Address review comments

release/4.3a0
sjxue 2022-08-16 18:26:59 -04:00
parent 7d36a9eb98
commit 379a65f40f
7 changed files with 122 additions and 133 deletions

View File

@ -64,7 +64,8 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
GaussianBayesNet choose(const DiscreteValues &assignment) const;
/// Solve the HybridBayesNet by back-substitution.
/// TODO(Shangjie) do we need to create a HybridGaussianBayesNet class, and put this method there?
/// TODO(Shangjie) do we need to create a HybridGaussianBayesNet class, and
/// put this method there?
HybridValues optimize() const;
};

View File

@ -18,10 +18,10 @@
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteLookupDAG.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridLookupDAG.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/linear/VectorValues.h>
#include <string>
@ -32,28 +32,32 @@ using std::vector;
namespace gtsam {
/* ************************************************************************** */
void HybridLookupTable::argmaxInPlace(HybridValues* values) const {
// For discrete conditional, uses argmaxInPlace() method in DiscreteLookupTable.
if (isDiscrete()){
boost::static_pointer_cast<DiscreteLookupTable>(inner_)->argmaxInPlace(&(values->discrete));
} else if (isContinuous()){
// For discrete conditional, uses argmaxInPlace() method in
// DiscreteLookupTable.
if (isDiscrete()) {
boost::static_pointer_cast<DiscreteLookupTable>(inner_)->argmaxInPlace(
&(values->discrete));
} else if (isContinuous()) {
// For Gaussian conditional, uses solve() method in GaussianConditional.
values->continuous.insert(boost::static_pointer_cast<GaussianConditional>(inner_)->solve(values->continuous));
} else if (isHybrid()){
// For hybrid conditional, since children should not contain discrete variable, we can condition on
// the discrete variable in the parents and solve the resulting GaussianConditional.
auto conditional = boost::static_pointer_cast<GaussianMixture>(inner_)->conditionals()(values->discrete);
values->continuous.insert(
boost::static_pointer_cast<GaussianConditional>(inner_)->solve(
values->continuous));
} else if (isHybrid()) {
// For hybrid conditional, since children should not contain discrete
// variable, we can condition on the discrete variable in the parents and
// solve the resulting GaussianConditional.
auto conditional =
boost::static_pointer_cast<GaussianMixture>(inner_)->conditionals()(
values->discrete);
values->continuous.insert(conditional->solve(values->continuous));
}
}
}
// /* ************************************************************************** */
HybridLookupDAG HybridLookupDAG::FromBayesNet(
const HybridBayesNet& bayesNet) {
// /* **************************************************************************
// */
HybridLookupDAG HybridLookupDAG::FromBayesNet(const HybridBayesNet& bayesNet) {
HybridLookupDAG dag;
for (auto&& conditional : bayesNet) {
HybridLookupTable hlt(*conditional);

View File

@ -19,10 +19,10 @@
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/DiscreteLookupDAG.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h>
#include <boost/shared_ptr.hpp>
#include <string>
@ -34,8 +34,8 @@ namespace gtsam {
/**
* @brief HybridLookupTable table for max-product
*
* Similar to DiscreteLookupTable, inherits from hybrid conditional for convenience.
* Is used in the max-product algorithm.
* Similar to DiscreteLookupTable, inherits from hybrid conditional for
* convenience. Is used in the max-product algorithm.
*/
class GTSAM_EXPORT HybridLookupTable : public HybridConditional {
public:
@ -58,7 +58,8 @@ class GTSAM_EXPORT HybridLookupTable : public HybridConditional {
void argmaxInPlace(HybridValues* parentsValues) const;
};
/** A DAG made from hybrid lookup tables, as defined above. Similar to DiscreteLookupDAG */
/** A DAG made from hybrid lookup tables, as defined above. Similar to
* DiscreteLookupDAG */
class GTSAM_EXPORT HybridLookupDAG : public BayesNet<HybridLookupTable> {
public:
using Base = BayesNet<HybridLookupTable>;

View File

@ -19,11 +19,10 @@
#include <gtsam/discrete/Assignment.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/inference/Key.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/inference/Key.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/Values.h>
#include <map>
#include <string>
@ -32,8 +31,9 @@
namespace gtsam {
/**
* HybridValues represents a collection of DiscreteValues and VectorValues. It is typically used to store the variables
* of a HybridGaussianFactorGraph. Optimizing a HybridGaussianBayesNet returns this class.
* HybridValues represents a collection of DiscreteValues and VectorValues. It
* is typically used to store the variables of a HybridGaussianFactorGraph.
* Optimizing a HybridGaussianBayesNet returns this class.
*/
class GTSAM_EXPORT HybridValues {
public:
@ -44,54 +44,47 @@ class GTSAM_EXPORT HybridValues {
VectorValues continuous;
// Default constructor creates an empty HybridValues.
HybridValues() : discrete(), continuous() {};
HybridValues() : discrete(), continuous(){};
// Construct from DiscreteValues and VectorValues.
HybridValues(const DiscreteValues &dv, const VectorValues &cv) : discrete(dv), continuous(cv) {};
HybridValues(const DiscreteValues& dv, const VectorValues& cv)
: discrete(dv), continuous(cv){};
// print required by Testable for unit testing
void print(const std::string& s = "HybridValues",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const{
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << ": \n";
discrete.print(" Discrete", keyFormatter); // print discrete components
continuous.print(" Continuous", keyFormatter); //print continuous components
discrete.print(" Discrete", keyFormatter); // print discrete components
continuous.print(" Continuous",
keyFormatter); // print continuous components
};
// equals required by Testable for unit testing
bool equals(const HybridValues& other, double tol = 1e-9) const {
return discrete.equals(other.discrete, tol) && continuous.equals(other.continuous, tol);
return discrete.equals(other.discrete, tol) &&
continuous.equals(other.continuous, tol);
}
// Check whether a variable with key \c j exists in DiscreteValue.
bool existsDiscrete(Key j){
return (discrete.find(j) != discrete.end());
};
bool existsDiscrete(Key j) { return (discrete.find(j) != discrete.end()); };
// Check whether a variable with key \c j exists in VectorValue.
bool existsVector(Key j){
return continuous.exists(j);
};
bool existsVector(Key j) { return continuous.exists(j); };
// Check whether a variable with key \c j exists.
bool exists(Key j){
return existsDiscrete(j) || existsVector(j);
};
bool exists(Key j) { return existsDiscrete(j) || existsVector(j); };
/** Insert a discrete \c value with key \c j. Replaces the existing value if the key \c
* j is already used.
* @param value The vector to be inserted.
* @param j The index with which the value will be associated. */
void insert(Key j, int value){
discrete[j] = value;
};
/** Insert a discrete \c value with key \c j. Replaces the existing value if
* the key \c j is already used.
* @param value The vector to be inserted.
* @param j The index with which the value will be associated. */
void insert(Key j, int value) { discrete[j] = value; };
/** Insert a vector \c value with key \c j. Throws an invalid_argument exception if the key \c
* j is already used.
* @param value The vector to be inserted.
* @param j The index with which the value will be associated. */
void insert(Key j, const Vector& value) {
continuous.insert(j, value);
}
/** Insert a vector \c value with key \c j. Throws an invalid_argument
* exception if the key \c j is already used.
* @param value The vector to be inserted.
* @param j The index with which the value will be associated. */
void insert(Key j, const Vector& value) { continuous.insert(j, value); }
// TODO(Shangjie)- update() and insert_or_assign() , similar to Values.h
@ -99,18 +92,13 @@ class GTSAM_EXPORT HybridValues {
* Read/write access to the discrete value with key \c j, throws
* std::out_of_range if \c j does not exist.
*/
size_t& atDiscrete(Key j){
return discrete.at(j);
};
size_t& atDiscrete(Key j) { return discrete.at(j); };
/**
* Read/write access to the vector value with key \c j, throws
* std::out_of_range if \c j does not exist.
*/
Vector& at(Key j) {
return continuous.at(j);
};
Vector& at(Key j) { return continuous.at(j); };
/// @name Wrapper support
/// @{
@ -121,7 +109,8 @@ class GTSAM_EXPORT HybridValues {
* @param keyFormatter function that formats keys.
* @return string html output.
*/
std::string html(const KeyFormatter& keyFormatter = DefaultKeyFormatter) const{
std::string html(
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::stringstream ss;
ss << this->discrete.html(keyFormatter);
ss << this->continuous.html(keyFormatter);

View File

@ -523,7 +523,6 @@ TEST(HybridGaussianFactorGraph, optimize) {
HybridValues hv = result->optimize();
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
}
/* ************************************************************************* */
int main() {

View File

@ -17,19 +17,19 @@
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/discrete/Assignment.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/inference/Key.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridLookupDAG.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/Values.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -43,7 +43,7 @@ using symbol_shorthand::M;
using symbol_shorthand::X;
TEST(HybridLookupTable, basics) {
// create a conditional gaussian node
// create a conditional gaussian node
Matrix S1(2, 2);
S1(0, 0) = 1;
S1(1, 0) = 2;
@ -82,39 +82,38 @@ TEST(HybridLookupTable, basics) {
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
// GaussianMixture mixtureFactor2({X(1)}, {X(2)}, {m1}, conditionals);
boost::shared_ptr<GaussianMixture> mixtureFactor(new GaussianMixture({X(1)}, {X(2)}, {m1}, conditionals));
// GaussianMixture mixtureFactor2({X(1)}, {X(2)}, {m1}, conditionals);
boost::shared_ptr<GaussianMixture> mixtureFactor(
new GaussianMixture({X(1)}, {X(2)}, {m1}, conditionals));
HybridConditional hc(mixtureFactor);
GaussianMixture::Conditionals conditional2 = boost::static_pointer_cast<GaussianMixture>(hc.inner())->conditionals();
GaussianMixture::Conditionals conditional2 =
boost::static_pointer_cast<GaussianMixture>(hc.inner())->conditionals();
DiscreteValues dv;
dv[1]=1;
dv[1] = 1;
VectorValues cv;
cv.insert(X(2),Vector2(0.0, 0.0));
HybridValues hv(dv, cv);
cv.insert(X(2), Vector2(0.0, 0.0));
HybridValues hv(dv, cv);
// std::cout << conditional2(values).markdown();
EXPECT(assert_equal(*conditional2(dv), *conditionals(dv), 1e-6));
EXPECT(conditional2(dv)==conditionals(dv));
EXPECT(conditional2(dv) == conditionals(dv));
HybridLookupTable hlt(hc);
// hlt.argmaxInPlace(&hv);
// hlt.argmaxInPlace(&hv);
HybridLookupDAG dag;
dag.push_back(hlt);
dag.argmax(hv);
// HybridBayesNet hbn;
// hbn.push_back(hc);
// hbn.optimize();
// HybridBayesNet hbn;
// hbn.push_back(hc);
// hbn.optimize();
}
TEST(HybridLookupTable, hybrid_argmax) {
@ -124,23 +123,26 @@ TEST(HybridLookupTable, hybrid_argmax) {
S1(0, 1) = 0;
S1(1, 1) = 1;
Vector2 d1(0.2, 0.5), d2(-0.5,0.6);
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, S1, model),
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, S1, model);
auto conditional0 =
boost::make_shared<GaussianConditional>(X(1), d1, S1, model),
conditional1 =
boost::make_shared<GaussianConditional>(X(1), d2, S1, model);
DiscreteKey m1(1, 2);
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
boost::shared_ptr<GaussianMixture> mixtureFactor(new GaussianMixture({X(1)},{}, {m1}, conditionals));
boost::shared_ptr<GaussianMixture> mixtureFactor(
new GaussianMixture({X(1)}, {}, {m1}, conditionals));
HybridConditional hc(mixtureFactor);
DiscreteValues dv;
dv[1]=1;
dv[1] = 1;
VectorValues cv;
// cv.insert(X(2),Vector2(0.0, 0.0));
HybridValues hv(dv, cv);
@ -150,8 +152,6 @@ TEST(HybridLookupTable, hybrid_argmax) {
hlt.argmaxInPlace(&hv);
EXPECT(assert_equal(hv.at(X(1)), d2));
}
TEST(HybridLookupTable, discrete_argmax) {
@ -164,18 +164,17 @@ TEST(HybridLookupTable, discrete_argmax) {
HybridLookupTable hlt(hc);
DiscreteValues dv;
dv[1]=0;
dv[1] = 0;
VectorValues cv;
// cv.insert(X(2),Vector2(0.0, 0.0));
HybridValues hv(dv, cv);
hlt.argmaxInPlace(&hv);
EXPECT(assert_equal(hv.atDiscrete(0), 1));
DecisionTreeFactor f1(X , "2 3");
auto conditional2 = boost::make_shared<DiscreteConditional>(1,f1);
DecisionTreeFactor f1(X, "2 3");
auto conditional2 = boost::make_shared<DiscreteConditional>(1, f1);
HybridConditional hc2(conditional2);
@ -183,7 +182,6 @@ TEST(HybridLookupTable, discrete_argmax) {
HybridValues hv2;
hlt2.argmaxInPlace(&hv2);
EXPECT(assert_equal(hv2.atDiscrete(0), 1));
@ -196,12 +194,12 @@ TEST(HybridLookupTable, gaussian_argmax) {
S1(0, 1) = 0;
S1(1, 1) = 1;
Vector2 d1(0.2, 0.5), d2(-0.5,0.6);
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
auto conditional = boost::make_shared<GaussianConditional>(X(1), d1, S1,
X(2), -S1, model);
auto conditional =
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
HybridConditional hc(conditional);
@ -210,52 +208,51 @@ TEST(HybridLookupTable, gaussian_argmax) {
DiscreteValues dv;
// dv[1]=0;
VectorValues cv;
cv.insert(X(2),d2);
cv.insert(X(2), d2);
HybridValues hv(dv, cv);
hlt.argmaxInPlace(&hv);
EXPECT(assert_equal(hv.at(X(1)), d1+d2));
EXPECT(assert_equal(hv.at(X(1)), d1 + d2));
}
TEST(HybridLookupDAG, argmax) {
Matrix S1(2, 2);
S1(0, 0) = 1;
S1(1, 0) = 0;
S1(0, 1) = 0;
S1(1, 1) = 1;
Vector2 d1(0.2, 0.5), d2(-0.5,0.6);
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
auto conditional0 = boost::make_shared<GaussianConditional>(X(2), d1, S1, model),
conditional1 = boost::make_shared<GaussianConditional>(X(2), d2, S1, model);
auto conditional0 =
boost::make_shared<GaussianConditional>(X(2), d1, S1, model),
conditional1 =
boost::make_shared<GaussianConditional>(X(2), d2, S1, model);
DiscreteKey m1(1, 2);
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
boost::shared_ptr<GaussianMixture> mixtureFactor(new GaussianMixture({X(2)},{}, {m1}, conditionals));
boost::shared_ptr<GaussianMixture> mixtureFactor(
new GaussianMixture({X(2)}, {}, {m1}, conditionals));
HybridConditional hc2(mixtureFactor);
HybridLookupTable hlt2(hc2);
auto conditional2 = boost::make_shared<GaussianConditional>(X(1), d1, S1,
X(2), -S1, model);
auto conditional2 =
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
HybridConditional hc1(conditional2);
HybridLookupTable hlt1(hc1);
DecisionTreeFactor f1(m1 , "2 3");
auto discrete_conditional = boost::make_shared<DiscreteConditional>(1,f1);
DecisionTreeFactor f1(m1, "2 3");
auto discrete_conditional = boost::make_shared<DiscreteConditional>(1, f1);
HybridConditional hc3(discrete_conditional);
HybridLookupTable hlt3(hc3);
HybridLookupDAG dag;
dag.push_back(hlt1);
dag.push_back(hlt2);
@ -264,10 +261,9 @@ TEST(HybridLookupDAG, argmax) {
EXPECT(assert_equal(hv.atDiscrete(1), 1));
EXPECT(assert_equal(hv.at(X(2)), d2));
EXPECT(assert_equal(hv.at(X(1)), d2+d1));
EXPECT(assert_equal(hv.at(X(1)), d2 + d1));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -17,19 +17,18 @@
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/discrete/Assignment.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/inference/Key.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/Values.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
@ -47,7 +46,7 @@ TEST(HybridValues, basics) {
values2.insert(99, Vector2(2, 3));
EXPECT(assert_equal(values2, values));
values2.insert(98, Vector2(2,3));
values2.insert(98, Vector2(2, 3));
EXPECT(!assert_equal(values2, values));
}