plot twist: templating new factor on CAMERA
							parent
							
								
									0a8ebdf8cd
								
							
						
					
					
						commit
						37b001307e
					
				| 
						 | 
				
			
			@ -37,9 +37,11 @@ namespace gtsam {
 | 
			
		|||
 * from which the pixel observation pose can be interpolated.
 | 
			
		||||
 * @addtogroup SLAM
 | 
			
		||||
 */
 | 
			
		||||
template<class CALIBRATION>
 | 
			
		||||
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
 | 
			
		||||
PinholePose<CALIBRATION> > {
 | 
			
		||||
template<class CAMERA>
 | 
			
		||||
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAMERA> {
 | 
			
		||||
 | 
			
		||||
 public:
 | 
			
		||||
  typedef typename CAMERA::CalibrationType CALIBRATION;
 | 
			
		||||
 | 
			
		||||
 protected:
 | 
			
		||||
  /// shared pointer to calibration object (one for each observation)
 | 
			
		||||
| 
						 | 
				
			
			@ -213,8 +215,8 @@ PinholePose<CALIBRATION> > {
 | 
			
		|||
 | 
			
		||||
  /// equals
 | 
			
		||||
  bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
 | 
			
		||||
    const SmartProjectionPoseFactorRollingShutter<CALIBRATION>* e =
 | 
			
		||||
        dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CALIBRATION>*>(&p);
 | 
			
		||||
    const SmartProjectionPoseFactorRollingShutter<CAMERA>* e =
 | 
			
		||||
        dynamic_cast<const SmartProjectionPoseFactorRollingShutter<CAMERA>*>(&p);
 | 
			
		||||
 | 
			
		||||
    double keyPairsEqual = true;
 | 
			
		||||
    if(this->world_P_body_key_pairs_.size() == e->world_P_body_key_pairs().size()){
 | 
			
		||||
| 
						 | 
				
			
			@ -430,9 +432,9 @@ PinholePose<CALIBRATION> > {
 | 
			
		|||
// end of class declaration
 | 
			
		||||
 | 
			
		||||
/// traits
 | 
			
		||||
template<class CALIBRATION>
 | 
			
		||||
struct traits<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > :
 | 
			
		||||
public Testable<SmartProjectionPoseFactorRollingShutter<CALIBRATION> > {
 | 
			
		||||
template<class CAMERA>
 | 
			
		||||
struct traits<SmartProjectionPoseFactorRollingShutter<CAMERA> > :
 | 
			
		||||
public Testable<SmartProjectionPoseFactorRollingShutter<CAMERA> > {
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}  // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -73,7 +73,7 @@ Camera cam3(interp_pose3, sharedK);
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
LevenbergMarquardtParams lmParams;
 | 
			
		||||
typedef SmartProjectionPoseFactorRollingShutter<Cal3_S2> SmartFactorRS;
 | 
			
		||||
typedef SmartProjectionPoseFactorRollingShutter< PinholePose<Cal3_S2> > SmartFactorRS;
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
TEST( SmartProjectionPoseFactorRollingShutter, Constructor) {
 | 
			
		||||
| 
						 | 
				
			
			@ -770,6 +770,213 @@ TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRolli
 | 
			
		|||
  EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* *************************************************************************/
 | 
			
		||||
TEST( SmartProjectionPoseFactorRollingShutter, hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
 | 
			
		||||
  // in this test we make sure the fact works even if we have multiple pixel measurements of the same landmark
 | 
			
		||||
  // at a single pose, a setup that occurs in multi-camera systems
 | 
			
		||||
 | 
			
		||||
  using namespace vanillaPoseRS;
 | 
			
		||||
  Point2Vector measurements_lmk1;
 | 
			
		||||
 | 
			
		||||
  // Project three landmarks into three cameras
 | 
			
		||||
  projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | 
			
		||||
 | 
			
		||||
  // create redundant measurements:
 | 
			
		||||
  Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
 | 
			
		||||
  measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
 | 
			
		||||
 | 
			
		||||
  // create inputs
 | 
			
		||||
  std::vector<std::pair<Key, Key>> key_pairs;
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x1, x2));
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x2, x3));
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x3, x1));
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x1, x2));
 | 
			
		||||
 | 
			
		||||
  std::vector<double> interp_factors;
 | 
			
		||||
  interp_factors.push_back(interp_factor1);
 | 
			
		||||
  interp_factors.push_back(interp_factor2);
 | 
			
		||||
  interp_factors.push_back(interp_factor3);
 | 
			
		||||
  interp_factors.push_back(interp_factor1);
 | 
			
		||||
 | 
			
		||||
  SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
 | 
			
		||||
  smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors, sharedK);
 | 
			
		||||
 | 
			
		||||
  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | 
			
		||||
                           Point3(0.1, 0.1, 0.1));  // smaller noise
 | 
			
		||||
  Values values;
 | 
			
		||||
  values.insert(x1, level_pose);
 | 
			
		||||
  values.insert(x2, pose_right);
 | 
			
		||||
  // initialize third pose with some noise to get a nontrivial linearization point
 | 
			
		||||
  values.insert(x3, pose_above * noise_pose);
 | 
			
		||||
  EXPECT(  // check that the pose is actually noisy
 | 
			
		||||
      assert_equal( Pose3( Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
 | 
			
		||||
 | 
			
		||||
  // linearization point for the poses
 | 
			
		||||
  Pose3 pose1 = level_pose;
 | 
			
		||||
  Pose3 pose2 = pose_right;
 | 
			
		||||
  Pose3 pose3 = pose_above * noise_pose;
 | 
			
		||||
 | 
			
		||||
  // ==== check Hessian of smartFactor1 =====
 | 
			
		||||
  // -- compute actual Hessian
 | 
			
		||||
  boost::shared_ptr<GaussianFactor> linearfactor1 = smartFactor1->linearize(
 | 
			
		||||
      values);
 | 
			
		||||
  Matrix actualHessian = linearfactor1->information();
 | 
			
		||||
 | 
			
		||||
  // -- compute expected Hessian from manual Schur complement from Jacobians
 | 
			
		||||
  // linearization point for the 3D point
 | 
			
		||||
  smartFactor1->triangulateSafe(smartFactor1->cameras(values));
 | 
			
		||||
  TriangulationResult point = smartFactor1->point();
 | 
			
		||||
  EXPECT(point.valid());  // check triangulated point is valid
 | 
			
		||||
 | 
			
		||||
  // Use standard ProjectionFactorRollingShutter factor to calculate the Jacobians
 | 
			
		||||
  Matrix F = Matrix::Zero(2 * 4, 6 * 3);
 | 
			
		||||
  Matrix E = Matrix::Zero(2 * 4, 3);
 | 
			
		||||
  Vector b = Vector::Zero(8);
 | 
			
		||||
 | 
			
		||||
  // create projection factors rolling shutter
 | 
			
		||||
  ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0], interp_factor1,
 | 
			
		||||
                                          model, x1, x2, l0, sharedK);
 | 
			
		||||
  Matrix H1Actual, H2Actual, H3Actual;
 | 
			
		||||
  // note: b is minus the reprojection error, cf the smart factor jacobian computation
 | 
			
		||||
  b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual, H2Actual, H3Actual);
 | 
			
		||||
  F.block<2, 6>(0, 0) = H1Actual;
 | 
			
		||||
  F.block<2, 6>(0, 6) = H2Actual;
 | 
			
		||||
  E.block<2, 3>(0, 0) = H3Actual;
 | 
			
		||||
 | 
			
		||||
  ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1], interp_factor2,
 | 
			
		||||
                                          model, x2, x3, l0, sharedK);
 | 
			
		||||
  b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual, H2Actual, H3Actual);
 | 
			
		||||
  F.block<2, 6>(2, 6) = H1Actual;
 | 
			
		||||
  F.block<2, 6>(2, 12) = H2Actual;
 | 
			
		||||
  E.block<2, 3>(2, 0) = H3Actual;
 | 
			
		||||
 | 
			
		||||
  ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2], interp_factor3,
 | 
			
		||||
                                          model, x3, x1, l0, sharedK);
 | 
			
		||||
  b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual, H2Actual, H3Actual);
 | 
			
		||||
  F.block<2, 6>(4, 12) = H1Actual;
 | 
			
		||||
  F.block<2, 6>(4, 0) = H2Actual;
 | 
			
		||||
  E.block<2, 3>(4, 0) = H3Actual;
 | 
			
		||||
 | 
			
		||||
  ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3], interp_factor1,
 | 
			
		||||
                                          model, x1, x2, l0, sharedK);
 | 
			
		||||
  b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual, H2Actual, H3Actual);
 | 
			
		||||
  F.block<2, 6>(6, 0) = H1Actual;
 | 
			
		||||
  F.block<2, 6>(6, 6) = H2Actual;
 | 
			
		||||
  E.block<2, 3>(6, 0) = H3Actual;
 | 
			
		||||
 | 
			
		||||
  // whiten
 | 
			
		||||
  F = (1/sigma) * F;
 | 
			
		||||
  E = (1/sigma) * E;
 | 
			
		||||
  b = (1/sigma) * b;
 | 
			
		||||
  //* G = F' * F - F' * E * P * E' * F
 | 
			
		||||
  Matrix P = (E.transpose() * E).inverse();
 | 
			
		||||
  Matrix expectedHessian = F.transpose() * F
 | 
			
		||||
      - (F.transpose() * E * P * E.transpose() * F);
 | 
			
		||||
  EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
 | 
			
		||||
 | 
			
		||||
  // ==== check Information vector of smartFactor1 =====
 | 
			
		||||
  GaussianFactorGraph gfg;
 | 
			
		||||
  gfg.add(linearfactor1);
 | 
			
		||||
  Matrix actualHessian_v2 = gfg.hessian().first;
 | 
			
		||||
  EXPECT(assert_equal(actualHessian_v2, actualHessian, 1e-6)); // sanity check on hessian
 | 
			
		||||
 | 
			
		||||
  // -- compute actual information vector
 | 
			
		||||
  Vector actualInfoVector = gfg.hessian().second;
 | 
			
		||||
 | 
			
		||||
  // -- compute expected information vector from manual Schur complement from Jacobians
 | 
			
		||||
  //* g = F' * (b - E * P * E' * b)
 | 
			
		||||
  Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
 | 
			
		||||
  EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
 | 
			
		||||
 | 
			
		||||
  // ==== check error of smartFactor1 (again) =====
 | 
			
		||||
  NonlinearFactorGraph nfg_projFactorsRS;
 | 
			
		||||
  nfg_projFactorsRS.add(factor11);
 | 
			
		||||
  nfg_projFactorsRS.add(factor12);
 | 
			
		||||
  nfg_projFactorsRS.add(factor13);
 | 
			
		||||
  nfg_projFactorsRS.add(factor14);
 | 
			
		||||
  values.insert(l0, *point);
 | 
			
		||||
 | 
			
		||||
  double actualError = smartFactor1->error(values);
 | 
			
		||||
  double expectedError = nfg_projFactorsRS.error(values);
 | 
			
		||||
  EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* *************************************************************************/
 | 
			
		||||
TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_measurementsFromSamePose ) {
 | 
			
		||||
 | 
			
		||||
  using namespace vanillaPoseRS;
 | 
			
		||||
  Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | 
			
		||||
 | 
			
		||||
  // Project three landmarks into three cameras
 | 
			
		||||
  projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | 
			
		||||
  projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | 
			
		||||
  projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | 
			
		||||
 | 
			
		||||
  // create inputs
 | 
			
		||||
  std::vector<std::pair<Key,Key>> key_pairs;
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x1,x2));
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x2,x3));
 | 
			
		||||
  key_pairs.push_back(std::make_pair(x3,x1));
 | 
			
		||||
 | 
			
		||||
  std::vector<double> interp_factors;
 | 
			
		||||
  interp_factors.push_back(interp_factor1);
 | 
			
		||||
  interp_factors.push_back(interp_factor2);
 | 
			
		||||
  interp_factors.push_back(interp_factor3);
 | 
			
		||||
 | 
			
		||||
  // For first factor, we create redundant measurement (taken by the same keys as factor 1, to
 | 
			
		||||
  // make sure the redundancy in the keys does not create problems)
 | 
			
		||||
  Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
 | 
			
		||||
  measurements_lmk1_redundant.push_back(measurements_lmk1.at(0)); // we readd the first measurement
 | 
			
		||||
  std::vector<std::pair<Key,Key>> key_pairs_redundant = key_pairs;
 | 
			
		||||
  key_pairs_redundant.push_back(key_pairs.at(0)); // we readd the first pair of keys
 | 
			
		||||
  std::vector<double> interp_factors_redundant = interp_factors;
 | 
			
		||||
  interp_factors_redundant.push_back(interp_factors.at(0));// we readd the first interp factor
 | 
			
		||||
 | 
			
		||||
  SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
 | 
			
		||||
  smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant, interp_factors_redundant, sharedK);
 | 
			
		||||
 | 
			
		||||
  SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
 | 
			
		||||
  smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
 | 
			
		||||
 | 
			
		||||
  SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
 | 
			
		||||
  smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
 | 
			
		||||
 | 
			
		||||
  const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | 
			
		||||
 | 
			
		||||
  NonlinearFactorGraph graph;
 | 
			
		||||
  graph.push_back(smartFactor1);
 | 
			
		||||
  graph.push_back(smartFactor2);
 | 
			
		||||
  graph.push_back(smartFactor3);
 | 
			
		||||
  graph.addPrior(x1, level_pose, noisePrior);
 | 
			
		||||
  graph.addPrior(x2, pose_right, noisePrior);
 | 
			
		||||
 | 
			
		||||
  Values groundTruth;
 | 
			
		||||
  groundTruth.insert(x1, level_pose);
 | 
			
		||||
  groundTruth.insert(x2, pose_right);
 | 
			
		||||
  groundTruth.insert(x3, pose_above);
 | 
			
		||||
  DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
 | 
			
		||||
 | 
			
		||||
  //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | 
			
		||||
  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | 
			
		||||
                           Point3(0.1, 0.1, 0.1)); // smaller noise
 | 
			
		||||
  Values values;
 | 
			
		||||
  values.insert(x1, level_pose);
 | 
			
		||||
  values.insert(x2, pose_right);
 | 
			
		||||
  // initialize third pose with some noise, we expect it to move back to original pose_above
 | 
			
		||||
  values.insert(x3, pose_above * noise_pose);
 | 
			
		||||
  EXPECT( // check that the pose is actually noisy
 | 
			
		||||
      assert_equal(
 | 
			
		||||
          Pose3(
 | 
			
		||||
              Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
 | 
			
		||||
                   -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
 | 
			
		||||
                   Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
 | 
			
		||||
 | 
			
		||||
  Values result;
 | 
			
		||||
  LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | 
			
		||||
  result = optimizer.optimize();
 | 
			
		||||
  EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifndef DISABLE_TIMING
 | 
			
		||||
#include <gtsam/base/timing.h>
 | 
			
		||||
// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue