initials -> initialValues
parent
4871202664
commit
3800e1f101
|
@ -412,9 +412,9 @@ bool QPSolver::iterateInPlace(GaussianFactorGraph& workingGraph,
|
|||
|
||||
//******************************************************************************
|
||||
pair<VectorValues, VectorValues> QPSolver::optimize(
|
||||
const VectorValues& initials) const {
|
||||
const VectorValues& initialValues) const {
|
||||
GaussianFactorGraph workingGraph = graph_.clone();
|
||||
VectorValues currentSolution = initials;
|
||||
VectorValues currentSolution = initialValues;
|
||||
VectorValues lambdas;
|
||||
bool converged = false;
|
||||
while (!converged) {
|
||||
|
@ -432,15 +432,15 @@ pair<VectorValues, Key> QPSolver::initialValuesLP() const {
|
|||
}
|
||||
firstSlackKey += 1;
|
||||
|
||||
VectorValues initials;
|
||||
VectorValues initialValues;
|
||||
// Create zero values for constrained vars
|
||||
BOOST_FOREACH(size_t iFactor, constraintIndices_) {
|
||||
JacobianFactor::shared_ptr jacobian = toJacobian(graph_.at(iFactor));
|
||||
KeyVector keys = jacobian->keys();
|
||||
BOOST_FOREACH(Key key, keys) {
|
||||
if (!initials.exists(key)) {
|
||||
if (!initialValues.exists(key)) {
|
||||
size_t dim = jacobian->getDim(jacobian->find(key));
|
||||
initials.insert(key, zero(dim));
|
||||
initialValues.insert(key, zero(dim));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -459,10 +459,10 @@ pair<VectorValues, Key> QPSolver::initialValuesLP() const {
|
|||
errorAtZero[i] = fabs(errorAtZero[i]);
|
||||
} // if it has >0 sigma, i.e. normal Gaussian noise, initialize it at 0
|
||||
}
|
||||
initials.insert(slackKey, slackInit);
|
||||
initialValues.insert(slackKey, slackInit);
|
||||
slackKey++;
|
||||
}
|
||||
return make_pair(initials, firstSlackKey);
|
||||
return make_pair(initialValues, firstSlackKey);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
@ -518,9 +518,9 @@ pair<GaussianFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP(
|
|||
pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
||||
static const bool debug = false;
|
||||
// Initial values with slack variables for the LP subproblem, Nocedal06book, pg.473
|
||||
VectorValues initials;
|
||||
VectorValues initialValues;
|
||||
size_t firstSlackKey;
|
||||
boost::tie(initials, firstSlackKey) = initialValuesLP();
|
||||
boost::tie(initialValues, firstSlackKey) = initialValuesLP();
|
||||
|
||||
// Coefficients for the LP subproblem objective function, min \sum_i z_i
|
||||
VectorValues objectiveLP = objectiveCoeffsLP(firstSlackKey);
|
||||
|
@ -535,7 +535,7 @@ pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
|||
VectorValues solution = lpSolver.solve();
|
||||
|
||||
if (debug)
|
||||
initials.print("Initials LP: ");
|
||||
initialValues.print("Initials LP: ");
|
||||
if (debug)
|
||||
objectiveLP.print("Objective LP: ");
|
||||
if (debug)
|
||||
|
@ -567,12 +567,12 @@ pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
|||
//******************************************************************************
|
||||
pair<VectorValues, VectorValues> QPSolver::optimize() const {
|
||||
bool isFeasible;
|
||||
VectorValues initials;
|
||||
boost::tie(isFeasible, initials) = findFeasibleInitialValues();
|
||||
VectorValues initialValues;
|
||||
boost::tie(isFeasible, initialValues) = findFeasibleInitialValues();
|
||||
if (!isFeasible) {
|
||||
throw runtime_error("LP subproblem is infeasible!");
|
||||
}
|
||||
return optimize(initials);
|
||||
return optimize(initialValues);
|
||||
}
|
||||
|
||||
} /* namespace gtsam */
|
||||
|
|
|
@ -150,7 +150,7 @@ public:
|
|||
* @return a pair of <primal, dual> solutions
|
||||
*/
|
||||
std::pair<VectorValues, VectorValues> optimize(
|
||||
const VectorValues& initials) const;
|
||||
const VectorValues& initialValues) const;
|
||||
|
||||
/** Optimize without an initial value.
|
||||
* This version of optimize will try to find a feasible initial value by solving
|
||||
|
|
|
@ -124,13 +124,13 @@ TEST(QPSolver, dual) {
|
|||
GaussianFactorGraph graph = createEqualityConstrainedTest();
|
||||
|
||||
// Initials values
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), ones(1));
|
||||
initials.insert(X(2), ones(1));
|
||||
VectorValues initialValues;
|
||||
initialValues.insert(X(1), ones(1));
|
||||
initialValues.insert(X(2), ones(1));
|
||||
|
||||
QPSolver solver(graph);
|
||||
|
||||
GaussianFactorGraph dualGraph = solver.buildDualGraph(graph, initials);
|
||||
GaussianFactorGraph dualGraph = solver.buildDualGraph(graph, initialValues);
|
||||
VectorValues dual = dualGraph.optimize();
|
||||
VectorValues expectedDual;
|
||||
expectedDual.insert(1, (Vector(1) << 2.0));
|
||||
|
@ -172,11 +172,11 @@ TEST(QPSolver, iterate) {
|
|||
TEST(QPSolver, optimizeForst10book_pg171Ex5) {
|
||||
GaussianFactorGraph graph = createTestCase();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), zero(1));
|
||||
initials.insert(X(2), zero(1));
|
||||
VectorValues initialValues;
|
||||
initialValues.insert(X(1), zero(1));
|
||||
initialValues.insert(X(2), zero(1));
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.5));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 0.5));
|
||||
|
@ -213,11 +213,11 @@ GaussianFactorGraph createTestMatlabQPEx() {
|
|||
TEST(QPSolver, optimizeMatlabEx) {
|
||||
GaussianFactorGraph graph = createTestMatlabQPEx();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), zero(1));
|
||||
initials.insert(X(2), zero(1));
|
||||
VectorValues initialValues;
|
||||
initialValues.insert(X(1), zero(1));
|
||||
initialValues.insert(X(2), zero(1));
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1) << 2.0 / 3.0));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 4.0 / 3.0));
|
||||
|
@ -253,12 +253,12 @@ GaussianFactorGraph createTestNocedal06bookEx16_4() {
|
|||
TEST(QPSolver, optimizeNocedal06bookEx16_4) {
|
||||
GaussianFactorGraph graph = createTestNocedal06bookEx16_4();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), (Vector(1) << 2.0));
|
||||
initials.insert(X(2), zero(1));
|
||||
VectorValues initialValues;
|
||||
initialValues.insert(X(1), (Vector(1) << 2.0));
|
||||
initialValues.insert(X(2), zero(1));
|
||||
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 1.7));
|
||||
|
@ -356,10 +356,10 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_findInitialPoint) {
|
|||
EXPECT(assert_equal(expectedConstraints, *constraints));
|
||||
|
||||
bool isFeasible;
|
||||
VectorValues initials;
|
||||
boost::tie(isFeasible, initials) = solver.findFeasibleInitialValues();
|
||||
EXPECT(assert_equal(1.0*ones(1), initials.at(X(1))));
|
||||
EXPECT(assert_equal(0.0*ones(1), initials.at(X(2))));
|
||||
VectorValues initialValues;
|
||||
boost::tie(isFeasible, initialValues) = solver.findFeasibleInitialValues();
|
||||
EXPECT(assert_equal(1.0*ones(1), initialValues.at(X(1))));
|
||||
EXPECT(assert_equal(0.0*ones(1), initialValues.at(X(2))));
|
||||
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize();
|
||||
|
@ -370,16 +370,16 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_findInitialPoint) {
|
|||
TEST(QPSolver, optimizeNocedal06bookEx16_4_2) {
|
||||
GaussianFactorGraph graph = createTestNocedal06bookEx16_4();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), (Vector(1) << 0.0));
|
||||
initials.insert(X(2), (Vector(1) << 100.0));
|
||||
VectorValues initialValues;
|
||||
initialValues.insert(X(1), (Vector(1) << 0.0));
|
||||
initialValues.insert(X(2), (Vector(1) << 100.0));
|
||||
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 1.7));
|
||||
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initialValues);
|
||||
// THIS should fail because of the bad infeasible initial point!!
|
||||
// CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
||||
|
||||
|
|
Loading…
Reference in New Issue