_printf params ; }
+
+
+/* ========================================================================== */
+/* === Debugging prototypes and definitions ================================= */
+/* ========================================================================== */
+
+#ifndef NDEBUG
+
+#include
+
+/* debug print level, present only when debugging */
+PRIVATE Int ccolamd_debug ;
+
+/* debug print statements */
+#define DEBUG0(params) { PRINTF (params) ; }
+#define DEBUG1(params) { if (ccolamd_debug >= 1) PRINTF (params) ; }
+#define DEBUG2(params) { if (ccolamd_debug >= 2) PRINTF (params) ; }
+#define DEBUG3(params) { if (ccolamd_debug >= 3) PRINTF (params) ; }
+#define DEBUG4(params) { if (ccolamd_debug >= 4) PRINTF (params) ; }
+
+#ifdef MATLAB_MEX_FILE
+#define ASSERT(expression) (mxAssert ((expression), ""))
+#else
+#define ASSERT(expression) (assert (expression))
+#endif
+
+PRIVATE void ccolamd_get_debug
+(
+ char *method
+) ;
+
+PRIVATE void debug_mark
+(
+ Int n_row,
+ CColamd_Row Row [],
+ Int tag_mark,
+ Int max_mark
+) ;
+
+PRIVATE void debug_matrix
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [],
+ CColamd_Col Col [],
+ Int A []
+) ;
+
+PRIVATE void debug_structures
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [],
+ CColamd_Col Col [],
+ Int A [],
+ Int in_cset [],
+ Int cset_start []
+) ;
+
+PRIVATE void dump_super
+(
+ Int super_c,
+ CColamd_Col Col [],
+ Int n_col
+) ;
+
+PRIVATE void debug_deg_lists
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int head [ ],
+ Int min_score,
+ Int should,
+ Int max_deg
+) ;
+
+#else
+
+/* === No debugging ========================================================= */
+
+#define DEBUG0(params) ;
+#define DEBUG1(params) ;
+#define DEBUG2(params) ;
+#define DEBUG3(params) ;
+#define DEBUG4(params) ;
+
+#define ASSERT(expression)
+
+#endif
+
+/* ========================================================================== */
+/* === Prototypes of PRIVATE routines ======================================= */
+/* ========================================================================== */
+
+PRIVATE Int init_rows_cols
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int p [ ],
+ Int stats [CCOLAMD_STATS]
+) ;
+
+PRIVATE void init_scoring
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int head [ ],
+ double knobs [CCOLAMD_KNOBS],
+ Int *p_n_row2,
+ Int *p_n_col2,
+ Int *p_max_deg,
+ Int cmember [ ],
+ Int n_cset,
+ Int cset_start [ ],
+ Int dead_cols [ ],
+ Int *p_ndense_row, /* number of dense rows */
+ Int *p_nempty_row, /* number of original empty rows */
+ Int *p_nnewlyempty_row, /* number of newly empty rows */
+ Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */
+ Int *p_nempty_col, /* number of original empty cols */
+ Int *p_nnewlyempty_col /* number of newly empty cols */
+) ;
+
+PRIVATE Int find_ordering
+(
+ Int n_row,
+ Int n_col,
+ Int Alen,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int head [ ],
+#ifndef NDEBUG
+ Int n_col2,
+#endif
+ Int max_deg,
+ Int pfree,
+ Int cset [ ],
+ Int cset_start [ ],
+#ifndef NDEBUG
+ Int n_cset,
+#endif
+ Int cmember [ ],
+ Int Front_npivcol [ ],
+ Int Front_nrows [ ],
+ Int Front_ncols [ ],
+ Int Front_parent [ ],
+ Int Front_cols [ ],
+ Int *p_nfr,
+ Int aggressive,
+ Int InFront [ ],
+ Int order_for_lu
+) ;
+
+PRIVATE void detect_super_cols
+(
+#ifndef NDEBUG
+ Int n_col,
+ CColamd_Row Row [ ],
+#endif
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int head [ ],
+ Int row_start,
+ Int row_length,
+ Int in_set [ ]
+) ;
+
+PRIVATE Int garbage_collection
+(
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int *pfree
+) ;
+
+PRIVATE Int clear_mark
+(
+ Int tag_mark,
+ Int max_mark,
+ Int n_row,
+ CColamd_Row Row [ ]
+) ;
+
+PRIVATE void print_report
+(
+ char *method,
+ Int stats [CCOLAMD_STATS]
+) ;
+
+
+/* ========================================================================== */
+/* === USER-CALLABLE ROUTINES: ============================================== */
+/* ========================================================================== */
+
+
+/* ========================================================================== */
+/* === ccolamd_recommended ================================================== */
+/* ========================================================================== */
+
+/*
+ * The ccolamd_recommended routine returns the suggested size for Alen. This
+ * value has been determined to provide good balance between the number of
+ * garbage collections and the memory requirements for ccolamd. If any
+ * argument is negative, or if integer overflow occurs, a 0 is returned as
+ * an error condition.
+ *
+ * 2*nnz space is required for the row and column indices of the matrix
+ * (or 4*n_col, which ever is larger).
+ *
+ * CCOLAMD_C (n_col) + CCOLAMD_R (n_row) space is required for the Col and Row
+ * arrays, respectively, which are internal to ccolamd. This is equal to
+ * 8*n_col + 6*n_row if the structures are not padded.
+ *
+ * An additional n_col space is the minimal amount of "elbow room",
+ * and nnz/5 more space is recommended for run time efficiency.
+ *
+ * The remaining (((3 * n_col) + 1) + 5 * (n_col + 1) + n_row) space is
+ * for other workspace used in ccolamd which did not appear in colamd.
+ */
+
+/* add two values of type size_t, and check for integer overflow */
+static size_t t_add (size_t a, size_t b, int *ok)
+{
+ (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
+ return ((*ok) ? (a + b) : 0) ;
+}
+
+/* compute a*k where k is a small integer, and check for integer overflow */
+static size_t t_mult (size_t a, size_t k, int *ok)
+{
+ size_t i, s = 0 ;
+ for (i = 0 ; i < k ; i++)
+ {
+ s = t_add (s, a, ok) ;
+ }
+ return (s) ;
+}
+
+/* size of the Col and Row structures */
+#define CCOLAMD_C(n_col,ok) \
+ ((t_mult (t_add (n_col, 1, ok), sizeof (CColamd_Col), ok) / sizeof (Int)))
+
+#define CCOLAMD_R(n_row,ok) \
+ ((t_mult (t_add (n_row, 1, ok), sizeof (CColamd_Row), ok) / sizeof (Int)))
+
+/*
+#define CCOLAMD_RECOMMENDED(nnz, n_row, n_col) \
+ MAX (2 * nnz, 4 * n_col) + \
+ CCOLAMD_C (n_col) + CCOLAMD_R (n_row) + n_col + (nnz / 5) \
+ + ((3 * n_col) + 1) + 5 * (n_col + 1) + n_row
+ */
+
+static size_t ccolamd_need (Int nnz, Int n_row, Int n_col, int *ok)
+{
+
+ /* ccolamd_need, compute the following, and check for integer overflow:
+ need = MAX (2*nnz, 4*n_col) + n_col +
+ Col_size + Row_size +
+ (3*n_col+1) + (5*(n_col+1)) + n_row ;
+ */
+ size_t s, c, r, t ;
+
+ /* MAX (2*nnz, 4*n_col) */
+ s = t_mult (nnz, 2, ok) ; /* 2*nnz */
+ t = t_mult (n_col, 4, ok) ; /* 4*n_col */
+ s = MAX (s,t) ;
+
+ s = t_add (s, n_col, ok) ; /* bare minimum elbow room */
+
+ /* Col and Row arrays */
+ c = CCOLAMD_C (n_col, ok) ; /* size of column structures */
+ r = CCOLAMD_R (n_row, ok) ; /* size of row structures */
+ s = t_add (s, c, ok) ;
+ s = t_add (s, r, ok) ;
+
+ c = t_mult (n_col, 3, ok) ; /* 3*n_col + 1 */
+ c = t_add (c, 1, ok) ;
+ s = t_add (s, c, ok) ;
+
+ c = t_add (n_col, 1, ok) ; /* 5 * (n_col + 1) */
+ c = t_mult (c, 5, ok) ;
+ s = t_add (s, c, ok) ;
+
+ s = t_add (s, n_row, ok) ; /* n_row */
+
+ return (ok ? s : 0) ;
+}
+
+PUBLIC size_t CCOLAMD_recommended /* returns recommended value of Alen. */
+(
+ /* === Parameters ======================================================= */
+
+ Int nnz, /* number of nonzeros in A */
+ Int n_row, /* number of rows in A */
+ Int n_col /* number of columns in A */
+)
+{
+ size_t s ;
+ int ok = TRUE ;
+ if (nnz < 0 || n_row < 0 || n_col < 0)
+ {
+ return (0) ;
+ }
+ s = ccolamd_need (nnz, n_row, n_col, &ok) ; /* bare minimum needed */
+ s = t_add (s, nnz/5, &ok) ; /* extra elbow room */
+ ok = ok && (s < Int_MAX) ;
+ return (ok ? s : 0) ;
+}
+
+
+/* ========================================================================== */
+/* === ccolamd_set_defaults ================================================= */
+/* ========================================================================== */
+
+/*
+ * The ccolamd_set_defaults routine sets the default values of the user-
+ * controllable parameters for ccolamd.
+ */
+
+PUBLIC void CCOLAMD_set_defaults
+(
+ /* === Parameters ======================================================= */
+
+ double knobs [CCOLAMD_KNOBS] /* knob array */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ;
+
+ if (!knobs)
+ {
+ return ; /* no knobs to initialize */
+ }
+ for (i = 0 ; i < CCOLAMD_KNOBS ; i++)
+ {
+ knobs [i] = 0 ;
+ }
+ knobs [CCOLAMD_DENSE_ROW] = 10 ;
+ knobs [CCOLAMD_DENSE_COL] = 10 ;
+ knobs [CCOLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
+ knobs [CCOLAMD_LU] = FALSE ; /* default: order for Cholesky */
+}
+
+
+/* ========================================================================== */
+/* === symamd =============================================================== */
+/* ========================================================================== */
+
+PUBLIC Int CSYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
+(
+ /* === Parameters ======================================================= */
+
+ Int n, /* number of rows and columns of A */
+ Int A [ ], /* row indices of A */
+ Int p [ ], /* column pointers of A */
+ Int perm [ ], /* output permutation, size n+1 */
+ double knobs [CCOLAMD_KNOBS], /* parameters (uses defaults if NULL) */
+ Int stats [CCOLAMD_STATS], /* output statistics and error codes */
+ void * (*allocate) (size_t, size_t),/* pointer to calloc (ANSI C) or */
+ /* mxCalloc (for MATLAB mexFunction) */
+ void (*release) (void *), /* pointer to free (ANSI C) or */
+ /* mxFree (for MATLAB mexFunction) */
+ Int cmember [ ], /* constraint set */
+ Int stype /* stype of A */
+)
+{
+ /* === Local variables ================================================== */
+
+ double cknobs [CCOLAMD_KNOBS] ;
+ double default_knobs [CCOLAMD_KNOBS] ;
+
+ Int *count ; /* length of each column of M, and col pointer*/
+ Int *mark ; /* mark array for finding duplicate entries */
+ Int *M ; /* row indices of matrix M */
+ size_t Mlen ; /* length of M */
+ Int n_row ; /* number of rows in M */
+ Int nnz ; /* number of entries in A */
+ Int i ; /* row index of A */
+ Int j ; /* column index of A */
+ Int k ; /* row index of M */
+ Int mnz ; /* number of nonzeros in M */
+ Int pp ; /* index into a column of A */
+ Int last_row ; /* last row seen in the current column */
+ Int length ; /* number of nonzeros in a column */
+ Int both ; /* TRUE if ordering A+A' */
+ Int upper ; /* TRUE if ordering triu(A)+triu(A)' */
+ Int lower ; /* TRUE if ordering tril(A)+tril(A)' */
+
+#ifndef NDEBUG
+ ccolamd_get_debug ("csymamd") ;
+#endif
+
+ both = (stype == 0) ;
+ upper = (stype > 0) ;
+ lower = (stype < 0) ;
+
+ /* === Check the input arguments ======================================== */
+
+ if (!stats)
+ {
+ DEBUG1 (("csymamd: stats not present\n")) ;
+ return (FALSE) ;
+ }
+ for (i = 0 ; i < CCOLAMD_STATS ; i++)
+ {
+ stats [i] = 0 ;
+ }
+ stats [CCOLAMD_STATUS] = CCOLAMD_OK ;
+ stats [CCOLAMD_INFO1] = -1 ;
+ stats [CCOLAMD_INFO2] = -1 ;
+
+ if (!A)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_not_present ;
+ DEBUG1 (("csymamd: A not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (!p) /* p is not present */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p_not_present ;
+ DEBUG1 (("csymamd: p not present\n")) ;
+ return (FALSE) ;
+ }
+
+ if (n < 0) /* n must be >= 0 */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ;
+ stats [CCOLAMD_INFO1] = n ;
+ DEBUG1 (("csymamd: n negative "ID" \n", n)) ;
+ return (FALSE) ;
+ }
+
+ nnz = p [n] ;
+ if (nnz < 0) /* nnz must be >= 0 */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ;
+ stats [CCOLAMD_INFO1] = nnz ;
+ DEBUG1 (("csymamd: number of entries negative "ID" \n", nnz)) ;
+ return (FALSE) ;
+ }
+
+ if (p [0] != 0)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ;
+ stats [CCOLAMD_INFO1] = p [0] ;
+ DEBUG1 (("csymamd: p[0] not zero "ID"\n", p [0])) ;
+ return (FALSE) ;
+ }
+
+ /* === If no knobs, set default knobs =================================== */
+
+ if (!knobs)
+ {
+ CCOLAMD_set_defaults (default_knobs) ;
+ knobs = default_knobs ;
+ }
+
+ /* === Allocate count and mark ========================================== */
+
+ count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
+ if (!count)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
+ DEBUG1 (("csymamd: allocate count (size "ID") failed\n", n+1)) ;
+ return (FALSE) ;
+ }
+
+ mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
+ if (!mark)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
+ (*release) ((void *) count) ;
+ DEBUG1 (("csymamd: allocate mark (size "ID") failed\n", n+1)) ;
+ return (FALSE) ;
+ }
+
+ /* === Compute column counts of M, check if A is valid ================== */
+
+ stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
+
+ for (i = 0 ; i < n ; i++)
+ {
+ mark [i] = -1 ;
+ }
+
+ for (j = 0 ; j < n ; j++)
+ {
+ last_row = -1 ;
+
+ length = p [j+1] - p [j] ;
+ if (length < 0)
+ {
+ /* column pointers must be non-decreasing */
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ;
+ stats [CCOLAMD_INFO1] = j ;
+ stats [CCOLAMD_INFO2] = length ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG1 (("csymamd: col "ID" negative length "ID"\n", j, length)) ;
+ return (FALSE) ;
+ }
+
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ if (i < 0 || i >= n)
+ {
+ /* row index i, in column j, is out of bounds */
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ;
+ stats [CCOLAMD_INFO1] = j ;
+ stats [CCOLAMD_INFO2] = i ;
+ stats [CCOLAMD_INFO3] = n ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG1 (("csymamd: row "ID" col "ID" out of bounds\n", i, j)) ;
+ return (FALSE) ;
+ }
+
+ if (i <= last_row || mark [i] == j)
+ {
+ /* row index is unsorted or repeated (or both), thus col */
+ /* is jumbled. This is a notice, not an error condition. */
+ stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ;
+ stats [CCOLAMD_INFO1] = j ;
+ stats [CCOLAMD_INFO2] = i ;
+ (stats [CCOLAMD_INFO3]) ++ ;
+ DEBUG1 (("csymamd: row "ID" col "ID" unsorted/dupl.\n", i, j)) ;
+ }
+
+ if (mark [i] != j)
+ {
+ if ((both && i != j) || (lower && i > j) || (upper && i < j))
+ {
+ /* row k of M will contain column indices i and j */
+ count [i]++ ;
+ count [j]++ ;
+ }
+ }
+
+ /* mark the row as having been seen in this column */
+ mark [i] = j ;
+
+ last_row = i ;
+ }
+ }
+
+ /* === Compute column pointers of M ===================================== */
+
+ /* use output permutation, perm, for column pointers of M */
+ perm [0] = 0 ;
+ for (j = 1 ; j <= n ; j++)
+ {
+ perm [j] = perm [j-1] + count [j-1] ;
+ }
+ for (j = 0 ; j < n ; j++)
+ {
+ count [j] = perm [j] ;
+ }
+
+ /* === Construct M ====================================================== */
+
+ mnz = perm [n] ;
+ n_row = mnz / 2 ;
+ Mlen = CCOLAMD_recommended (mnz, n_row, n) ;
+ M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
+ DEBUG1 (("csymamd: M is "ID"-by-"ID" with "ID" entries, Mlen = %g\n",
+ n_row, n, mnz, (double) Mlen)) ;
+
+ if (!M)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_out_of_memory ;
+ (*release) ((void *) count) ;
+ (*release) ((void *) mark) ;
+ DEBUG1 (("csymamd: allocate M (size %g) failed\n", (double) Mlen)) ;
+ return (FALSE) ;
+ }
+
+ k = 0 ;
+
+ if (stats [CCOLAMD_STATUS] == CCOLAMD_OK)
+ {
+ /* Matrix is OK */
+ for (j = 0 ; j < n ; j++)
+ {
+ ASSERT (p [j+1] - p [j] >= 0) ;
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ ASSERT (i >= 0 && i < n) ;
+ if ((both && i != j) || (lower && i > j) || (upper && i < j))
+ {
+ /* row k of M contains column indices i and j */
+ M [count [i]++] = k ;
+ M [count [j]++] = k ;
+ k++ ;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
+ DEBUG1 (("csymamd: Duplicates in A.\n")) ;
+ for (i = 0 ; i < n ; i++)
+ {
+ mark [i] = -1 ;
+ }
+ for (j = 0 ; j < n ; j++)
+ {
+ ASSERT (p [j+1] - p [j] >= 0) ;
+ for (pp = p [j] ; pp < p [j+1] ; pp++)
+ {
+ i = A [pp] ;
+ ASSERT (i >= 0 && i < n) ;
+ if (mark [i] != j)
+ {
+ if ((both && i != j) || (lower && i > j) || (upper && i= 0 */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nrow_negative ;
+ stats [CCOLAMD_INFO1] = n_row ;
+ DEBUG1 (("ccolamd: nrow negative "ID"\n", n_row)) ;
+ return (FALSE) ;
+ }
+
+ if (n_col < 0) /* n_col must be >= 0 */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_ncol_negative ;
+ stats [CCOLAMD_INFO1] = n_col ;
+ DEBUG1 (("ccolamd: ncol negative "ID"\n", n_col)) ;
+ return (FALSE) ;
+ }
+
+ nnz = p [n_col] ;
+ if (nnz < 0) /* nnz must be >= 0 */
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_nnz_negative ;
+ stats [CCOLAMD_INFO1] = nnz ;
+ DEBUG1 (("ccolamd: number of entries negative "ID"\n", nnz)) ;
+ return (FALSE) ;
+ }
+
+ if (p [0] != 0)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_p0_nonzero ;
+ stats [CCOLAMD_INFO1] = p [0] ;
+ DEBUG1 (("ccolamd: p[0] not zero "ID"\n", p [0])) ;
+ return (FALSE) ;
+ }
+
+ /* === If no knobs, set default knobs =================================== */
+
+ if (!knobs)
+ {
+ CCOLAMD_set_defaults (default_knobs) ;
+ knobs = default_knobs ;
+ }
+
+ aggressive = (knobs [CCOLAMD_AGGRESSIVE] != FALSE) ;
+ order_for_lu = (knobs [CCOLAMD_LU] != FALSE) ;
+
+ /* === Allocate workspace from array A ================================== */
+
+ ok = TRUE ;
+ Col_size = CCOLAMD_C (n_col, &ok) ;
+ Row_size = CCOLAMD_R (n_row, &ok) ;
+
+ /* min size of A is 2nnz+ncol. cset and cset_start are of size 2ncol+1 */
+ /* Each of the 5 fronts is of size n_col + 1. InFront is of size nrow. */
+
+ /*
+ need = MAX (2*nnz, 4*n_col) + n_col +
+ Col_size + Row_size +
+ (3*n_col+1) + (5*(n_col+1)) + n_row ;
+ */
+ need = ccolamd_need (nnz, n_row, n_col, &ok) ;
+
+ if (!ok || need > (size_t) Alen || need > Int_MAX)
+ {
+ /* not enough space in array A to perform the ordering */
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_A_too_small ;
+ stats [CCOLAMD_INFO1] = need ;
+ stats [CCOLAMD_INFO2] = Alen ;
+ DEBUG1 (("ccolamd: Need Alen >= "ID", given "ID"\n", need, Alen)) ;
+ return (FALSE) ;
+ }
+
+ /* since integer overflow has been check, the following cannot overflow: */
+ Alen -= Col_size + Row_size + (3*n_col + 1) + 5*(n_col+1) + n_row ;
+
+ /* Size of A is now Alen >= MAX (2*nnz, 4*n_col) + n_col. The ordering
+ * requires Alen >= 2*nnz + n_col, and the postorder requires
+ * Alen >= 5*n_col. */
+
+ ap = Alen ;
+
+ /* Front array workspace: 5*(n_col+1) + n_row */
+ if (!Front_npivcol || !Front_nrows || !Front_ncols || !Front_parent ||
+ !Front_cols || !Front_cols || !InFront)
+ {
+ Front_npivcol = &A [ap] ; ap += (n_col + 1) ;
+ Front_nrows = &A [ap] ; ap += (n_col + 1) ;
+ Front_ncols = &A [ap] ; ap += (n_col + 1) ;
+ Front_parent = &A [ap] ; ap += (n_col + 1) ;
+ Front_cols = &A [ap] ; ap += (n_col + 1) ;
+ InFront = &A [ap] ; ap += (n_row) ;
+ }
+ else
+ {
+ /* Fronts are present. Leave the additional space as elbow room. */
+ ap += 5*(n_col+1) + n_row ;
+ ap = Alen ;
+ }
+
+ /* Workspace for cset management: 3*n_col+1 */
+ /* cset_start is of size n_col + 1 */
+ cset_start = &A [ap] ;
+ ap += n_col + 1 ;
+
+ /* dead_col is of size n_col */
+ dead_cols = &A [ap] ;
+ ap += n_col ;
+
+ /* cset is of size n_col */
+ cset = &A [ap] ;
+ ap += n_col ;
+
+ /* Col is of size Col_size. The space is shared by temp_cstart and csize */
+ Col = (CColamd_Col *) &A [ap] ;
+ temp_cstart = (Int *) Col ; /* [ temp_cstart is of size n_col+1 */
+ csize = temp_cstart + (n_col+1) ; /* csize is of size n_col+1 */
+ ap += Col_size ;
+ ASSERT (Col_size >= 2*n_col+1) ;
+
+ /* Row is of size Row_size */
+ Row = (CColamd_Row *) &A [ap] ;
+ ap += Row_size ;
+
+ /* Initialize csize & dead_cols to zero */
+ for (i = 0 ; i < n_col ; i++)
+ {
+ csize [i] = 0 ;
+ dead_cols [i] = 0 ;
+ }
+
+ /* === Construct the constraint set ===================================== */
+
+ if (n_col == 0)
+ {
+ n_cset = 0 ;
+ }
+ else if (cmember == (Int *) NULL)
+ {
+ /* no constraint set; all columns belong to set zero */
+ n_cset = 1 ;
+ csize [0] = n_col ;
+ DEBUG1 (("no cmember present\n")) ;
+ }
+ else
+ {
+ n_cset = 0 ;
+ for (i = 0 ; i < n_col ; i++)
+ {
+ if (cmember [i] < 0 || cmember [i] > n_col)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_invalid_cmember ;
+ DEBUG1 (("ccolamd: malformed cmember \n")) ;
+ return (FALSE) ;
+ }
+ n_cset = MAX (n_cset, cmember [i]) ;
+ csize [cmember [i]]++ ;
+ }
+ /* cset is zero based */
+ n_cset++ ;
+ }
+
+ ASSERT ((n_cset >= 0) && (n_cset <= n_col)) ;
+
+ cset_start [0] = temp_cstart [0] = 0 ;
+ for (i = 1 ; i <= n_cset ; i++)
+ {
+ cset_start [i] = cset_start [i-1] + csize [i-1] ;
+ DEBUG4 ((" cset_start ["ID"] = "ID" \n", i , cset_start [i])) ;
+ temp_cstart [i] = cset_start [i] ;
+ }
+
+ /* do in reverse order to encourage natural tie-breaking */
+ if (cmember == (Int *) NULL)
+ {
+ for (i = n_col-1 ; i >= 0 ; i--)
+ {
+ cset [temp_cstart [0]++] = i ;
+ }
+ }
+ else
+ {
+ for (i = n_col-1 ; i >= 0 ; i--)
+ {
+ cset [temp_cstart [cmember [i]]++] = i ;
+ }
+ }
+
+ /* ] temp_cstart and csize are no longer used */
+
+ /* === Construct the row and column data structures ===================== */
+
+ if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
+ {
+ /* input matrix is invalid */
+ DEBUG1 (("ccolamd: Matrix invalid\n")) ;
+ return (FALSE) ;
+ }
+
+ /* === Initialize front info ============================================ */
+
+ for (col = 0 ; col < n_col ; col++)
+ {
+ Front_npivcol [col] = 0 ;
+ Front_nrows [col] = 0 ;
+ Front_ncols [col] = 0 ;
+ Front_parent [col] = EMPTY ;
+ Front_cols [col] = EMPTY ;
+ }
+
+ /* === Initialize scores, kill dense rows/columns ======================= */
+
+ init_scoring (n_row, n_col, Row, Col, A, p, knobs,
+ &n_row2, &n_col2, &max_deg, cmember, n_cset, cset_start, dead_cols,
+ &ndense_row, &nempty_row, &nnewlyempty_row,
+ &ndense_col, &nempty_col, &nnewlyempty_col) ;
+
+ ASSERT (n_row2 == n_row - nempty_row - nnewlyempty_row - ndense_row) ;
+ ASSERT (n_col2 == n_col - nempty_col - nnewlyempty_col - ndense_col) ;
+ DEBUG1 (("# dense rows "ID" cols "ID"\n", ndense_row, ndense_col)) ;
+
+ /* === Order the supercolumns =========================================== */
+
+ ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
+#ifndef NDEBUG
+ n_col2,
+#endif
+ max_deg, 2*nnz, cset, cset_start,
+#ifndef NDEBUG
+ n_cset,
+#endif
+ cmember, Front_npivcol, Front_nrows, Front_ncols, Front_parent,
+ Front_cols, &nfr, aggressive, InFront, order_for_lu) ;
+
+ ASSERT (Alen >= 5*n_col) ;
+
+ /* === Postorder ======================================================== */
+
+ /* A is no longer needed, so use A [0..5*nfr-1] as workspace [ [ */
+ /* This step requires Alen >= 5*n_col */
+ Front_child = A ;
+ Front_sibling = Front_child + nfr ;
+ Front_stack = Front_sibling + nfr ;
+ Front_order = Front_stack + nfr ;
+ Front_size = Front_order + nfr ;
+
+ CCOLAMD_fsize (nfr, Front_size, Front_nrows, Front_ncols,
+ Front_parent, Front_npivcol) ;
+
+ CCOLAMD_postorder (nfr, Front_parent, Front_npivcol, Front_size,
+ Front_order, Front_child, Front_sibling, Front_stack, Front_cols,
+ cmember) ;
+
+ /* Front_size, Front_stack, Front_child, Front_sibling no longer needed ] */
+
+ /* use A [0..nfr-1] as workspace */
+ CCOLAMD_apply_order (Front_npivcol, Front_order, A, nfr, nfr) ;
+ CCOLAMD_apply_order (Front_nrows, Front_order, A, nfr, nfr) ;
+ CCOLAMD_apply_order (Front_ncols, Front_order, A, nfr, nfr) ;
+ CCOLAMD_apply_order (Front_parent, Front_order, A, nfr, nfr) ;
+ CCOLAMD_apply_order (Front_cols, Front_order, A, nfr, nfr) ;
+
+ /* fix the parent to refer to the new numbering */
+ for (i = 0 ; i < nfr ; i++)
+ {
+ parent = Front_parent [i] ;
+ if (parent != EMPTY)
+ {
+ Front_parent [i] = Front_order [parent] ;
+ }
+ }
+
+ /* fix InFront to refer to the new numbering */
+ for (row = 0 ; row < n_row ; row++)
+ {
+ i = InFront [row] ;
+ ASSERT (i >= EMPTY && i < nfr) ;
+ if (i != EMPTY)
+ {
+ InFront [row] = Front_order [i] ;
+ }
+ }
+
+ /* Front_order longer needed ] */
+
+ /* === Order the columns in the fronts ================================== */
+
+ /* use A [0..n_col-1] as inverse permutation */
+ for (i = 0 ; i < n_col ; i++)
+ {
+ A [i] = EMPTY ;
+ }
+
+ k = 0 ;
+ set1 = 0 ;
+ for (i = 0 ; i < nfr ; i++)
+ {
+ ASSERT (Front_npivcol [i] > 0) ;
+
+ set2 = CMEMBER (Front_cols [i]) ;
+ while (set1 < set2)
+ {
+ k += dead_cols [set1] ;
+ DEBUG3 (("Skip null/dense columns of set "ID"\n",set1)) ;
+ set1++ ;
+ }
+ set1 = set2 ;
+
+ for (col = Front_cols [i] ; col != EMPTY ; col = Col [col].nextcol)
+ {
+ ASSERT (col >= 0 && col < n_col) ;
+ DEBUG1 (("ccolamd output ordering: k "ID" col "ID"\n", k, col)) ;
+ p [k] = col ;
+ ASSERT (A [col] == EMPTY) ;
+
+ cs = CMEMBER (col) ;
+ ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ;
+
+ A [col] = k ;
+ k++ ;
+ }
+ }
+
+ /* === Order the "dense" and null columns =============================== */
+
+ if (n_col2 < n_col)
+ {
+ for (col = 0 ; col < n_col ; col++)
+ {
+ if (A [col] == EMPTY)
+ {
+ k = Col [col].shared2.order ;
+ cs = CMEMBER (col) ;
+#ifndef NDEBUG
+ dead_cols [cs]-- ;
+#endif
+ ASSERT (k >= cset_start [cs] && k < cset_start [cs+1]) ;
+ DEBUG1 (("ccolamd output ordering: k "ID" col "ID
+ " (dense or null col)\n", k, col)) ;
+ p [k] = col ;
+ A [col] = k ;
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ for (i = 0 ; i < n_cset ; i++)
+ {
+ ASSERT (dead_cols [i] == 0) ;
+ }
+#endif
+
+ /* === Return statistics in stats ======================================= */
+
+ stats [CCOLAMD_DENSE_ROW] = ndense_row ;
+ stats [CCOLAMD_DENSE_COL] = nempty_row ;
+ stats [CCOLAMD_NEWLY_EMPTY_ROW] = nnewlyempty_row ;
+ stats [CCOLAMD_DENSE_COL] = ndense_col ;
+ stats [CCOLAMD_EMPTY_COL] = nempty_col ;
+ stats [CCOLAMD_NEWLY_EMPTY_COL] = nnewlyempty_col ;
+ ASSERT (ndense_col + nempty_col + nnewlyempty_col == n_col - n_col2) ;
+ if (p_nfr)
+ {
+ *p_nfr = nfr ;
+ }
+ stats [CCOLAMD_DEFRAG_COUNT] = ngarbage ;
+ DEBUG1 (("ccolamd: done.\n")) ;
+ return (TRUE) ;
+}
+
+
+/* ========================================================================== */
+/* === colamd_report ======================================================== */
+/* ========================================================================== */
+
+PUBLIC void CCOLAMD_report
+(
+ Int stats [CCOLAMD_STATS]
+)
+{
+ print_report ("ccolamd", stats) ;
+}
+
+
+/* ========================================================================== */
+/* === symamd_report ======================================================== */
+/* ========================================================================== */
+
+PUBLIC void CSYMAMD_report
+(
+ Int stats [CCOLAMD_STATS]
+)
+{
+ print_report ("csymamd", stats) ;
+}
+
+
+/* ========================================================================== */
+/* === NON-USER-CALLABLE ROUTINES: ========================================== */
+/* ========================================================================== */
+
+/* There are no user-callable routines beyond this point in the file */
+
+
+/* ========================================================================== */
+/* === init_rows_cols ======================================================= */
+/* ========================================================================== */
+
+/*
+ Takes the column form of the matrix in A and creates the row form of the
+ matrix. Also, row and column attributes are stored in the Col and Row
+ structs. If the columns are un-sorted or contain duplicate row indices,
+ this routine will also sort and remove duplicate row indices from the
+ column form of the matrix. Returns FALSE if the matrix is invalid,
+ TRUE otherwise. Not user-callable.
+*/
+
+PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ CColamd_Row Row [ ], /* of size n_row+1 */
+ CColamd_Col Col [ ], /* of size n_col+1 */
+ Int A [ ], /* row indices of A, of size Alen */
+ Int p [ ], /* pointers to columns in A, of size n_col+1 */
+ Int stats [CCOLAMD_STATS] /* colamd statistics */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int col ; /* a column index */
+ Int row ; /* a row index */
+ Int *cp ; /* a column pointer */
+ Int *cp_end ; /* a pointer to the end of a column */
+ Int *rp ; /* a row pointer */
+ Int *rp_end ; /* a pointer to the end of a row */
+ Int last_row ; /* previous row */
+
+ /* === Initialize columns, and check column pointers ==================== */
+
+ for (col = 0 ; col < n_col ; col++)
+ {
+ Col [col].start = p [col] ;
+ Col [col].length = p [col+1] - p [col] ;
+
+ if (Col [col].length < 0)
+ {
+ /* column pointers must be non-decreasing */
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_col_length_negative ;
+ stats [CCOLAMD_INFO1] = col ;
+ stats [CCOLAMD_INFO2] = Col [col].length ;
+ DEBUG1 (("ccolamd: col "ID" length "ID" < 0\n",
+ col, Col [col].length)) ;
+ return (FALSE) ;
+ }
+
+ Col [col].shared1.thickness = 1 ;
+ Col [col].shared2.score = 0 ;
+ Col [col].shared3.prev = EMPTY ;
+ Col [col].shared4.degree_next = EMPTY ;
+ Col [col].nextcol = EMPTY ;
+ Col [col].lastcol = col ;
+ }
+
+ /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
+
+ /* === Scan columns, compute row degrees, and check row indices ========= */
+
+ stats [CCOLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ Row [row].length = 0 ;
+ Row [row].shared2.mark = -1 ;
+ Row [row].thickness = 1 ;
+ Row [row].front = EMPTY ;
+ }
+
+ for (col = 0 ; col < n_col ; col++)
+ {
+ DEBUG1 (("\nCcolamd input column "ID":\n", col)) ;
+ last_row = -1 ;
+
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+
+ while (cp < cp_end)
+ {
+ row = *cp++ ;
+ DEBUG1 (("row: "ID"\n", row)) ;
+
+ /* make sure row indices within range */
+ if (row < 0 || row >= n_row)
+ {
+ stats [CCOLAMD_STATUS] = CCOLAMD_ERROR_row_index_out_of_bounds ;
+ stats [CCOLAMD_INFO1] = col ;
+ stats [CCOLAMD_INFO2] = row ;
+ stats [CCOLAMD_INFO3] = n_row ;
+ DEBUG1 (("row "ID" col "ID" out of bounds\n", row, col)) ;
+ return (FALSE) ;
+ }
+
+ if (row <= last_row || Row [row].shared2.mark == col)
+ {
+ /* row index are unsorted or repeated (or both), thus col */
+ /* is jumbled. This is a notice, not an error condition. */
+ stats [CCOLAMD_STATUS] = CCOLAMD_OK_BUT_JUMBLED ;
+ stats [CCOLAMD_INFO1] = col ;
+ stats [CCOLAMD_INFO2] = row ;
+ (stats [CCOLAMD_INFO3]) ++ ;
+ DEBUG1 (("row "ID" col "ID" unsorted/duplicate\n", row, col)) ;
+ }
+
+ if (Row [row].shared2.mark != col)
+ {
+ Row [row].length++ ;
+ }
+ else
+ {
+ /* this is a repeated entry in the column, */
+ /* it will be removed */
+ Col [col].length-- ;
+ }
+
+ /* mark the row as having been seen in this column */
+ Row [row].shared2.mark = col ;
+
+ last_row = row ;
+ }
+ }
+
+ /* === Compute row pointers ============================================= */
+
+ /* row form of the matrix starts directly after the column */
+ /* form of matrix in A */
+ Row [0].start = p [n_col] ;
+ Row [0].shared1.p = Row [0].start ;
+ Row [0].shared2.mark = -1 ;
+ for (row = 1 ; row < n_row ; row++)
+ {
+ Row [row].start = Row [row-1].start + Row [row-1].length ;
+ Row [row].shared1.p = Row [row].start ;
+ Row [row].shared2.mark = -1 ;
+ }
+
+ /* === Create row form ================================================== */
+
+ if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED)
+ {
+ /* if cols jumbled, watch for repeated row indices */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+ while (cp < cp_end)
+ {
+ row = *cp++ ;
+ if (Row [row].shared2.mark != col)
+ {
+ A [(Row [row].shared1.p)++] = col ;
+ Row [row].shared2.mark = col ;
+ }
+ }
+ }
+ }
+ else
+ {
+ /* if cols not jumbled, we don't need the mark (this is faster) */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ cp = &A [p [col]] ;
+ cp_end = &A [p [col+1]] ;
+ while (cp < cp_end)
+ {
+ A [(Row [*cp++].shared1.p)++] = col ;
+ }
+ }
+ }
+
+ /* === Clear the row marks and set row degrees ========================== */
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ Row [row].shared2.mark = 0 ;
+ Row [row].shared1.degree = Row [row].length ;
+ }
+
+ /* === See if we need to re-create columns ============================== */
+
+ if (stats [CCOLAMD_STATUS] == CCOLAMD_OK_BUT_JUMBLED)
+ {
+ DEBUG1 (("ccolamd: reconstructing column form, matrix jumbled\n")) ;
+
+#ifndef NDEBUG
+ /* make sure column lengths are correct */
+ for (col = 0 ; col < n_col ; col++)
+ {
+ p [col] = Col [col].length ;
+ }
+ for (row = 0 ; row < n_row ; row++)
+ {
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ p [*rp++]-- ;
+ }
+ }
+ for (col = 0 ; col < n_col ; col++)
+ {
+ ASSERT (p [col] == 0) ;
+ }
+ /* now p is all zero (different than when debugging is turned off) */
+#endif
+
+ /* === Compute col pointers ========================================= */
+
+ /* col form of the matrix starts at A [0]. */
+ /* Note, we may have a gap between the col form and the row */
+ /* form if there were duplicate entries, if so, it will be */
+ /* removed upon the first garbage collection */
+ Col [0].start = 0 ;
+ p [0] = Col [0].start ;
+ for (col = 1 ; col < n_col ; col++)
+ {
+ /* note that the lengths here are for pruned columns, i.e. */
+ /* no duplicate row indices will exist for these columns */
+ Col [col].start = Col [col-1].start + Col [col-1].length ;
+ p [col] = Col [col].start ;
+ }
+
+ /* === Re-create col form =========================================== */
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ A [(p [*rp++])++] = row ;
+ }
+ }
+ }
+
+ /* === Done. Matrix is not (or no longer) jumbled ====================== */
+
+
+ return (TRUE) ;
+}
+
+
+/* ========================================================================== */
+/* === init_scoring ========================================================= */
+/* ========================================================================== */
+
+/*
+ Kills dense or empty columns and rows, calculates an initial score for
+ each column, and places all columns in the degree lists. Not user-callable.
+*/
+
+PRIVATE void init_scoring
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ CColamd_Row Row [ ], /* of size n_row+1 */
+ CColamd_Col Col [ ], /* of size n_col+1 */
+ Int A [ ], /* column form and row form of A */
+ Int head [ ], /* of size n_col+1 */
+ double knobs [CCOLAMD_KNOBS],/* parameters */
+ Int *p_n_row2, /* number of non-dense, non-empty rows */
+ Int *p_n_col2, /* number of non-dense, non-empty columns */
+ Int *p_max_deg, /* maximum row degree */
+ Int cmember [ ],
+ Int n_cset,
+ Int cset_start [ ],
+ Int dead_cols [ ],
+ Int *p_ndense_row, /* number of dense rows */
+ Int *p_nempty_row, /* number of original empty rows */
+ Int *p_nnewlyempty_row, /* number of newly empty rows */
+ Int *p_ndense_col, /* number of dense cols (excl "empty" cols) */
+ Int *p_nempty_col, /* number of original empty cols */
+ Int *p_nnewlyempty_col /* number of newly empty cols */
+)
+{
+/* === Local variables ================================================== */
+
+ Int c ; /* a column index */
+ Int r, row ; /* a row index */
+ Int *cp ; /* a column pointer */
+ Int deg ; /* degree of a row or column */
+ Int *cp_end ; /* a pointer to the end of a column */
+ Int *new_cp ; /* new column pointer */
+ Int col_length ; /* length of pruned column */
+ Int score ; /* current column score */
+ Int n_col2 ; /* number of non-dense, non-empty columns */
+ Int n_row2 ; /* number of non-dense, non-empty rows */
+ Int dense_row_count ; /* remove rows with more entries than this */
+ Int dense_col_count ; /* remove cols with more entries than this */
+ Int max_deg ; /* maximum row degree */
+ Int s ; /* a cset index */
+ Int ndense_row ; /* number of dense rows */
+ Int nempty_row ; /* number of empty rows */
+ Int nnewlyempty_row ; /* number of newly empty rows */
+ Int ndense_col ; /* number of dense cols (excl "empty" cols) */
+ Int nempty_col ; /* number of original empty cols */
+ Int nnewlyempty_col ; /* number of newly empty cols */
+ Int ne ;
+
+#ifndef NDEBUG
+ Int debug_count ; /* debug only. */
+#endif
+
+ /* === Extract knobs ==================================================== */
+
+ /* Note: if knobs contains a NaN, this is undefined: */
+ if (knobs [CCOLAMD_DENSE_ROW] < 0)
+ {
+ /* only remove completely dense rows */
+ dense_row_count = n_col-1 ;
+ }
+ else
+ {
+ dense_row_count = DENSE_DEGREE (knobs [CCOLAMD_DENSE_ROW], n_col) ;
+ }
+ if (knobs [CCOLAMD_DENSE_COL] < 0)
+ {
+ /* only remove completely dense columns */
+ dense_col_count = n_row-1 ;
+ }
+ else
+ {
+ dense_col_count =
+ DENSE_DEGREE (knobs [CCOLAMD_DENSE_COL], MIN (n_row, n_col)) ;
+ }
+
+ DEBUG1 (("densecount: "ID" "ID"\n", dense_row_count, dense_col_count)) ;
+ max_deg = 0 ;
+
+ n_col2 = n_col ;
+ n_row2 = n_row ;
+
+ /* Set the head array for bookkeeping of dense and empty columns. */
+ /* This will be used as hash buckets later. */
+ for (s = 0 ; s < n_cset ; s++)
+ {
+ head [s] = cset_start [s+1] ;
+ }
+
+ ndense_col = 0 ;
+ nempty_col = 0 ;
+ nnewlyempty_col = 0 ;
+ ndense_row = 0 ;
+ nempty_row = 0 ;
+ nnewlyempty_row = 0 ;
+
+ /* === Kill empty columns =============================================== */
+
+ /* Put the empty columns at the end in their natural order, so that LU */
+ /* factorization can proceed as far as possible. */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ deg = Col [c].length ;
+ if (deg == 0)
+ {
+ /* this is a empty column, kill and order it last of its cset */
+ Col [c].shared2.order = --head [CMEMBER (c)] ;
+ --n_col2 ;
+ dead_cols [CMEMBER (c)] ++ ;
+ nempty_col++ ;
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ }
+ DEBUG1 (("ccolamd: null columns killed: "ID"\n", n_col - n_col2)) ;
+
+ /* === Kill dense columns =============================================== */
+
+ /* Put the dense columns at the end, in their natural order */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ /* skip any dead columns */
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ deg = Col [c].length ;
+ if (deg > dense_col_count)
+ {
+ /* this is a dense column, kill and order it last of its cset */
+ Col [c].shared2.order = --head [CMEMBER (c)] ;
+ --n_col2 ;
+ dead_cols [CMEMBER (c)] ++ ;
+ ndense_col++ ;
+ /* decrement the row degrees */
+ cp = &A [Col [c].start] ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ Row [*cp++].shared1.degree-- ;
+ }
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ }
+ DEBUG1 (("Dense and null columns killed: "ID"\n", n_col - n_col2)) ;
+
+ /* === Kill dense and empty rows ======================================== */
+
+ /* Note that there can now be empty rows, since dense columns have
+ * been deleted. These are "newly" empty rows. */
+
+ ne = 0 ;
+ for (r = 0 ; r < n_row ; r++)
+ {
+ deg = Row [r].shared1.degree ;
+ ASSERT (deg >= 0 && deg <= n_col) ;
+ if (deg > dense_row_count)
+ {
+ /* There is at least one dense row. Continue ordering, but */
+ /* symbolic factorization will be redone after ccolamd is done.*/
+ ndense_row++ ;
+ }
+ if (deg == 0)
+ {
+ /* this is a newly empty row, or original empty row */
+ ne++ ;
+ }
+ if (deg > dense_row_count || deg == 0)
+ {
+ /* kill a dense or empty row */
+ KILL_ROW (r) ;
+ Row [r].thickness = 0 ;
+ --n_row2 ;
+ }
+ else
+ {
+ /* keep track of max degree of remaining rows */
+ max_deg = MAX (max_deg, deg) ;
+ }
+ }
+ nnewlyempty_row = ne - nempty_row ;
+ DEBUG1 (("ccolamd: Dense and null rows killed: "ID"\n", n_row - n_row2)) ;
+
+ /* === Compute initial column scores ==================================== */
+
+ /* At this point the row degrees are accurate. They reflect the number */
+ /* of "live" (non-dense) columns in each row. No empty rows exist. */
+ /* Some "live" columns may contain only dead rows, however. These are */
+ /* pruned in the code below. */
+
+ /* now find the initial COLMMD score for each column */
+ for (c = n_col-1 ; c >= 0 ; c--)
+ {
+ /* skip dead column */
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ score = 0 ;
+ cp = &A [Col [c].start] ;
+ new_cp = cp ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ /* skip if dead */
+ if (ROW_IS_DEAD (row))
+ {
+ continue ;
+ }
+ /* compact the column */
+ *new_cp++ = row ;
+ /* add row's external degree */
+ score += Row [row].shared1.degree - 1 ;
+ /* guard against integer overflow */
+ score = MIN (score, n_col) ;
+ }
+ /* determine pruned column length */
+ col_length = (Int) (new_cp - &A [Col [c].start]) ;
+ if (col_length == 0)
+ {
+ /* a newly-made null column (all rows in this col are "dense" */
+ /* and have already been killed) */
+ DEBUG1 (("Newly null killed: "ID"\n", c)) ;
+ Col [c].shared2.order = -- head [CMEMBER (c)] ;
+ --n_col2 ;
+ dead_cols [CMEMBER (c)] ++ ;
+ nnewlyempty_col++ ;
+ KILL_PRINCIPAL_COL (c) ;
+ }
+ else
+ {
+ /* set column length and set score */
+ ASSERT (score >= 0) ;
+ ASSERT (score <= n_col) ;
+ Col [c].length = col_length ;
+ Col [c].shared2.score = score ;
+ }
+ }
+ DEBUG1 (("ccolamd: Dense, null, and newly-null columns killed: "ID"\n",
+ n_col-n_col2)) ;
+
+ /* At this point, all empty rows and columns are dead. All live columns */
+ /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
+ /* yet). Rows may contain dead columns, but all live rows contain at */
+ /* least one live column. */
+
+#ifndef NDEBUG
+ debug_count = 0 ;
+#endif
+
+ /* clear the hash buckets */
+ for (c = 0 ; c <= n_col ; c++)
+ {
+ head [c] = EMPTY ;
+ }
+
+#ifndef NDEBUG
+ debug_structures (n_row, n_col, Row, Col, A, cmember, cset_start) ;
+#endif
+
+ /* === Return number of remaining columns, and max row degree =========== */
+
+ *p_n_col2 = n_col2 ;
+ *p_n_row2 = n_row2 ;
+ *p_max_deg = max_deg ;
+ *p_ndense_row = ndense_row ;
+ *p_nempty_row = nempty_row ; /* original empty rows */
+ *p_nnewlyempty_row = nnewlyempty_row ;
+ *p_ndense_col = ndense_col ;
+ *p_nempty_col = nempty_col ; /* original empty cols */
+ *p_nnewlyempty_col = nnewlyempty_col ;
+}
+
+
+/* ========================================================================== */
+/* === find_ordering ======================================================== */
+/* ========================================================================== */
+
+/*
+ * Order the principal columns of the supercolumn form of the matrix
+ * (no supercolumns on input). Uses a minimum approximate column minimum
+ * degree ordering method. Not user-callable.
+ */
+
+PRIVATE Int find_ordering /* return the number of garbage collections */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows of A */
+ Int n_col, /* number of columns of A */
+ Int Alen, /* size of A, 2*nnz + n_col or larger */
+ CColamd_Row Row [ ], /* of size n_row+1 */
+ CColamd_Col Col [ ], /* of size n_col+1 */
+ Int A [ ], /* column form and row form of A */
+ Int head [ ], /* of size n_col+1 */
+#ifndef NDEBUG
+ Int n_col2, /* Remaining columns to order */
+#endif
+ Int max_deg, /* Maximum row degree */
+ Int pfree, /* index of first free slot (2*nnz on entry) */
+ Int cset [ ], /* constraint set of A */
+ Int cset_start [ ], /* pointer to the start of every cset */
+#ifndef NDEBUG
+ Int n_cset, /* number of csets */
+#endif
+ Int cmember [ ], /* col -> cset mapping */
+ Int Front_npivcol [ ],
+ Int Front_nrows [ ],
+ Int Front_ncols [ ],
+ Int Front_parent [ ],
+ Int Front_cols [ ],
+ Int *p_nfr, /* number of fronts */
+ Int aggressive,
+ Int InFront [ ],
+ Int order_for_lu
+)
+{
+ /* === Local variables ================================================== */
+
+ Int k ; /* current pivot ordering step */
+ Int pivot_col ; /* current pivot column */
+ Int *cp ; /* a column pointer */
+ Int *rp ; /* a row pointer */
+ Int pivot_row ; /* current pivot row */
+ Int *new_cp ; /* modified column pointer */
+ Int *new_rp ; /* modified row pointer */
+ Int pivot_row_start ; /* pointer to start of pivot row */
+ Int pivot_row_degree ; /* number of columns in pivot row */
+ Int pivot_row_length ; /* number of supercolumns in pivot row */
+ Int pivot_col_score ; /* score of pivot column */
+ Int needed_memory ; /* free space needed for pivot row */
+ Int *cp_end ; /* pointer to the end of a column */
+ Int *rp_end ; /* pointer to the end of a row */
+ Int row ; /* a row index */
+ Int col ; /* a column index */
+ Int max_score ; /* maximum possible score */
+ Int cur_score ; /* score of current column */
+ unsigned Int hash ; /* hash value for supernode detection */
+ Int head_column ; /* head of hash bucket */
+ Int first_col ; /* first column in hash bucket */
+ Int tag_mark ; /* marker value for mark array */
+ Int row_mark ; /* Row [row].shared2.mark */
+ Int set_difference ; /* set difference size of row with pivot row */
+ Int min_score ; /* smallest column score */
+ Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
+ Int max_mark ; /* maximum value of tag_mark */
+ Int pivot_col_thickness ; /* number of columns represented by pivot col */
+ Int prev_col ; /* Used by Dlist operations. */
+ Int next_col ; /* Used by Dlist operations. */
+ Int ngarbage ; /* number of garbage collections performed */
+ Int current_set ; /* consraint set that is being ordered */
+ Int score ; /* score of a column */
+ Int colstart ; /* pointer to first column in current cset */
+ Int colend ; /* pointer to last column in current cset */
+ Int deadcol ; /* number of dense & null columns in a cset */
+
+#ifndef NDEBUG
+ Int debug_d ; /* debug loop counter */
+ Int debug_step = 0 ; /* debug loop counter */
+ Int cols_thickness = 0 ; /* the thickness of the columns in current */
+ /* cset degreelist and in pivot row pattern. */
+#endif
+
+ Int pivot_row_thickness ; /* number of rows represented by pivot row */
+ Int nfr = 0 ; /* number of fronts */
+ Int child ;
+
+ /* === Initialization and clear mark ==================================== */
+
+ max_mark = Int_MAX - n_col ; /* Int_MAX defined in */
+ tag_mark = clear_mark (0, max_mark, n_row, Row) ;
+ min_score = 0 ;
+ ngarbage = 0 ;
+ current_set = -1 ;
+ deadcol = 0 ;
+ DEBUG1 (("ccolamd: Ordering, n_col2="ID"\n", n_col2)) ;
+
+ for (row = 0 ; row < n_row ; row++)
+ {
+ InFront [row] = EMPTY ;
+ }
+
+ /* === Order the columns ================================================ */
+
+ for (k = 0 ; k < n_col ; /* 'k' is incremented below */)
+ {
+
+ /* make sure degree list isn't empty */
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (head [min_score] >= EMPTY) ;
+
+#ifndef NDEBUG
+ for (debug_d = 0 ; debug_d < min_score ; debug_d++)
+ {
+ ASSERT (head [debug_d] == EMPTY) ;
+ }
+#endif
+
+ /* Initialize the degree list with columns from next non-empty cset */
+
+ while ((k+deadcol) == cset_start [current_set+1])
+ {
+ current_set++ ;
+ DEBUG1 (("\n\n\n============ CSET: "ID"\n", current_set)) ;
+ k += deadcol ; /* jump to start of next cset */
+ deadcol = 0 ; /* reset dead column count */
+
+ ASSERT ((current_set == n_cset) == (k == n_col)) ;
+
+ /* return if all columns are ordered. */
+ if (k == n_col)
+ {
+ *p_nfr = nfr ;
+ return (ngarbage) ;
+ }
+
+#ifndef NDEBUG
+ for (col = 0 ; col <= n_col ; col++)
+ {
+ ASSERT (head [col] == EMPTY) ;
+ }
+#endif
+
+ min_score = n_col ;
+ colstart = cset_start [current_set] ;
+ colend = cset_start [current_set+1] ;
+
+ while (colstart < colend)
+ {
+ col = cset [colstart++] ;
+
+ if (COL_IS_DEAD(col))
+ {
+ DEBUG1 (("Column "ID" is dead\n", col)) ;
+ /* count dense and null columns */
+ if (Col [col].shared2.order != EMPTY)
+ {
+ deadcol++ ;
+ }
+ continue ;
+ }
+
+ /* only add principal columns in current set to degree lists */
+ ASSERT (CMEMBER (col) == current_set) ;
+
+ score = Col [col].shared2.score ;
+ DEBUG1 (("Column "ID" is alive, score "ID"\n", col, score)) ;
+
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (score >= 0) ;
+ ASSERT (score <= n_col) ;
+ ASSERT (head [score] >= EMPTY) ;
+
+ /* now add this column to dList at proper score location */
+ next_col = head [score] ;
+ Col [col].shared3.prev = EMPTY ;
+ Col [col].shared4.degree_next = next_col ;
+
+ /* if there already was a column with the same score, set its */
+ /* previous pointer to this new column */
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = col ;
+ }
+ head [score] = col ;
+
+ /* see if this score is less than current min */
+ min_score = MIN (min_score, score) ;
+ }
+
+#ifndef NDEBUG
+ DEBUG1 (("degree lists initialized \n")) ;
+ debug_deg_lists (n_row, n_col, Row, Col, head, min_score,
+ ((cset_start [current_set+1]-cset_start [current_set])-deadcol),
+ max_deg) ;
+#endif
+ }
+
+#ifndef NDEBUG
+ if (debug_step % 100 == 0)
+ {
+ DEBUG2 (("\n... Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
+ }
+ else
+ {
+ DEBUG3 (("\n------Step k: "ID" out of n_col2: "ID"\n", k, n_col2)) ;
+ }
+ debug_step++ ;
+ DEBUG1 (("start of step k="ID": ", k)) ;
+ debug_deg_lists (n_row, n_col, Row, Col, head,
+ min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ;
+ debug_matrix (n_row, n_col, Row, Col, A) ;
+#endif
+
+ /* === Select pivot column, and order it ============================ */
+
+ while (head [min_score] == EMPTY && min_score < n_col)
+ {
+ min_score++ ;
+ }
+
+ pivot_col = head [min_score] ;
+
+ ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
+ next_col = Col [pivot_col].shared4.degree_next ;
+ head [min_score] = next_col ;
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = EMPTY ;
+ }
+
+ ASSERT (COL_IS_ALIVE (pivot_col)) ;
+
+ /* remember score for defrag check */
+ pivot_col_score = Col [pivot_col].shared2.score ;
+
+ /* the pivot column is the kth column in the pivot order */
+ Col [pivot_col].shared2.order = k ;
+
+ /* increment order count by column thickness */
+ pivot_col_thickness = Col [pivot_col].shared1.thickness ;
+ k += pivot_col_thickness ;
+ ASSERT (pivot_col_thickness > 0) ;
+ DEBUG3 (("Pivot col: "ID" thick "ID"\n", pivot_col,
+ pivot_col_thickness)) ;
+
+ /* === Garbage_collection, if necessary ============================= */
+
+ needed_memory = MIN (pivot_col_score, n_col - k) ;
+ if (pfree + needed_memory >= Alen)
+ {
+ pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
+ ngarbage++ ;
+ /* after garbage collection we will have enough */
+ ASSERT (pfree + needed_memory < Alen) ;
+ /* garbage collection has wiped out Row [ ].shared2.mark array */
+ tag_mark = clear_mark (0, max_mark, n_row, Row) ;
+
+#ifndef NDEBUG
+ debug_matrix (n_row, n_col, Row, Col, A) ;
+#endif
+ }
+
+ /* === Compute pivot row pattern ==================================== */
+
+ /* get starting location for this new merged row */
+ pivot_row_start = pfree ;
+
+ /* initialize new row counts to zero */
+ pivot_row_degree = 0 ;
+ pivot_row_thickness = 0 ;
+
+ /* tag pivot column as having been visited so it isn't included */
+ /* in merged pivot row */
+ Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
+
+ /* pivot row is the union of all rows in the pivot column pattern */
+ cp = &A [Col [pivot_col].start] ;
+ cp_end = cp + Col [pivot_col].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ ASSERT (row >= 0 && row < n_row) ;
+ DEBUG4 (("Pivcol pattern "ID" "ID"\n", ROW_IS_ALIVE (row), row)) ;
+ /* skip if row is dead */
+ if (ROW_IS_ALIVE (row))
+ {
+ /* sum the thicknesses of all the rows */
+ pivot_row_thickness += Row [row].thickness ;
+
+ rp = &A [Row [row].start] ;
+ rp_end = rp + Row [row].length ;
+ while (rp < rp_end)
+ {
+ /* get a column */
+ col = *rp++ ;
+ /* add the column, if alive and untagged */
+ col_thickness = Col [col].shared1.thickness ;
+ if (col_thickness > 0 && COL_IS_ALIVE (col))
+ {
+ /* tag column in pivot row */
+ Col [col].shared1.thickness = -col_thickness ;
+ ASSERT (pfree < Alen) ;
+ /* place column in pivot row */
+ A [pfree++] = col ;
+ pivot_row_degree += col_thickness ;
+ DEBUG4 (("\t\t\tNew live col in pivrow: "ID"\n",col)) ;
+ }
+#ifndef NDEBUG
+ if (col_thickness < 0 && COL_IS_ALIVE (col))
+ {
+ DEBUG4 (("\t\t\tOld live col in pivrow: "ID"\n",col)) ;
+ }
+#endif
+ }
+ }
+ }
+
+ /* pivot_row_thickness is the number of rows in frontal matrix */
+ /* including both pivotal rows and nonpivotal rows */
+
+ /* clear tag on pivot column */
+ Col [pivot_col].shared1.thickness = pivot_col_thickness ;
+ max_deg = MAX (max_deg, pivot_row_degree) ;
+
+#ifndef NDEBUG
+ DEBUG3 (("check2\n")) ;
+ debug_mark (n_row, Row, tag_mark, max_mark) ;
+#endif
+
+ /* === Kill all rows used to construct pivot row ==================== */
+
+ /* also kill pivot row, temporarily */
+ cp = &A [Col [pivot_col].start] ;
+ cp_end = cp + Col [pivot_col].length ;
+ while (cp < cp_end)
+ {
+ /* may be killing an already dead row */
+ row = *cp++ ;
+ DEBUG3 (("Kill row in pivot col: "ID"\n", row)) ;
+ ASSERT (row >= 0 && row < n_row) ;
+ if (ROW_IS_ALIVE (row))
+ {
+ if (Row [row].front != EMPTY)
+ {
+ /* This row represents a frontal matrix. */
+ /* Row [row].front is a child of current front */
+ child = Row [row].front ;
+ Front_parent [child] = nfr ;
+ DEBUG1 (("Front "ID" => front "ID", normal\n", child, nfr));
+ }
+ else
+ {
+ /* This is an original row. Keep track of which front
+ * is its parent in the row-merge tree. */
+ InFront [row] = nfr ;
+ DEBUG1 (("Row "ID" => front "ID", normal\n", row, nfr)) ;
+ }
+ }
+
+ KILL_ROW (row) ;
+ Row [row].thickness = 0 ;
+ }
+
+ /* === Select a row index to use as the new pivot row =============== */
+
+ pivot_row_length = pfree - pivot_row_start ;
+ if (pivot_row_length > 0)
+ {
+ /* pick the "pivot" row arbitrarily (first row in col) */
+ pivot_row = A [Col [pivot_col].start] ;
+ DEBUG3 (("Pivotal row is "ID"\n", pivot_row)) ;
+ }
+ else
+ {
+ /* there is no pivot row, since it is of zero length */
+ pivot_row = EMPTY ;
+ ASSERT (pivot_row_length == 0) ;
+ }
+ ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
+
+ /* === Approximate degree computation =============================== */
+
+ /* Here begins the computation of the approximate degree. The column */
+ /* score is the sum of the pivot row "length", plus the size of the */
+ /* set differences of each row in the column minus the pattern of the */
+ /* pivot row itself. The column ("thickness") itself is also */
+ /* excluded from the column score (we thus use an approximate */
+ /* external degree). */
+
+ /* The time taken by the following code (compute set differences, and */
+ /* add them up) is proportional to the size of the data structure */
+ /* being scanned - that is, the sum of the sizes of each column in */
+ /* the pivot row. Thus, the amortized time to compute a column score */
+ /* is proportional to the size of that column (where size, in this */
+ /* context, is the column "length", or the number of row indices */
+ /* in that column). The number of row indices in a column is */
+ /* monotonically non-decreasing, from the length of the original */
+ /* column on input to colamd. */
+
+ /* === Compute set differences ====================================== */
+
+ DEBUG3 (("** Computing set differences phase. **\n")) ;
+
+ /* pivot row is currently dead - it will be revived later. */
+
+ DEBUG3 (("Pivot row: ")) ;
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
+ DEBUG3 (("Col: "ID"\n", col)) ;
+
+ /* clear tags used to construct pivot row pattern */
+ col_thickness = -Col [col].shared1.thickness ;
+ ASSERT (col_thickness > 0) ;
+ Col [col].shared1.thickness = col_thickness ;
+
+ /* === Remove column from degree list =========================== */
+
+ /* only columns in current_set will be in degree list */
+ if (CMEMBER (col) == current_set)
+ {
+#ifndef NDEBUG
+ cols_thickness += col_thickness ;
+#endif
+ cur_score = Col [col].shared2.score ;
+ prev_col = Col [col].shared3.prev ;
+ next_col = Col [col].shared4.degree_next ;
+ DEBUG3 ((" cur_score "ID" prev_col "ID" next_col "ID"\n",
+ cur_score, prev_col, next_col)) ;
+ ASSERT (cur_score >= 0) ;
+ ASSERT (cur_score <= n_col) ;
+ ASSERT (cur_score >= EMPTY) ;
+ if (prev_col == EMPTY)
+ {
+ head [cur_score] = next_col ;
+ }
+ else
+ {
+ Col [prev_col].shared4.degree_next = next_col ;
+ }
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = prev_col ;
+ }
+ }
+
+ /* === Scan the column ========================================== */
+
+ cp = &A [Col [col].start] ;
+ cp_end = cp + Col [col].length ;
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ row_mark = Row [row].shared2.mark ;
+ /* skip if dead */
+ if (ROW_IS_MARKED_DEAD (row_mark))
+ {
+ continue ;
+ }
+ ASSERT (row != pivot_row) ;
+ set_difference = row_mark - tag_mark ;
+ /* check if the row has been seen yet */
+ if (set_difference < 0)
+ {
+ ASSERT (Row [row].shared1.degree <= max_deg) ;
+ set_difference = Row [row].shared1.degree ;
+ }
+ /* subtract column thickness from this row's set difference */
+ set_difference -= col_thickness ;
+ ASSERT (set_difference >= 0) ;
+ /* absorb this row if the set difference becomes zero */
+ if (set_difference == 0 && aggressive)
+ {
+ DEBUG3 (("aggressive absorption. Row: "ID"\n", row)) ;
+
+ if (Row [row].front != EMPTY)
+ {
+ /* Row [row].front is a child of current front. */
+ child = Row [row].front ;
+ Front_parent [child] = nfr ;
+ DEBUG1 (("Front "ID" => front "ID", aggressive\n",
+ child, nfr)) ;
+ }
+ else
+ {
+ /* this is an original row. Keep track of which front
+ * assembles it, for the row-merge tree */
+ InFront [row] = nfr ;
+ DEBUG1 (("Row "ID" => front "ID", aggressive\n",
+ row, nfr)) ;
+ }
+
+ KILL_ROW (row) ;
+
+ /* sum the thicknesses of all the rows */
+ pivot_row_thickness += Row [row].thickness ;
+ Row [row].thickness = 0 ;
+ }
+ else
+ {
+ /* save the new mark */
+ Row [row].shared2.mark = set_difference + tag_mark ;
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ debug_deg_lists (n_row, n_col, Row, Col, head, min_score,
+ cset_start [current_set+1]-(k+deadcol)-(cols_thickness),
+ max_deg) ;
+ cols_thickness = 0 ;
+#endif
+
+ /* === Add up set differences for each column ======================= */
+
+ DEBUG3 (("** Adding set differences phase. **\n")) ;
+
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ /* get a column */
+ col = *rp++ ;
+ ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
+ hash = 0 ;
+ cur_score = 0 ;
+ cp = &A [Col [col].start] ;
+ /* compact the column */
+ new_cp = cp ;
+ cp_end = cp + Col [col].length ;
+
+ DEBUG4 (("Adding set diffs for Col: "ID".\n", col)) ;
+
+ while (cp < cp_end)
+ {
+ /* get a row */
+ row = *cp++ ;
+ ASSERT (row >= 0 && row < n_row) ;
+ row_mark = Row [row].shared2.mark ;
+ /* skip if dead */
+ if (ROW_IS_MARKED_DEAD (row_mark))
+ {
+ DEBUG4 ((" Row "ID", dead\n", row)) ;
+ continue ;
+ }
+ DEBUG4 ((" Row "ID", set diff "ID"\n", row, row_mark-tag_mark));
+ ASSERT (row_mark >= tag_mark) ;
+ /* compact the column */
+ *new_cp++ = row ;
+ /* compute hash function */
+ hash += row ;
+ /* add set difference */
+ cur_score += row_mark - tag_mark ;
+ /* integer overflow... */
+ cur_score = MIN (cur_score, n_col) ;
+ }
+
+ /* recompute the column's length */
+ Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
+
+ /* === Further mass elimination ================================= */
+
+ if (Col [col].length == 0 && CMEMBER (col) == current_set)
+ {
+ DEBUG4 (("further mass elimination. Col: "ID"\n", col)) ;
+ /* nothing left but the pivot row in this column */
+ KILL_PRINCIPAL_COL (col) ;
+ pivot_row_degree -= Col [col].shared1.thickness ;
+ ASSERT (pivot_row_degree >= 0) ;
+ /* order it */
+ Col [col].shared2.order = k ;
+ /* increment order count by column thickness */
+ k += Col [col].shared1.thickness ;
+ pivot_col_thickness += Col [col].shared1.thickness ;
+ /* add to column list of front */
+#ifndef NDEBUG
+ DEBUG1 (("Mass")) ;
+ dump_super (col, Col, n_col) ;
+#endif
+ Col [Col [col].lastcol].nextcol = Front_cols [nfr] ;
+ Front_cols [nfr] = col ;
+ }
+ else
+ {
+ /* === Prepare for supercolumn detection ==================== */
+
+ DEBUG4 (("Preparing supercol detection for Col: "ID".\n", col));
+
+ /* save score so far */
+ Col [col].shared2.score = cur_score ;
+
+ /* add column to hash table, for supercolumn detection */
+ hash %= n_col + 1 ;
+
+ DEBUG4 ((" Hash = "ID", n_col = "ID".\n", hash, n_col)) ;
+ ASSERT (((Int) hash) <= n_col) ;
+
+ head_column = head [hash] ;
+ if (head_column > EMPTY)
+ {
+ /* degree list "hash" is non-empty, use prev (shared3) of */
+ /* first column in degree list as head of hash bucket */
+ first_col = Col [head_column].shared3.headhash ;
+ Col [head_column].shared3.headhash = col ;
+ }
+ else
+ {
+ /* degree list "hash" is empty, use head as hash bucket */
+ first_col = - (head_column + 2) ;
+ head [hash] = - (col + 2) ;
+ }
+ Col [col].shared4.hash_next = first_col ;
+
+ /* save hash function in Col [col].shared3.hash */
+ Col [col].shared3.hash = (Int) hash ;
+ ASSERT (COL_IS_ALIVE (col)) ;
+ }
+ }
+
+ /* The approximate external column degree is now computed. */
+
+ /* === Supercolumn detection ======================================== */
+
+ DEBUG3 (("** Supercolumn detection phase. **\n")) ;
+
+ detect_super_cols (
+#ifndef NDEBUG
+ n_col, Row,
+#endif
+ Col, A, head, pivot_row_start, pivot_row_length, cmember) ;
+
+ /* === Kill the pivotal column ====================================== */
+
+ DEBUG1 ((" KILLING column detect supercols "ID" \n", pivot_col)) ;
+ KILL_PRINCIPAL_COL (pivot_col) ;
+
+ /* add columns to column list of front */
+#ifndef NDEBUG
+ DEBUG1 (("Pivot")) ;
+ dump_super (pivot_col, Col, n_col) ;
+#endif
+ Col [Col [pivot_col].lastcol].nextcol = Front_cols [nfr] ;
+ Front_cols [nfr] = pivot_col ;
+
+ /* === Clear mark =================================================== */
+
+ tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
+
+#ifndef NDEBUG
+ DEBUG3 (("check3\n")) ;
+ debug_mark (n_row, Row, tag_mark, max_mark) ;
+#endif
+
+ /* === Finalize the new pivot row, and column scores ================ */
+
+ DEBUG3 (("** Finalize scores phase. **\n")) ;
+
+ /* for each column in pivot row */
+ rp = &A [pivot_row_start] ;
+ /* compact the pivot row */
+ new_rp = rp ;
+ rp_end = rp + pivot_row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ /* skip dead columns */
+ if (COL_IS_DEAD (col))
+ {
+ continue ;
+ }
+ *new_rp++ = col ;
+ /* add new pivot row to column */
+ A [Col [col].start + (Col [col].length++)] = pivot_row ;
+
+ /* retrieve score so far and add on pivot row's degree. */
+ /* (we wait until here for this in case the pivot */
+ /* row's degree was reduced due to mass elimination). */
+ cur_score = Col [col].shared2.score + pivot_row_degree ;
+
+ /* calculate the max possible score as the number of */
+ /* external columns minus the 'k' value minus the */
+ /* columns thickness */
+ max_score = n_col - k - Col [col].shared1.thickness ;
+
+ /* make the score the external degree of the union-of-rows */
+ cur_score -= Col [col].shared1.thickness ;
+
+ /* make sure score is less or equal than the max score */
+ cur_score = MIN (cur_score, max_score) ;
+ ASSERT (cur_score >= 0) ;
+
+ /* store updated score */
+ Col [col].shared2.score = cur_score ;
+
+ /* === Place column back in degree list ========================= */
+
+ if (CMEMBER (col) == current_set)
+ {
+ ASSERT (min_score >= 0) ;
+ ASSERT (min_score <= n_col) ;
+ ASSERT (cur_score >= 0) ;
+ ASSERT (cur_score <= n_col) ;
+ ASSERT (head [cur_score] >= EMPTY) ;
+ next_col = head [cur_score] ;
+ Col [col].shared4.degree_next = next_col ;
+ Col [col].shared3.prev = EMPTY ;
+ if (next_col != EMPTY)
+ {
+ Col [next_col].shared3.prev = col ;
+ }
+ head [cur_score] = col ;
+ /* see if this score is less than current min */
+ min_score = MIN (min_score, cur_score) ;
+ }
+ else
+ {
+ Col [col].shared4.degree_next = EMPTY ;
+ Col [col].shared3.prev = EMPTY ;
+ }
+ }
+
+#ifndef NDEBUG
+ debug_deg_lists (n_row, n_col, Row, Col, head,
+ min_score, cset_start [current_set+1]-(k+deadcol), max_deg) ;
+#endif
+
+ /* frontal matrix can have more pivot cols than pivot rows for */
+ /* singular matrices. */
+
+ /* number of candidate pivot columns */
+ Front_npivcol [nfr] = pivot_col_thickness ;
+
+ /* all rows (not just size of contrib. block) */
+ Front_nrows [nfr] = pivot_row_thickness ;
+
+ /* all cols */
+ Front_ncols [nfr] = pivot_col_thickness + pivot_row_degree ;
+
+ Front_parent [nfr] = EMPTY ;
+
+ pivot_row_thickness -= pivot_col_thickness ;
+ DEBUG1 (("Front "ID" Pivot_row_thickness after pivot cols elim: "ID"\n",
+ nfr, pivot_row_thickness)) ;
+ pivot_row_thickness = MAX (0, pivot_row_thickness) ;
+
+ /* === Resurrect the new pivot row ================================== */
+
+ if ((pivot_row_degree > 0 && pivot_row_thickness > 0 && (order_for_lu))
+ || (pivot_row_degree > 0 && (!order_for_lu)))
+ {
+ /* update pivot row length to reflect any cols that were killed */
+ /* during super-col detection and mass elimination */
+ Row [pivot_row].start = pivot_row_start ;
+ Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
+ Row [pivot_row].shared1.degree = pivot_row_degree ;
+ Row [pivot_row].shared2.mark = 0 ;
+ Row [pivot_row].thickness = pivot_row_thickness ;
+ Row [pivot_row].front = nfr ;
+ /* pivot row is no longer dead */
+ DEBUG1 (("Resurrect Pivot_row "ID" deg: "ID"\n",
+ pivot_row, pivot_row_degree)) ;
+ }
+
+#ifndef NDEBUG
+ DEBUG1 (("Front "ID" : "ID" "ID" "ID" ", nfr,
+ Front_npivcol [nfr], Front_nrows [nfr], Front_ncols [nfr])) ;
+ DEBUG1 ((" cols:[ ")) ;
+ debug_d = 0 ;
+ for (col = Front_cols [nfr] ; col != EMPTY ; col = Col [col].nextcol)
+ {
+ DEBUG1 ((" "ID, col)) ;
+ ASSERT (col >= 0 && col < n_col) ;
+ ASSERT (COL_IS_DEAD (col)) ;
+ debug_d++ ;
+ ASSERT (debug_d <= pivot_col_thickness) ;
+ }
+ ASSERT (debug_d == pivot_col_thickness) ;
+ DEBUG1 ((" ]\n ")) ;
+#endif
+ nfr++ ; /* one more front */
+ }
+
+ /* === All principal columns have now been ordered ====================== */
+
+ *p_nfr = nfr ;
+ return (ngarbage) ;
+}
+
+
+/* ========================================================================== */
+/* === detect_super_cols ==================================================== */
+/* ========================================================================== */
+
+/*
+ * Detects supercolumns by finding matches between columns in the hash buckets.
+ * Check amongst columns in the set A [row_start ... row_start + row_length-1].
+ * The columns under consideration are currently *not* in the degree lists,
+ * and have already been placed in the hash buckets.
+ *
+ * The hash bucket for columns whose hash function is equal to h is stored
+ * as follows:
+ *
+ * if head [h] is >= 0, then head [h] contains a degree list, so:
+ *
+ * head [h] is the first column in degree bucket h.
+ * Col [head [h]].headhash gives the first column in hash bucket h.
+ *
+ * otherwise, the degree list is empty, and:
+ *
+ * -(head [h] + 2) is the first column in hash bucket h.
+ *
+ * For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
+ * column" pointer. Col [c].shared3.hash is used instead as the hash number
+ * for that column. The value of Col [c].shared4.hash_next is the next column
+ * in the same hash bucket.
+ *
+ * Assuming no, or "few" hash collisions, the time taken by this routine is
+ * linear in the sum of the sizes (lengths) of each column whose score has
+ * just been computed in the approximate degree computation.
+ * Not user-callable.
+ */
+
+PRIVATE void detect_super_cols
+(
+ /* === Parameters ======================================================= */
+
+#ifndef NDEBUG
+ /* these two parameters are only needed when debugging is enabled: */
+ Int n_col, /* number of columns of A */
+ CColamd_Row Row [ ], /* of size n_row+1 */
+#endif
+
+ CColamd_Col Col [ ], /* of size n_col+1 */
+ Int A [ ], /* row indices of A */
+ Int head [ ], /* head of degree lists and hash buckets */
+ Int row_start, /* pointer to set of columns to check */
+ Int row_length, /* number of columns to check */
+ Int cmember [ ] /* col -> cset mapping */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int hash ; /* hash value for a column */
+ Int *rp ; /* pointer to a row */
+ Int c ; /* a column index */
+ Int super_c ; /* column index of the column to absorb into */
+ Int *cp1 ; /* column pointer for column super_c */
+ Int *cp2 ; /* column pointer for column c */
+ Int length ; /* length of column super_c */
+ Int prev_c ; /* column preceding c in hash bucket */
+ Int i ; /* loop counter */
+ Int *rp_end ; /* pointer to the end of the row */
+ Int col ; /* a column index in the row to check */
+ Int head_column ; /* first column in hash bucket or degree list */
+ Int first_col ; /* first column in hash bucket */
+
+ /* === Consider each column in the row ================================== */
+
+ rp = &A [row_start] ;
+ rp_end = rp + row_length ;
+ while (rp < rp_end)
+ {
+ col = *rp++ ;
+ if (COL_IS_DEAD (col))
+ {
+ continue ;
+ }
+
+ /* get hash number for this column */
+ hash = Col [col].shared3.hash ;
+ ASSERT (hash <= n_col) ;
+
+ /* === Get the first column in this hash bucket ===================== */
+
+ head_column = head [hash] ;
+ if (head_column > EMPTY)
+ {
+ first_col = Col [head_column].shared3.headhash ;
+ }
+ else
+ {
+ first_col = - (head_column + 2) ;
+ }
+
+ /* === Consider each column in the hash bucket ====================== */
+
+ for (super_c = first_col ; super_c != EMPTY ;
+ super_c = Col [super_c].shared4.hash_next)
+ {
+ ASSERT (COL_IS_ALIVE (super_c)) ;
+ ASSERT (Col [super_c].shared3.hash == hash) ;
+ length = Col [super_c].length ;
+
+ /* prev_c is the column preceding column c in the hash bucket */
+ prev_c = super_c ;
+
+ /* === Compare super_c with all columns after it ================ */
+
+ for (c = Col [super_c].shared4.hash_next ;
+ c != EMPTY ; c = Col [c].shared4.hash_next)
+ {
+ ASSERT (c != super_c) ;
+ ASSERT (COL_IS_ALIVE (c)) ;
+ ASSERT (Col [c].shared3.hash == hash) ;
+
+ /* not identical if lengths or scores are different, */
+ /* or if in different constraint sets */
+ if (Col [c].length != length ||
+ Col [c].shared2.score != Col [super_c].shared2.score
+ || CMEMBER (c) != CMEMBER (super_c))
+ {
+ prev_c = c ;
+ continue ;
+ }
+
+ /* compare the two columns */
+ cp1 = &A [Col [super_c].start] ;
+ cp2 = &A [Col [c].start] ;
+
+ for (i = 0 ; i < length ; i++)
+ {
+ /* the columns are "clean" (no dead rows) */
+ ASSERT (ROW_IS_ALIVE (*cp1)) ;
+ ASSERT (ROW_IS_ALIVE (*cp2)) ;
+ /* row indices will same order for both supercols, */
+ /* no gather scatter nessasary */
+ if (*cp1++ != *cp2++)
+ {
+ break ;
+ }
+ }
+
+ /* the two columns are different if the for-loop "broke" */
+ /* super columns should belong to the same constraint set */
+ if (i != length)
+ {
+ prev_c = c ;
+ continue ;
+ }
+
+ /* === Got it! two columns are identical =================== */
+
+ ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
+
+ Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
+ Col [c].shared1.parent = super_c ;
+ KILL_NON_PRINCIPAL_COL (c) ;
+ /* order c later, in order_children() */
+ Col [c].shared2.order = EMPTY ;
+ /* remove c from hash bucket */
+ Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
+
+ /* add c to end of list of super_c */
+ ASSERT (Col [super_c].lastcol >= 0) ;
+ ASSERT (Col [super_c].lastcol < n_col) ;
+ Col [Col [super_c].lastcol].nextcol = c ;
+ Col [super_c].lastcol = Col [c].lastcol ;
+#ifndef NDEBUG
+ /* dump the supercolumn */
+ DEBUG1 (("Super")) ;
+ dump_super (super_c, Col, n_col) ;
+#endif
+ }
+ }
+
+ /* === Empty this hash bucket ======================================= */
+
+ if (head_column > EMPTY)
+ {
+ /* corresponding degree list "hash" is not empty */
+ Col [head_column].shared3.headhash = EMPTY ;
+ }
+ else
+ {
+ /* corresponding degree list "hash" is empty */
+ head [hash] = EMPTY ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === garbage_collection =================================================== */
+/* ========================================================================== */
+
+/*
+ * Defragments and compacts columns and rows in the workspace A. Used when
+ * all avaliable memory has been used while performing row merging. Returns
+ * the index of the first free position in A, after garbage collection. The
+ * time taken by this routine is linear is the size of the array A, which is
+ * itself linear in the number of nonzeros in the input matrix.
+ * Not user-callable.
+ */
+
+PRIVATE Int garbage_collection /* returns the new value of pfree */
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row, /* number of rows */
+ Int n_col, /* number of columns */
+ CColamd_Row Row [ ], /* row info */
+ CColamd_Col Col [ ], /* column info */
+ Int A [ ], /* A [0 ... Alen-1] holds the matrix */
+ Int *pfree /* &A [0] ... pfree is in use */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int *psrc ; /* source pointer */
+ Int *pdest ; /* destination pointer */
+ Int j ; /* counter */
+ Int r ; /* a row index */
+ Int c ; /* a column index */
+ Int length ; /* length of a row or column */
+
+#ifndef NDEBUG
+ Int debug_rows ;
+ DEBUG2 (("Defrag..\n")) ;
+ for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
+ debug_rows = 0 ;
+#endif
+
+ /* === Defragment the columns =========================================== */
+
+ pdest = &A[0] ;
+ for (c = 0 ; c < n_col ; c++)
+ {
+ if (COL_IS_ALIVE (c))
+ {
+ psrc = &A [Col [c].start] ;
+
+ /* move and compact the column */
+ ASSERT (pdest <= psrc) ;
+ Col [c].start = (Int) (pdest - &A [0]) ;
+ length = Col [c].length ;
+ for (j = 0 ; j < length ; j++)
+ {
+ r = *psrc++ ;
+ if (ROW_IS_ALIVE (r))
+ {
+ *pdest++ = r ;
+ }
+ }
+ Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
+ }
+ }
+
+ /* === Prepare to defragment the rows =================================== */
+
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_DEAD (r) || (Row [r].length == 0))
+ {
+ /* This row is already dead, or is of zero length. Cannot compact
+ * a row of zero length, so kill it. NOTE: in the current version,
+ * there are no zero-length live rows. Kill the row (for the first
+ * time, or again) just to be safe. */
+ KILL_ROW (r) ;
+ }
+ else
+ {
+ /* save first column index in Row [r].shared2.first_column */
+ psrc = &A [Row [r].start] ;
+ Row [r].shared2.first_column = *psrc ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+ /* flag the start of the row with the one's complement of row */
+ *psrc = ONES_COMPLEMENT (r) ;
+#ifndef NDEBUG
+ debug_rows++ ;
+#endif
+ }
+ }
+
+ /* === Defragment the rows ============================================== */
+
+ psrc = pdest ;
+ while (psrc < pfree)
+ {
+ /* find a negative number ... the start of a row */
+ if (*psrc++ < 0)
+ {
+ psrc-- ;
+ /* get the row index */
+ r = ONES_COMPLEMENT (*psrc) ;
+ ASSERT (r >= 0 && r < n_row) ;
+ /* restore first column index */
+ *psrc = Row [r].shared2.first_column ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+
+ /* move and compact the row */
+ ASSERT (pdest <= psrc) ;
+ Row [r].start = (Int) (pdest - &A [0]) ;
+ length = Row [r].length ;
+ for (j = 0 ; j < length ; j++)
+ {
+ c = *psrc++ ;
+ if (COL_IS_ALIVE (c))
+ {
+ *pdest++ = c ;
+ }
+ }
+ Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
+#ifndef NDEBUG
+ debug_rows-- ;
+#endif
+ }
+ }
+
+ /* ensure we found all the rows */
+ ASSERT (debug_rows == 0) ;
+
+ /* === Return the new value of pfree ==================================== */
+
+ return ((Int) (pdest - &A [0])) ;
+}
+
+
+/* ========================================================================== */
+/* === clear_mark =========================================================== */
+/* ========================================================================== */
+
+/*
+ * Clears the Row [ ].shared2.mark array, and returns the new tag_mark.
+ * Return value is the new tag_mark. Not user-callable.
+ */
+
+PRIVATE Int clear_mark /* return the new value for tag_mark */
+(
+ /* === Parameters ======================================================= */
+
+ Int tag_mark, /* new value of tag_mark */
+ Int max_mark, /* max allowed value of tag_mark */
+
+ Int n_row, /* number of rows in A */
+ CColamd_Row Row [ ] /* Row [0 ... n_row-1].shared2.mark is set to zero */
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+
+ if (tag_mark <= 0 || tag_mark >= max_mark)
+ {
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_ALIVE (r))
+ {
+ Row [r].shared2.mark = 0 ;
+ }
+ }
+ tag_mark = 1 ;
+ }
+
+ return (tag_mark) ;
+}
+
+
+/* ========================================================================== */
+/* === print_report ========================================================= */
+/* ========================================================================== */
+
+/* No printing occurs if NPRINT is defined at compile time. */
+
+PRIVATE void print_report
+(
+ char *method,
+ Int stats [CCOLAMD_STATS]
+)
+{
+
+ Int i1, i2, i3 ;
+
+ PRINTF (("\n%s version %d.%d, %s: ", method,
+ CCOLAMD_MAIN_VERSION, CCOLAMD_SUB_VERSION, CCOLAMD_DATE)) ;
+
+ if (!stats)
+ {
+ PRINTF (("No statistics available.\n")) ;
+ return ;
+ }
+
+ i1 = stats [CCOLAMD_INFO1] ;
+ i2 = stats [CCOLAMD_INFO2] ;
+ i3 = stats [CCOLAMD_INFO3] ;
+
+ if (stats [CCOLAMD_STATUS] >= 0)
+ {
+ PRINTF(("OK. ")) ;
+ }
+ else
+ {
+ PRINTF(("ERROR. ")) ;
+ }
+
+ switch (stats [CCOLAMD_STATUS])
+ {
+
+ case CCOLAMD_OK_BUT_JUMBLED:
+
+ PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
+
+ PRINTF(("%s: duplicate or out-of-order row indices: "ID"\n",
+ method, i3)) ;
+
+ PRINTF(("%s: last seen duplicate or out-of-order row: "ID"\n",
+ method, INDEX (i2))) ;
+
+ PRINTF(("%s: last seen in column: "ID"",
+ method, INDEX (i1))) ;
+
+ /* no break - fall through to next case instead */
+
+ case CCOLAMD_OK:
+
+ PRINTF(("\n")) ;
+
+ PRINTF(("%s: number of dense or empty rows ignored: "ID"\n",
+ method, stats [CCOLAMD_DENSE_ROW])) ;
+
+ PRINTF(("%s: number of dense or empty columns ignored: "ID"\n",
+ method, stats [CCOLAMD_DENSE_COL])) ;
+
+ PRINTF(("%s: number of garbage collections performed: "ID"\n",
+ method, stats [CCOLAMD_DEFRAG_COUNT])) ;
+ break ;
+
+ case CCOLAMD_ERROR_A_not_present:
+
+ PRINTF(("Array A (row indices of matrix) not present.\n")) ;
+ break ;
+
+ case CCOLAMD_ERROR_p_not_present:
+
+ PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
+ break ;
+
+ case CCOLAMD_ERROR_nrow_negative:
+
+ PRINTF(("Invalid number of rows ("ID").\n", i1)) ;
+ break ;
+
+ case CCOLAMD_ERROR_ncol_negative:
+
+ PRINTF(("Invalid number of columns ("ID").\n", i1)) ;
+ break ;
+
+ case CCOLAMD_ERROR_nnz_negative:
+
+ PRINTF(("Invalid number of nonzero entries ("ID").\n", i1)) ;
+ break ;
+
+ case CCOLAMD_ERROR_p0_nonzero:
+
+ PRINTF(("Invalid column pointer, p [0] = "ID", must be 0.\n", i1)) ;
+ break ;
+
+ case CCOLAMD_ERROR_A_too_small:
+
+ PRINTF(("Array A too small.\n")) ;
+ PRINTF((" Need Alen >= "ID", but given only Alen = "ID".\n",
+ i1, i2)) ;
+ break ;
+
+ case CCOLAMD_ERROR_col_length_negative:
+
+ PRINTF(("Column "ID" has a negative number of entries ("ID").\n",
+ INDEX (i1), i2)) ;
+ break ;
+
+ case CCOLAMD_ERROR_row_index_out_of_bounds:
+
+ PRINTF(("Row index (row "ID") out of bounds ("ID" to "ID") in"
+ "column "ID".\n", INDEX (i2), INDEX (0), INDEX (i3-1),
+ INDEX (i1))) ;
+ break ;
+
+ case CCOLAMD_ERROR_out_of_memory:
+
+ PRINTF(("Out of memory.\n")) ;
+ break ;
+
+ case CCOLAMD_ERROR_invalid_cmember:
+
+ PRINTF(("cmember invalid\n")) ;
+ break ;
+ }
+}
+
+
+/* ========================================================================= */
+/* === "Expert" routines =================================================== */
+/* ========================================================================= */
+
+/* The following routines are visible outside this routine, but are not meant
+ * to be called by the user. They are meant for a future version of UMFPACK,
+ * to replace UMFPACK internal routines with a similar name.
+ */
+
+
+/* ========================================================================== */
+/* === CCOLAMD_apply_order ================================================== */
+/* ========================================================================== */
+
+/*
+ * Apply post-ordering of supernodal elimination tree.
+ */
+
+GLOBAL void CCOLAMD_apply_order
+(
+ Int Front [ ], /* of size nn on input, size nfr on output */
+ const Int Order [ ], /* Order [i] = k, i in the range 0..nn-1,
+ * and k in the range 0..nfr-1, means that node
+ * i is the kth node in the postordered tree. */
+ Int Temp [ ], /* workspace of size nfr */
+ Int nn, /* nodes are numbered in the range 0..nn-1 */
+ Int nfr /* the number of nodes actually in use */
+)
+{
+ Int i, k ;
+ for (i = 0 ; i < nn ; i++)
+ {
+ k = Order [i] ;
+ ASSERT (k >= EMPTY && k < nfr) ;
+ if (k != EMPTY)
+ {
+ Temp [k] = Front [i] ;
+ }
+ }
+
+ for (k = 0 ; k < nfr ; k++)
+ {
+ Front [k] = Temp [k] ;
+ }
+}
+
+
+/* ========================================================================== */
+/* === CCOLAMD_fsize ======================================================== */
+/* ========================================================================== */
+
+/* Determine the largest frontal matrix size for each subtree.
+ * Only required to sort the children of each
+ * node prior to postordering the column elimination tree. */
+
+GLOBAL void CCOLAMD_fsize
+(
+ Int nn,
+ Int Fsize [ ],
+ Int Fnrows [ ],
+ Int Fncols [ ],
+ Int Parent [ ],
+ Int Npiv [ ]
+)
+{
+ double dr, dc ;
+ Int j, parent, frsize, r, c ;
+
+ for (j = 0 ; j < nn ; j++)
+ {
+ Fsize [j] = EMPTY ;
+ }
+
+ /* ---------------------------------------------------------------------- */
+ /* find max front size for tree rooted at node j, for each front j */
+ /* ---------------------------------------------------------------------- */
+
+ DEBUG1 (("\n\n========================================FRONTS:\n")) ;
+ for (j = 0 ; j < nn ; j++)
+ {
+ if (Npiv [j] > 0)
+ {
+ /* this is a frontal matrix */
+ parent = Parent [j] ;
+ r = Fnrows [j] ;
+ c = Fncols [j] ;
+ /* avoid integer overflow */
+ dr = (double) r ;
+ dc = (double) c ;
+ frsize = (INT_OVERFLOW (dr * dc)) ? Int_MAX : (r * c) ;
+ DEBUG1 ((""ID" : npiv "ID" size "ID" parent "ID" ",
+ j, Npiv [j], frsize, parent)) ;
+ Fsize [j] = MAX (Fsize [j], frsize) ;
+ DEBUG1 (("Fsize [j = "ID"] = "ID"\n", j, Fsize [j])) ;
+ if (parent != EMPTY)
+ {
+ /* find the maximum frontsize of self and children */
+ ASSERT (Npiv [parent] > 0) ;
+ ASSERT (parent > j) ;
+ Fsize [parent] = MAX (Fsize [parent], Fsize [j]) ;
+ DEBUG1 (("Fsize [parent = "ID"] = "ID"\n",
+ parent, Fsize [parent]));
+ }
+ }
+ }
+ DEBUG1 (("fsize done\n")) ;
+}
+
+
+/* ========================================================================= */
+/* === CCOLAMD_postorder =================================================== */
+/* ========================================================================= */
+
+/* Perform a postordering (via depth-first search) of an assembly tree. */
+
+GLOBAL void CCOLAMD_postorder
+(
+ /* inputs, not modified on output: */
+ Int nn, /* nodes are in the range 0..nn-1 */
+ Int Parent [ ], /* Parent [j] is the parent of j, or EMPTY if root */
+ Int Nv [ ], /* Nv [j] > 0 number of pivots represented by node j,
+ * or zero if j is not a node. */
+ Int Fsize [ ], /* Fsize [j]: size of node j */
+
+ /* output, not defined on input: */
+ Int Order [ ], /* output post-order */
+
+ /* workspaces of size nn: */
+ Int Child [ ],
+ Int Sibling [ ],
+ Int Stack [ ],
+ Int Front_cols [ ],
+
+ /* input, not modified on output: */
+ Int cmember [ ]
+)
+{
+ Int i, j, k, parent, frsize, f, fprev, maxfrsize, bigfprev, bigf, fnext ;
+
+ for (j = 0 ; j < nn ; j++)
+ {
+ Child [j] = EMPTY ;
+ Sibling [j] = EMPTY ;
+ }
+
+ /* --------------------------------------------------------------------- */
+ /* place the children in link lists - bigger elements tend to be last */
+ /* --------------------------------------------------------------------- */
+
+ for (j = nn-1 ; j >= 0 ; j--)
+ {
+ if (Nv [j] > 0)
+ {
+ /* this is an element */
+ parent = Parent [j] ;
+ if (parent != EMPTY)
+ {
+ /* place the element in link list of the children its parent */
+ /* bigger elements will tend to be at the end of the list */
+ Sibling [j] = Child [parent] ;
+ if (CMEMBER (Front_cols[parent]) == CMEMBER (Front_cols[j]))
+ {
+ Child [parent] = j ;
+ }
+ }
+ }
+ }
+
+#ifndef NDEBUG
+ {
+ Int nels, ff, nchild ;
+ DEBUG1 (("\n\n================================ ccolamd_postorder:\n"));
+ nels = 0 ;
+ for (j = 0 ; j < nn ; j++)
+ {
+ if (Nv [j] > 0)
+ {
+ DEBUG1 ((""ID" : nels "ID" npiv "ID" size "ID
+ " parent "ID" maxfr "ID"\n", j, nels,
+ Nv [j], Fsize [j], Parent [j], Fsize [j])) ;
+ /* this is an element */
+ /* dump the link list of children */
+ nchild = 0 ;
+ DEBUG1 ((" Children: ")) ;
+ for (ff = Child [j] ; ff != EMPTY ; ff = Sibling [ff])
+ {
+ DEBUG1 ((ID" ", ff)) ;
+ nchild++ ;
+ ASSERT (nchild < nn) ;
+ }
+ DEBUG1 (("\n")) ;
+ parent = Parent [j] ;
+ nels++ ;
+ }
+ }
+ }
+#endif
+
+ /* --------------------------------------------------------------------- */
+ /* place the largest child last in the list of children for each node */
+ /* --------------------------------------------------------------------- */
+
+ for (i = 0 ; i < nn ; i++)
+ {
+ if (Nv [i] > 0 && Child [i] != EMPTY)
+ {
+
+#ifndef NDEBUG
+ Int nchild ;
+ DEBUG1 (("Before partial sort, element "ID"\n", i)) ;
+ nchild = 0 ;
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ DEBUG1 ((" f: "ID" size: "ID"\n", f, Fsize [f])) ;
+ nchild++ ;
+ }
+#endif
+
+ /* find the biggest element in the child list */
+ fprev = EMPTY ;
+ maxfrsize = EMPTY ;
+ bigfprev = EMPTY ;
+ bigf = EMPTY ;
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ frsize = Fsize [f] ;
+ if (frsize >= maxfrsize)
+ {
+ /* this is the biggest seen so far */
+ maxfrsize = frsize ;
+ bigfprev = fprev ;
+ bigf = f ;
+ }
+ fprev = f ;
+ }
+
+ fnext = Sibling [bigf] ;
+
+ DEBUG1 (("bigf "ID" maxfrsize "ID" bigfprev "ID" fnext "ID
+ " fprev " ID"\n", bigf, maxfrsize, bigfprev, fnext, fprev)) ;
+
+ if (fnext != EMPTY)
+ {
+ /* if fnext is EMPTY then bigf is already at the end of list */
+
+ if (bigfprev == EMPTY)
+ {
+ /* delete bigf from the element of the list */
+ Child [i] = fnext ;
+ }
+ else
+ {
+ /* delete bigf from the middle of the list */
+ Sibling [bigfprev] = fnext ;
+ }
+
+ /* put bigf at the end of the list */
+ Sibling [bigf] = EMPTY ;
+ Sibling [fprev] = bigf ;
+ }
+
+#ifndef NDEBUG
+ DEBUG1 (("After partial sort, element "ID"\n", i)) ;
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ DEBUG1 ((" "ID" "ID"\n", f, Fsize [f])) ;
+ nchild-- ;
+ }
+#endif
+ }
+ }
+
+ /* --------------------------------------------------------------------- */
+ /* postorder the assembly tree */
+ /* --------------------------------------------------------------------- */
+
+ for (i = 0 ; i < nn ; i++)
+ {
+ Order [i] = EMPTY ;
+ }
+
+ k = 0 ;
+
+ for (i = 0 ; i < nn ; i++)
+ {
+ if ((Parent [i] == EMPTY
+ || (CMEMBER (Front_cols [Parent [i]]) != CMEMBER (Front_cols [i])))
+ && Nv [i] > 0)
+ {
+ DEBUG1 (("Root of assembly tree "ID"\n", i)) ;
+ k = CCOLAMD_post_tree (i, k, Child, Sibling, Order, Stack) ;
+ }
+ }
+}
+
+
+/* ========================================================================= */
+/* === CCOLAMD_post_tree =================================================== */
+/* ========================================================================= */
+
+/* Post-ordering of a supernodal column elimination tree. */
+
+GLOBAL Int CCOLAMD_post_tree
+(
+ Int root, /* root of the tree */
+ Int k, /* start numbering at k */
+ Int Child [ ], /* input argument of size nn, undefined on
+ * output. Child [i] is the head of a link
+ * list of all nodes that are children of node
+ * i in the tree. */
+ const Int Sibling [ ], /* input argument of size nn, not modified.
+ * If f is a node in the link list of the
+ * children of node i, then Sibling [f] is the
+ * next child of node i.
+ */
+ Int Order [ ], /* output order, of size nn. Order [i] = k
+ * if node i is the kth node of the reordered
+ * tree. */
+ Int Stack [ ] /* workspace of size nn */
+)
+{
+ Int f, head, h, i ;
+
+#if 0
+ /* --------------------------------------------------------------------- */
+ /* recursive version (Stack [ ] is not used): */
+ /* --------------------------------------------------------------------- */
+
+ /* this is simple, but can cause stack overflow if nn is large */
+ i = root ;
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ k = CCOLAMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ;
+ }
+ Order [i] = k++ ;
+ return (k) ;
+#endif
+
+ /* --------------------------------------------------------------------- */
+ /* non-recursive version, using an explicit stack */
+ /* --------------------------------------------------------------------- */
+
+ /* push root on the stack */
+ head = 0 ;
+ Stack [0] = root ;
+
+ while (head >= 0)
+ {
+ /* get head of stack */
+ i = Stack [head] ;
+ DEBUG1 (("head of stack "ID" \n", i)) ;
+
+ if (Child [i] != EMPTY)
+ {
+ /* the children of i are not yet ordered */
+ /* push each child onto the stack in reverse order */
+ /* so that small ones at the head of the list get popped first */
+ /* and the biggest one at the end of the list gets popped last */
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ head++ ;
+ }
+ h = head ;
+ for (f = Child [i] ; f != EMPTY ; f = Sibling [f])
+ {
+ ASSERT (h > 0) ;
+ Stack [h--] = f ;
+ DEBUG1 (("push "ID" on stack\n", f)) ;
+ }
+ ASSERT (Stack [h] == i) ;
+
+ /* delete child list so that i gets ordered next time we see it */
+ Child [i] = EMPTY ;
+ }
+ else
+ {
+ /* the children of i (if there were any) are already ordered */
+ /* remove i from the stack and order it. Front i is kth front */
+ head-- ;
+ DEBUG1 (("pop "ID" order "ID"\n", i, k)) ;
+ Order [i] = k++ ;
+ }
+
+#ifndef NDEBUG
+ DEBUG1 (("\nStack:")) ;
+ for (h = head ; h >= 0 ; h--)
+ {
+ Int j = Stack [h] ;
+ DEBUG1 ((" "ID, j)) ;
+ }
+ DEBUG1 (("\n\n")) ;
+#endif
+
+ }
+ return (k) ;
+}
+
+
+
+/* ========================================================================== */
+/* === CCOLAMD debugging routines =========================================== */
+/* ========================================================================== */
+
+/* When debugging is disabled, the remainder of this file is ignored. */
+
+#ifndef NDEBUG
+
+
+/* ========================================================================== */
+/* === debug_structures ===================================================== */
+/* ========================================================================== */
+
+/*
+ * At this point, all empty rows and columns are dead. All live columns
+ * are "clean" (containing no dead rows) and simplicial (no supercolumns
+ * yet). Rows may contain dead columns, but all live rows contain at
+ * least one live column.
+ */
+
+PRIVATE void debug_structures
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ],
+ Int cmember [ ],
+ Int cset_start [ ]
+)
+{
+ /* === Local variables ================================================== */
+
+ Int i ;
+ Int c ;
+ Int *cp ;
+ Int *cp_end ;
+ Int len ;
+ Int score ;
+ Int r ;
+ Int *rp ;
+ Int *rp_end ;
+ Int deg ;
+ Int cs ;
+
+ /* === Check A, Row, and Col ============================================ */
+
+ for (c = 0 ; c < n_col ; c++)
+ {
+ if (COL_IS_ALIVE (c))
+ {
+ len = Col [c].length ;
+ score = Col [c].shared2.score ;
+ DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
+ ASSERT (len > 0) ;
+ ASSERT (score >= 0) ;
+ ASSERT (Col [c].shared1.thickness == 1) ;
+ cp = &A [Col [c].start] ;
+ cp_end = cp + len ;
+ while (cp < cp_end)
+ {
+ r = *cp++ ;
+ ASSERT (ROW_IS_ALIVE (r)) ;
+ }
+ }
+ else
+ {
+ i = Col [c].shared2.order ;
+ cs = CMEMBER (c) ;
+ ASSERT (i >= cset_start [cs] && i < cset_start [cs+1]) ;
+ }
+ }
+
+ for (r = 0 ; r < n_row ; r++)
+ {
+ if (ROW_IS_ALIVE (r))
+ {
+ i = 0 ;
+ len = Row [r].length ;
+ deg = Row [r].shared1.degree ;
+ ASSERT (len > 0) ;
+ ASSERT (deg > 0) ;
+ rp = &A [Row [r].start] ;
+ rp_end = rp + len ;
+ while (rp < rp_end)
+ {
+ c = *rp++ ;
+ if (COL_IS_ALIVE (c))
+ {
+ i++ ;
+ }
+ }
+ ASSERT (i > 0) ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_deg_lists ====================================================== */
+/* ========================================================================== */
+
+/*
+ * Prints the contents of the degree lists. Counts the number of columns
+ * in the degree list and compares it to the total it should have. Also
+ * checks the row degrees.
+ */
+
+PRIVATE void debug_deg_lists
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int head [ ],
+ Int min_score,
+ Int should,
+ Int max_deg
+)
+
+{
+ /* === Local variables ================================================== */
+
+ Int deg ;
+ Int col ;
+ Int have ;
+ Int row ;
+
+ /* === Check the degree lists =========================================== */
+
+ if (n_col > 10000 && ccolamd_debug <= 0)
+ {
+ return ;
+ }
+ have = 0 ;
+ DEBUG4 (("Degree lists: "ID"\n", min_score)) ;
+ for (deg = 0 ; deg <= n_col ; deg++)
+ {
+ col = head [deg] ;
+ if (col == EMPTY)
+ {
+ continue ;
+ }
+ DEBUG4 (("%d:", deg)) ;
+ ASSERT (Col [col].shared3.prev == EMPTY) ;
+ while (col != EMPTY)
+ {
+ DEBUG4 ((" "ID"", col)) ;
+ have += Col [col].shared1.thickness ;
+ ASSERT (COL_IS_ALIVE (col)) ;
+ col = Col [col].shared4.degree_next ;
+ }
+ DEBUG4 (("\n")) ;
+ }
+ DEBUG4 (("should "ID" have "ID"\n", should, have)) ;
+ ASSERT (should == have) ;
+
+ /* === Check the row degrees ============================================ */
+
+ if (n_row > 10000 && ccolamd_debug <= 0)
+ {
+ return ;
+ }
+ for (row = 0 ; row < n_row ; row++)
+ {
+ if (ROW_IS_ALIVE (row))
+ {
+ ASSERT (Row [row].shared1.degree <= max_deg) ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_mark =========================================================== */
+/* ========================================================================== */
+
+/*
+ * Ensures that the tag_mark is less that the maximum and also ensures that
+ * each entry in the mark array is less than the tag mark.
+ */
+
+PRIVATE void debug_mark
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ CColamd_Row Row [ ],
+ Int tag_mark,
+ Int max_mark
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+
+ /* === Check the Row marks ============================================== */
+
+ ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
+ if (n_row > 10000 && ccolamd_debug <= 0)
+ {
+ return ;
+ }
+ for (r = 0 ; r < n_row ; r++)
+ {
+ ASSERT (Row [r].shared2.mark < tag_mark) ;
+ }
+}
+
+
+/* ========================================================================== */
+/* === debug_matrix ========================================================= */
+/* ========================================================================== */
+
+/* Prints out the contents of the columns and the rows. */
+
+PRIVATE void debug_matrix
+(
+ /* === Parameters ======================================================= */
+
+ Int n_row,
+ Int n_col,
+ CColamd_Row Row [ ],
+ CColamd_Col Col [ ],
+ Int A [ ]
+)
+{
+ /* === Local variables ================================================== */
+
+ Int r ;
+ Int c ;
+ Int *rp ;
+ Int *rp_end ;
+ Int *cp ;
+ Int *cp_end ;
+
+ /* === Dump the rows and columns of the matrix ========================== */
+
+ if (ccolamd_debug < 3)
+ {
+ return ;
+ }
+ DEBUG3 (("DUMP MATRIX:\n")) ;
+ for (r = 0 ; r < n_row ; r++)
+ {
+ DEBUG3 (("Row "ID" alive? "ID"\n", r, ROW_IS_ALIVE (r))) ;
+ if (ROW_IS_DEAD (r))
+ {
+ continue ;
+ }
+
+ DEBUG3 (("start "ID" length "ID" degree "ID"\nthickness "ID"\n",
+ Row [r].start, Row [r].length, Row [r].shared1.degree,
+ Row [r].thickness)) ;
+
+ rp = &A [Row [r].start] ;
+ rp_end = rp + Row [r].length ;
+ while (rp < rp_end)
+ {
+ c = *rp++ ;
+ DEBUG4 ((" "ID" col "ID"\n", COL_IS_ALIVE (c), c)) ;
+ }
+ }
+
+ for (c = 0 ; c < n_col ; c++)
+ {
+ DEBUG3 (("Col "ID" alive? "ID"\n", c, COL_IS_ALIVE (c))) ;
+ if (COL_IS_DEAD (c))
+ {
+ continue ;
+ }
+ DEBUG3 (("start "ID" length "ID" shared1 "ID" shared2 "ID"\n",
+ Col [c].start, Col [c].length,
+ Col [c].shared1.thickness, Col [c].shared2.score)) ;
+ cp = &A [Col [c].start] ;
+ cp_end = cp + Col [c].length ;
+ while (cp < cp_end)
+ {
+ r = *cp++ ;
+ DEBUG4 ((" "ID" row "ID"\n", ROW_IS_ALIVE (r), r)) ;
+ }
+ }
+}
+
+
+/* ========================================================================== */
+/* === dump_super =========================================================== */
+/* ========================================================================== */
+
+PRIVATE void dump_super
+(
+ Int super_c,
+ CColamd_Col Col [ ],
+ Int n_col
+)
+{
+ Int col, ncols ;
+
+ DEBUG1 ((" =[ ")) ;
+ ncols = 0 ;
+ for (col = super_c ; col != EMPTY ; col = Col [col].nextcol)
+ {
+ DEBUG1 ((" "ID, col)) ;
+ ASSERT (col >= 0 && col < n_col) ;
+ if (col != super_c)
+ {
+ ASSERT (COL_IS_DEAD (col)) ;
+ }
+ if (Col [col].nextcol == EMPTY)
+ {
+ ASSERT (col == Col [super_c].lastcol) ;
+ }
+ ncols++ ;
+ ASSERT (ncols <= Col [super_c].shared1.thickness) ;
+ }
+ ASSERT (ncols == Col [super_c].shared1.thickness) ;
+ DEBUG1 (("]\n")) ;
+}
+
+
+/* ========================================================================== */
+/* === ccolamd_get_debug ==================================================== */
+/* ========================================================================== */
+
+PRIVATE void ccolamd_get_debug
+(
+ char *method
+)
+{
+ FILE *debug_file ;
+ ccolamd_debug = 0 ; /* no debug printing */
+
+ /* Read debug info from the debug file. */
+ debug_file = fopen ("debug", "r") ;
+ if (debug_file)
+ {
+ (void) fscanf (debug_file, ""ID"", &ccolamd_debug) ;
+ (void) fclose (debug_file) ;
+ }
+
+ DEBUG0 ((":")) ;
+ DEBUG1 (("%s: debug version, D = "ID" (THIS WILL BE SLOW!)\n",
+ method, ccolamd_debug)) ;
+ DEBUG1 ((" Debug printing level: "ID"\n", ccolamd_debug)) ;
+}
+
+#endif
diff --git a/colamd/ccolamd.h b/colamd/ccolamd.h
new file mode 100644
index 000000000..11a098741
--- /dev/null
+++ b/colamd/ccolamd.h
@@ -0,0 +1,365 @@
+/* ========================================================================== */
+/* === CCOLAMD/ccolamd.h ==================================================== */
+/* ========================================================================== */
+
+/* ----------------------------------------------------------------------------
+ * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis,
+ * Sivasankaran Rajamanickam, and Stefan Larimore
+ * See License.txt for the Version 2.1 of the GNU Lesser General Public License
+ * http://www.cise.ufl.edu/research/sparse
+ * -------------------------------------------------------------------------- */
+
+/*
+ * You must include this file (ccolamd.h) in any routine that uses ccolamd,
+ * csymamd, or the related macros and definitions.
+ */
+
+#ifndef CCOLAMD_H
+#define CCOLAMD_H
+
+/* make it easy for C++ programs to include CCOLAMD */
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* for size_t definition: */
+#include
+
+/* ========================================================================== */
+/* === CCOLAMD version ====================================================== */
+/* ========================================================================== */
+
+/* All versions of CCOLAMD will include the following definitions.
+ * As an example, to test if the version you are using is 1.3 or later:
+ *
+ * if (CCOLAMD_VERSION >= CCOLAMD_VERSION_CODE (1,3)) ...
+ *
+ * This also works during compile-time:
+ *
+ * #if CCOLAMD_VERSION >= CCOLAMD_VERSION_CODE (1,3)
+ * printf ("This is version 1.3 or later\n") ;
+ * #else
+ * printf ("This is an early version\n") ;
+ * #endif
+ */
+
+#define CCOLAMD_DATE "Nov 30, 2009"
+#define CCOLAMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
+#define CCOLAMD_MAIN_VERSION 2
+#define CCOLAMD_SUB_VERSION 7
+#define CCOLAMD_SUBSUB_VERSION 2
+#define CCOLAMD_VERSION \
+ CCOLAMD_VERSION_CODE(CCOLAMD_MAIN_VERSION,CCOLAMD_SUB_VERSION)
+
+/* ========================================================================== */
+/* === Knob and statistics definitions ====================================== */
+/* ========================================================================== */
+
+/* size of the knobs [ ] array. Only knobs [0..3] are currently used. */
+#define CCOLAMD_KNOBS 20
+
+/* number of output statistics. Only stats [0..10] are currently used. */
+#define CCOLAMD_STATS 20
+
+/* knobs [0] and stats [0]: dense row knob and output statistic. */
+#define CCOLAMD_DENSE_ROW 0
+
+/* knobs [1] and stats [1]: dense column knob and output statistic. */
+#define CCOLAMD_DENSE_COL 1
+
+/* knobs [2]: aggressive absorption option */
+#define CCOLAMD_AGGRESSIVE 2
+
+/* knobs [3]: LU or Cholesky factorization option */
+#define CCOLAMD_LU 3
+
+/* stats [2]: memory defragmentation count output statistic */
+#define CCOLAMD_DEFRAG_COUNT 2
+
+/* stats [3]: ccolamd status: zero OK, > 0 warning or notice, < 0 error */
+#define CCOLAMD_STATUS 3
+
+/* stats [4..6]: error info, or info on jumbled columns */
+#define CCOLAMD_INFO1 4
+#define CCOLAMD_INFO2 5
+#define CCOLAMD_INFO3 6
+
+/* stats [7]: number of originally empty rows */
+#define CCOLAMD_EMPTY_ROW 7
+/* stats [8]: number of originally empty cols */
+#define CCOLAMD_EMPTY_COL 8
+/* stats [9]: number of rows with entries only in dense cols */
+#define CCOLAMD_NEWLY_EMPTY_ROW 9
+/* stats [10]: number of cols with entries only in dense rows */
+#define CCOLAMD_NEWLY_EMPTY_COL 10
+
+/* error codes returned in stats [3]: */
+#define CCOLAMD_OK (0)
+#define CCOLAMD_OK_BUT_JUMBLED (1)
+#define CCOLAMD_ERROR_A_not_present (-1)
+#define CCOLAMD_ERROR_p_not_present (-2)
+#define CCOLAMD_ERROR_nrow_negative (-3)
+#define CCOLAMD_ERROR_ncol_negative (-4)
+#define CCOLAMD_ERROR_nnz_negative (-5)
+#define CCOLAMD_ERROR_p0_nonzero (-6)
+#define CCOLAMD_ERROR_A_too_small (-7)
+#define CCOLAMD_ERROR_col_length_negative (-8)
+#define CCOLAMD_ERROR_row_index_out_of_bounds (-9)
+#define CCOLAMD_ERROR_out_of_memory (-10)
+#define CCOLAMD_ERROR_invalid_cmember (-11)
+#define CCOLAMD_ERROR_internal_error (-999)
+
+/* ========================================================================== */
+/* === Prototypes of user-callable routines ================================= */
+/* ========================================================================== */
+
+/* define UF_long */
+#include "UFconfig.h"
+
+size_t ccolamd_recommended /* returns recommended value of Alen, */
+ /* or 0 if input arguments are erroneous */
+(
+ int nnz, /* nonzeros in A */
+ int n_row, /* number of rows in A */
+ int n_col /* number of columns in A */
+) ;
+
+size_t ccolamd_l_recommended /* returns recommended value of Alen, */
+ /* or 0 if input arguments are erroneous */
+(
+ UF_long nnz, /* nonzeros in A */
+ UF_long n_row, /* number of rows in A */
+ UF_long n_col /* number of columns in A */
+) ;
+
+void ccolamd_set_defaults /* sets default parameters */
+( /* knobs argument is modified on output */
+ double knobs [CCOLAMD_KNOBS] /* parameter settings for ccolamd */
+) ;
+
+void ccolamd_l_set_defaults /* sets default parameters */
+( /* knobs argument is modified on output */
+ double knobs [CCOLAMD_KNOBS] /* parameter settings for ccolamd */
+) ;
+
+int ccolamd /* returns (1) if successful, (0) otherwise*/
+( /* A and p arguments are modified on output */
+ int n_row, /* number of rows in A */
+ int n_col, /* number of columns in A */
+ int Alen, /* size of the array A */
+ int A [ ], /* row indices of A, of size Alen */
+ int p [ ], /* column pointers of A, of size n_col+1 */
+ double knobs [CCOLAMD_KNOBS],/* parameter settings for ccolamd */
+ int stats [CCOLAMD_STATS], /* ccolamd output statistics and error codes */
+ int cmember [ ] /* Constraint set of A, of size n_col */
+) ;
+
+UF_long ccolamd_l /* same as ccolamd, but with UF_long integers */
+(
+ UF_long n_row,
+ UF_long n_col,
+ UF_long Alen,
+ UF_long A [ ],
+ UF_long p [ ],
+ double knobs [CCOLAMD_KNOBS],
+ UF_long stats [CCOLAMD_STATS],
+ UF_long cmember [ ]
+) ;
+
+int csymamd /* return (1) if OK, (0) otherwise */
+(
+ int n, /* number of rows and columns of A */
+ int A [ ], /* row indices of A */
+ int p [ ], /* column pointers of A */
+ int perm [ ], /* output permutation, size n_col+1 */
+ double knobs [CCOLAMD_KNOBS],/* parameters (uses defaults if NULL) */
+ int stats [CCOLAMD_STATS], /* output statistics and error codes */
+ void * (*allocate) (size_t, size_t), /* pointer to calloc (ANSI C) or */
+ /* mxCalloc (for MATLAB mexFunction) */
+ void (*release) (void *), /* pointer to free (ANSI C) or */
+ /* mxFree (for MATLAB mexFunction) */
+ int cmember [ ], /* Constraint set of A */
+ int stype /* 0: use both parts, >0: upper, <0: lower */
+) ;
+
+UF_long csymamd_l /* same as csymamd, but with UF_long integers */
+(
+ UF_long n,
+ UF_long A [ ],
+ UF_long p [ ],
+ UF_long perm [ ],
+ double knobs [CCOLAMD_KNOBS],
+ UF_long stats [CCOLAMD_STATS],
+ void * (*allocate) (size_t, size_t),
+ void (*release) (void *),
+ UF_long cmember [ ],
+ UF_long stype
+) ;
+
+void ccolamd_report
+(
+ int stats [CCOLAMD_STATS]
+) ;
+
+void ccolamd_l_report
+(
+ UF_long stats [CCOLAMD_STATS]
+) ;
+
+void csymamd_report
+(
+ int stats [CCOLAMD_STATS]
+) ;
+
+void csymamd_l_report
+(
+ UF_long stats [CCOLAMD_STATS]
+) ;
+
+
+/* ========================================================================== */
+/* === Prototypes of "expert" routines ====================================== */
+/* ========================================================================== */
+
+/* These routines are meant to be used internally, or in a future version of
+ * UMFPACK. They appear here so that UMFPACK can use them, but they should not
+ * be called directly by the user.
+ */
+
+int ccolamd2
+( /* A and p arguments are modified on output */
+ int n_row, /* number of rows in A */
+ int n_col, /* number of columns in A */
+ int Alen, /* size of the array A */
+ int A [ ], /* row indices of A, of size Alen */
+ int p [ ], /* column pointers of A, of size n_col+1 */
+ double knobs [CCOLAMD_KNOBS],/* parameter settings for ccolamd */
+ int stats [CCOLAMD_STATS], /* ccolamd output statistics and error codes */
+ /* each Front_ array is of size n_col+1: */
+ int Front_npivcol [ ], /* # pivot cols in each front */
+ int Front_nrows [ ], /* # of rows in each front (incl. pivot rows) */
+ int Front_ncols [ ], /* # of cols in each front (incl. pivot cols) */
+ int Front_parent [ ], /* parent of each front */
+ int Front_cols [ ], /* link list of pivot columns for each front */
+ int *p_nfr, /* total number of frontal matrices */
+ int InFront [ ], /* InFront [row] = f if row in front f */
+ int cmember [ ] /* Constraint set of A */
+) ;
+
+UF_long ccolamd2_l /* same as ccolamd2, but with UF_long integers */
+(
+ UF_long n_row,
+ UF_long n_col,
+ UF_long Alen,
+ UF_long A [ ],
+ UF_long p [ ],
+ double knobs [CCOLAMD_KNOBS],
+ UF_long stats [CCOLAMD_STATS],
+ UF_long Front_npivcol [ ],
+ UF_long Front_nrows [ ],
+ UF_long Front_ncols [ ],
+ UF_long Front_parent [ ],
+ UF_long Front_cols [ ],
+ UF_long *p_nfr,
+ UF_long InFront [ ],
+ UF_long cmember [ ]
+) ;
+
+void ccolamd_apply_order
+(
+ int Front [ ],
+ const int Order [ ],
+ int Temp [ ],
+ int nn,
+ int nfr
+) ;
+
+void ccolamd_l_apply_order
+(
+ UF_long Front [ ],
+ const UF_long Order [ ],
+ UF_long Temp [ ],
+ UF_long nn,
+ UF_long nfr
+) ;
+
+
+void ccolamd_fsize
+(
+ int nn,
+ int MaxFsize [ ],
+ int Fnrows [ ],
+ int Fncols [ ],
+ int Parent [ ],
+ int Npiv [ ]
+) ;
+
+void ccolamd_l_fsize
+(
+ UF_long nn,
+ UF_long MaxFsize [ ],
+ UF_long Fnrows [ ],
+ UF_long Fncols [ ],
+ UF_long Parent [ ],
+ UF_long Npiv [ ]
+) ;
+
+void ccolamd_postorder
+(
+ int nn,
+ int Parent [ ],
+ int Npiv [ ],
+ int Fsize [ ],
+ int Order [ ],
+ int Child [ ],
+ int Sibling [ ],
+ int Stack [ ],
+ int Front_cols [ ],
+ int cmember [ ]
+) ;
+
+void ccolamd_l_postorder
+(
+ UF_long nn,
+ UF_long Parent [ ],
+ UF_long Npiv [ ],
+ UF_long Fsize [ ],
+ UF_long Order [ ],
+ UF_long Child [ ],
+ UF_long Sibling [ ],
+ UF_long Stack [ ],
+ UF_long Front_cols [ ],
+ UF_long cmember [ ]
+) ;
+
+int ccolamd_post_tree
+(
+ int root,
+ int k,
+ int Child [ ],
+ const int Sibling [ ],
+ int Order [ ],
+ int Stack [ ]
+) ;
+
+UF_long ccolamd_l_post_tree
+(
+ UF_long root,
+ UF_long k,
+ UF_long Child [ ],
+ const UF_long Sibling [ ],
+ UF_long Order [ ],
+ UF_long Stack [ ]
+) ;
+
+#ifndef EXTERN
+#define EXTERN extern
+#endif
+
+EXTERN int (*ccolamd_printf) (const char *, ...) ;
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
diff --git a/colamd/ccolamd_global.c b/colamd/ccolamd_global.c
new file mode 100644
index 000000000..d43985126
--- /dev/null
+++ b/colamd/ccolamd_global.c
@@ -0,0 +1,25 @@
+/* ========================================================================== */
+/* === ccolamd_global.c ===================================================== */
+/* ========================================================================== */
+
+/* ----------------------------------------------------------------------------
+ * CCOLAMD Copyright (C), Univ. of Florida. Authors: Timothy A. Davis,
+ * Sivasankaran Rajamanickam, and Stefan Larimore
+ * See License.txt for the Version 2.1 of the GNU Lesser General Public License
+ * http://www.cise.ufl.edu/research/sparse
+ * -------------------------------------------------------------------------- */
+
+/* Global variables for CCOLAMD */
+
+#ifndef NPRINT
+#ifdef MATLAB_MEX_FILE
+#include "mex.h"
+int (*ccolamd_printf) (const char *, ...) = mexPrintf ;
+#else
+#include
+int (*ccolamd_printf) (const char *, ...) = printf ;
+#endif
+#else
+int (*ccolamd_printf) (const char *, ...) = ((void *) 0) ;
+#endif
+
diff --git a/cpp/FactorGraph-inl.h b/cpp/FactorGraph-inl.h
index b99391b5c..db802dd87 100644
--- a/cpp/FactorGraph-inl.h
+++ b/cpp/FactorGraph-inl.h
@@ -15,6 +15,10 @@
#include
#include
+extern "C" {
+#include
+}
+
#include
#include
#include
diff --git a/cpp/GaussianFactorGraph.cpp b/cpp/GaussianFactorGraph.cpp
index 592426510..60261b440 100644
--- a/cpp/GaussianFactorGraph.cpp
+++ b/cpp/GaussianFactorGraph.cpp
@@ -11,8 +11,6 @@
#include
#include // for operator += in Ordering
-#include
-
#include "GaussianFactorGraph.h"
#include "GaussianFactorSet.h"
#include "FactorGraph-inl.h"