Fixed incorrect replacement of Vector.h's ones(n) with Matrix::Ones(m,n).
parent
70b2aab352
commit
379ad8b3d2
|
@ -47,7 +47,7 @@ TEST(GaussianFactorGraph, initialization) {
|
||||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||||
|
|
||||||
fg +=
|
fg +=
|
||||||
JacobianFactor(0, 10*I_2x2, -1.0*Matrix::Ones(2,2), unit2),
|
JacobianFactor(0, 10*I_2x2, -1.0*ones(2), unit2),
|
||||||
JacobianFactor(0, -10*I_2x2,1, 10*I_2x2, Vector2(2.0, -1.0), unit2),
|
JacobianFactor(0, -10*I_2x2,1, 10*I_2x2, Vector2(2.0, -1.0), unit2),
|
||||||
JacobianFactor(0, -5*I_2x2, 2, 5*I_2x2, Vector2(0.0, 1.0), unit2),
|
JacobianFactor(0, -5*I_2x2, 2, 5*I_2x2, Vector2(0.0, 1.0), unit2),
|
||||||
JacobianFactor(1, -5*I_2x2, 2, 5*I_2x2, Vector2(-1.0, 1.5), unit2);
|
JacobianFactor(1, -5*I_2x2, 2, 5*I_2x2, Vector2(-1.0, 1.5), unit2);
|
||||||
|
@ -166,7 +166,7 @@ static GaussianFactorGraph createSimpleGaussianFactorGraph() {
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg;
|
||||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
||||||
fg += JacobianFactor(2, 10*I_2x2, -1.0*Matrix::Ones(2,2), unit2);
|
fg += JacobianFactor(2, 10*I_2x2, -1.0*ones(2), unit2);
|
||||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||||
fg += JacobianFactor(0, 10*I_2x2, 2, -10*I_2x2, Vector2(2.0, -1.0), unit2);
|
fg += JacobianFactor(0, 10*I_2x2, 2, -10*I_2x2, Vector2(2.0, -1.0), unit2);
|
||||||
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
||||||
|
|
|
@ -186,7 +186,7 @@ TEST (Serialization, gaussian_factor_graph) {
|
||||||
{
|
{
|
||||||
Key i1 = 4, i2 = 7;
|
Key i1 = 4, i2 = 7;
|
||||||
Matrix A1 = I_3x3, A2 = -1.0 * I_3x3;
|
Matrix A1 = I_3x3, A2 = -1.0 * I_3x3;
|
||||||
Vector b = Matrix::Ones(3,3);
|
Vector b = ones(3);
|
||||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector3(1.0, 2.0, 3.0));
|
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector3(1.0, 2.0, 3.0));
|
||||||
JacobianFactor jacobianfactor(i1, A1, i2, A2, b, model);
|
JacobianFactor jacobianfactor(i1, A1, i2, A2, b, model);
|
||||||
HessianFactor hessianfactor(jacobianfactor);
|
HessianFactor hessianfactor(jacobianfactor);
|
||||||
|
|
|
@ -274,7 +274,7 @@ inline GaussianFactorGraph createGaussianFactorGraph() {
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg;
|
||||||
|
|
||||||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
||||||
fg += JacobianFactor(X(1), 10*I_2x2, -1.0*Matrix::Ones(2,2));
|
fg += JacobianFactor(X(1), 10*I_2x2, -1.0*ones(2));
|
||||||
|
|
||||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||||
fg += JacobianFactor(X(1), -10*I_2x2, X(2), 10*I_2x2, Vector2(2.0, -1.0));
|
fg += JacobianFactor(X(1), -10*I_2x2, X(2), 10*I_2x2, Vector2(2.0, -1.0));
|
||||||
|
|
Loading…
Reference in New Issue