Deprecated all but three constructors.
parent
140c666c41
commit
3737474d1e
|
@ -31,12 +31,12 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
|
||||
/**************************************************************************************************/
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph &gfg,
|
||||
// Just taking system [A|b]
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph &Ab,
|
||||
const Parameters ¶meters, const Ordering& ordering) :
|
||||
parameters_(parameters) {
|
||||
|
||||
GaussianFactorGraph::shared_ptr Ab1,Ab2;
|
||||
boost::tie(Ab1, Ab2) = splitGraph(gfg);
|
||||
boost::tie(Ab1, Ab2) = splitGraph(Ab);
|
||||
if (parameters_.verbosity())
|
||||
cout << "Split A into (A1) " << Ab1->size() << " and (A2) " << Ab2->size()
|
||||
<< " factors" << endl;
|
||||
|
@ -46,12 +46,8 @@ SubgraphSolver::SubgraphSolver(const GaussianFactorGraph &gfg,
|
|||
pc_ = boost::make_shared<SubgraphPreconditioner>(Ab2, Rc1, xbar);
|
||||
}
|
||||
|
||||
// delegate up
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph::shared_ptr &factorGraph,
|
||||
const Parameters ¶meters, const Ordering& ordering) :
|
||||
SubgraphSolver(*factorGraph, parameters, ordering) {}
|
||||
|
||||
/**************************************************************************************************/
|
||||
// Taking eliminated tree [R1|c] and constraint graph [A2|b2]
|
||||
SubgraphSolver::SubgraphSolver(const GaussianBayesNet::shared_ptr &Rc1,
|
||||
const GaussianFactorGraph::shared_ptr &Ab2,
|
||||
const Parameters ¶meters)
|
||||
|
@ -60,42 +56,40 @@ SubgraphSolver::SubgraphSolver(const GaussianBayesNet::shared_ptr &Rc1,
|
|||
pc_ = boost::make_shared<SubgraphPreconditioner>(Ab2, Rc1, xbar);
|
||||
}
|
||||
|
||||
/**************************************************************************************************/
|
||||
// Taking subgraphs [A1|b1] and [A2|b2]
|
||||
// delegate up
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph &Ab1,
|
||||
const GaussianFactorGraph::shared_ptr &Ab2,
|
||||
const Parameters ¶meters,
|
||||
const Ordering &ordering)
|
||||
: SubgraphSolver(Ab1.eliminateSequential(ordering, EliminateQR), Ab2,
|
||||
parameters) {}
|
||||
|
||||
/**************************************************************************************************/
|
||||
// deprecated variants
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
|
||||
SubgraphSolver::SubgraphSolver(const GaussianBayesNet::shared_ptr &Rc1,
|
||||
const GaussianFactorGraph &Ab2,
|
||||
const Parameters ¶meters)
|
||||
: SubgraphSolver(Rc1, boost::make_shared<GaussianFactorGraph>(Ab2),
|
||||
parameters_) {}
|
||||
parameters) {}
|
||||
|
||||
// delegate up
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph &Ab1,
|
||||
const GaussianFactorGraph &Ab2,
|
||||
const Parameters ¶meters,
|
||||
const Ordering &ordering)
|
||||
: SubgraphSolver(Ab1.eliminateSequential(ordering, EliminateQR),
|
||||
boost::make_shared<GaussianFactorGraph>(Ab2),
|
||||
parameters_) {}
|
||||
|
||||
// delegate up
|
||||
SubgraphSolver::SubgraphSolver(const GaussianFactorGraph::shared_ptr &Ab1,
|
||||
const GaussianFactorGraph::shared_ptr &Ab2,
|
||||
const Parameters ¶meters,
|
||||
const Ordering &ordering)
|
||||
: SubgraphSolver(Ab1->eliminateSequential(ordering, EliminateQR), Ab2,
|
||||
parameters) {}
|
||||
: SubgraphSolver(Ab1, boost::make_shared<GaussianFactorGraph>(Ab2),
|
||||
parameters, ordering) {}
|
||||
#endif
|
||||
|
||||
/**************************************************************************************************/
|
||||
VectorValues SubgraphSolver::optimize() {
|
||||
VectorValues SubgraphSolver::optimize() const {
|
||||
VectorValues ybar = conjugateGradients<SubgraphPreconditioner, VectorValues,
|
||||
Errors>(*pc_, pc_->zero(), parameters_);
|
||||
return pc_->x(ybar);
|
||||
}
|
||||
|
||||
VectorValues SubgraphSolver::optimize(const VectorValues &initial) {
|
||||
// the initial is ignored in this case ...
|
||||
return optimize();
|
||||
}
|
||||
|
||||
VectorValues SubgraphSolver::optimize(const GaussianFactorGraph &gfg,
|
||||
const KeyInfo &keyInfo, const std::map<Key, Vector> &lambda,
|
||||
const VectorValues &initial) {
|
||||
|
|
|
@ -28,30 +28,34 @@ class GaussianFactorGraph;
|
|||
class GaussianBayesNet;
|
||||
class SubgraphPreconditioner;
|
||||
|
||||
class GTSAM_EXPORT SubgraphSolverParameters: public ConjugateGradientParameters {
|
||||
public:
|
||||
class GTSAM_EXPORT SubgraphSolverParameters
|
||||
: public ConjugateGradientParameters {
|
||||
public:
|
||||
typedef ConjugateGradientParameters Base;
|
||||
SubgraphSolverParameters() :
|
||||
Base() {
|
||||
}
|
||||
void print() const {
|
||||
Base::print();
|
||||
}
|
||||
virtual void print(std::ostream &os) const {
|
||||
Base::print(os);
|
||||
}
|
||||
SubgraphSolverParameters() : Base() {}
|
||||
void print() const { Base::print(); }
|
||||
virtual void print(std::ostream &os) const { Base::print(os); }
|
||||
};
|
||||
|
||||
/**
|
||||
* This class implements the SPCG solver presented in Dellaert et al in IROS'10.
|
||||
* This class implements the linear SPCG solver presented in Dellaert et al in
|
||||
* IROS'10.
|
||||
*
|
||||
* Given a linear least-squares problem \f$ f(x) = |A x - b|^2 \f$. We split the problem into
|
||||
* \f$ f(x) = |A_t - b_t|^2 + |A_c - b_c|^2 \f$ where \f$ A_t \f$ denotes the "tree" part, and \f$ A_c \f$ denotes the "constraint" part.
|
||||
* \f$ A_t \f$ is factorized into \f$ Q_t R_t \f$, and we compute \f$ c_t = Q_t^{-1} b_t \f$, and \f$ x_t = R_t^{-1} c_t \f$ accordingly.
|
||||
* Then we solve a reparametrized problem \f$ f(y) = |y|^2 + |A_c R_t^{-1} y - \bar{b_y}|^2 \f$, where \f$ y = R_t(x - x_t) \f$, and \f$ \bar{b_y} = (b_c - A_c x_t) \f$
|
||||
* Given a linear least-squares problem \f$ f(x) = |A x - b|^2 \f$. We split the
|
||||
* problem into \f$ f(x) = |A_t - b_t|^2 + |A_c - b_c|^2 \f$ where \f$ A_t \f$
|
||||
* denotes the "tree" part, and \f$ A_c \f$ denotes the "constraint" part.
|
||||
*
|
||||
* In the matrix form, it is equivalent to solving \f$ [A_c R_t^{-1} ; I ] y = [\bar{b_y} ; 0] \f$. We can solve it
|
||||
* with the least-squares variation of the conjugate gradient method.
|
||||
* \f$A_t \f$ is factorized into \f$ Q_t R_t \f$, and we compute
|
||||
* \f$ c_t = Q_t^{-1} b_t \f$, and \f$ x_t = R_t^{-1} c_t \f$ accordingly.
|
||||
*
|
||||
* Then we solve a reparametrized problem
|
||||
* \f$ f(y) = |y|^2 + |A_c R_t^{-1} y -\bar{b_y}|^2 \f$,
|
||||
* where \f$ y = R_t(x - x_t) \f$, and \f$ \bar{b_y} = (b_c - A_c x_t) \f$
|
||||
*
|
||||
* In the matrix form, it is equivalent to solving
|
||||
* \f$ [A_c R_t^{-1} ; I ] y = [\bar{b_y} ; 0] \f$.
|
||||
* We can solve it with the least-squares variation of the conjugate gradient
|
||||
* method.
|
||||
*
|
||||
* To use it in nonlinear optimization, please see the following example
|
||||
*
|
||||
|
@ -63,69 +67,83 @@ public:
|
|||
*
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class GTSAM_EXPORT SubgraphSolver: public IterativeSolver {
|
||||
|
||||
public:
|
||||
class GTSAM_EXPORT SubgraphSolver : public IterativeSolver {
|
||||
public:
|
||||
typedef SubgraphSolverParameters Parameters;
|
||||
|
||||
protected:
|
||||
protected:
|
||||
Parameters parameters_;
|
||||
boost::shared_ptr<SubgraphPreconditioner> pc_; ///< preconditioner object
|
||||
|
||||
public:
|
||||
boost::shared_ptr<SubgraphPreconditioner> pc_; ///< preconditioner object
|
||||
|
||||
public:
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
/**
|
||||
* Given a gaussian factor graph, split it into a spanning tree (A1) + others (A2) for SPCG
|
||||
* Will throw exception if there are ternary factors or higher arity, as we use Kruskal's
|
||||
* algorithm to split the graph, treating binary factors as edges.
|
||||
* Given a gaussian factor graph, split it into a spanning tree (A1) + others
|
||||
* (A2) for SPCG Will throw exception if there are ternary factors or higher
|
||||
* arity, as we use Kruskal's algorithm to split the graph, treating binary
|
||||
* factors as edges.
|
||||
*/
|
||||
SubgraphSolver(const GaussianFactorGraph &A, const Parameters ¶meters,
|
||||
const Ordering& ordering);
|
||||
|
||||
/// Shared pointer version
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &A,
|
||||
const Parameters ¶meters, const Ordering& ordering);
|
||||
const Ordering &ordering);
|
||||
|
||||
/**
|
||||
* The user specifies the subgraph part and the constraints part.
|
||||
* May throw exception if A1 is underdetermined. An ordering is required to eliminate Ab1.
|
||||
* May throw exception if A1 is underdetermined. An ordering is required to
|
||||
* eliminate Ab1. We take Ab1 as a const reference, as it will be transformed
|
||||
* into Rc1, but take Ab2 as a shared pointer as we need to keep it around.
|
||||
*/
|
||||
SubgraphSolver(const GaussianFactorGraph &Ab1,
|
||||
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
|
||||
const Parameters ¶meters, const Ordering &ordering);
|
||||
/**
|
||||
* The same as above, but we assume A1 was solved by caller.
|
||||
* We take two shared pointers as we keep both around.
|
||||
*/
|
||||
SubgraphSolver(const GaussianFactorGraph &Ab1, const GaussianFactorGraph &Ab2,
|
||||
const Parameters ¶meters, const Ordering& ordering);
|
||||
|
||||
/// Shared pointer version
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &Ab1,
|
||||
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
|
||||
const Parameters ¶meters, const Ordering& ordering);
|
||||
|
||||
/// The same as above, but we assume A1 was solved by caller
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianBayesNet> &Rc1,
|
||||
const GaussianFactorGraph &Ab2, const Parameters ¶meters);
|
||||
|
||||
/// Shared pointer version
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianBayesNet> &Rc1,
|
||||
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
|
||||
const Parameters ¶meters);
|
||||
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
|
||||
const Parameters ¶meters);
|
||||
|
||||
/// Destructor
|
||||
virtual ~SubgraphSolver() {
|
||||
}
|
||||
virtual ~SubgraphSolver() {}
|
||||
|
||||
/// @}
|
||||
/// @name Implement interface
|
||||
/// @{
|
||||
|
||||
/// Optimize from zero
|
||||
VectorValues optimize();
|
||||
VectorValues optimize() const;
|
||||
|
||||
/// Optimize from given initial values
|
||||
VectorValues optimize(const VectorValues &initial);
|
||||
|
||||
/** Interface that IterativeSolver subclasses have to implement */
|
||||
/// Interface that IterativeSolver subclasses have to implement
|
||||
virtual VectorValues optimize(const GaussianFactorGraph &gfg,
|
||||
const KeyInfo &keyInfo, const std::map<Key, Vector> &lambda,
|
||||
const VectorValues &initial);
|
||||
const KeyInfo &keyInfo,
|
||||
const std::map<Key, Vector> &lambda,
|
||||
const VectorValues &initial) override;
|
||||
|
||||
protected:
|
||||
/// @}
|
||||
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
|
||||
/// @name Deprecated
|
||||
/// @{
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &A,
|
||||
const Parameters ¶meters, const Ordering &ordering)
|
||||
: SubgraphSolver(*A, parameters, ordering){};
|
||||
SubgraphSolver(const GaussianFactorGraph &, const GaussianFactorGraph &,
|
||||
const Parameters &, const Ordering &);
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianFactorGraph> &Ab1,
|
||||
const boost::shared_ptr<GaussianFactorGraph> &Ab2,
|
||||
const Parameters ¶meters, const Ordering &ordering)
|
||||
: SubgraphSolver(*Ab1, Ab2, parameters, ordering) {}
|
||||
SubgraphSolver(const boost::shared_ptr<GaussianBayesNet> &,
|
||||
const GaussianFactorGraph &, const Parameters &);
|
||||
/// @}
|
||||
#endif
|
||||
|
||||
protected:
|
||||
/// Split graph using Kruskal algorithm, treating binary factors as edges.
|
||||
static boost::tuple<boost::shared_ptr<GaussianFactorGraph>, boost::shared_ptr<GaussianFactorGraph>>
|
||||
static boost::tuple<boost::shared_ptr<GaussianFactorGraph>,
|
||||
boost::shared_ptr<GaussianFactorGraph>>
|
||||
splitGraph(const GaussianFactorGraph &gfg);
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -614,26 +614,26 @@ inline Ordering planarOrdering(size_t N) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
inline std::pair<GaussianFactorGraph, GaussianFactorGraph > splitOffPlanarTree(size_t N,
|
||||
inline std::pair<GaussianFactorGraph::shared_ptr, GaussianFactorGraph::shared_ptr > splitOffPlanarTree(size_t N,
|
||||
const GaussianFactorGraph& original) {
|
||||
GaussianFactorGraph T, C;
|
||||
auto T = boost::make_shared<GaussianFactorGraph>(), C= boost::make_shared<GaussianFactorGraph>();
|
||||
|
||||
// Add the x11 constraint to the tree
|
||||
T.push_back(original[0]);
|
||||
T->push_back(original[0]);
|
||||
|
||||
// Add all horizontal constraints to the tree
|
||||
size_t i = 1;
|
||||
for (size_t x = 1; x < N; x++)
|
||||
for (size_t y = 1; y <= N; y++, i++)
|
||||
T.push_back(original[i]);
|
||||
T->push_back(original[i]);
|
||||
|
||||
// Add first vertical column of constraints to T, others to C
|
||||
for (size_t x = 1; x <= N; x++)
|
||||
for (size_t y = 1; y < N; y++, i++)
|
||||
if (x == 1)
|
||||
T.push_back(original[i]);
|
||||
T->push_back(original[i]);
|
||||
else
|
||||
C.push_back(original[i]);
|
||||
C->push_back(original[i]);
|
||||
|
||||
return std::make_pair(T, C);
|
||||
}
|
||||
|
|
|
@ -46,6 +46,13 @@ static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
|
|||
return total_error;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SubgraphSolver, Parameters )
|
||||
{
|
||||
LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
|
||||
LONGS_EQUAL(500, kParameters.maxIterations());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SubgraphSolver, constructor1 )
|
||||
{
|
||||
|
@ -71,12 +78,12 @@ TEST( SubgraphSolver, constructor2 )
|
|||
boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = example::splitOffPlanarTree(N, Ab);
|
||||
GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
|
||||
|
||||
// The second constructor takes two factor graphs, so the caller can specify
|
||||
// the preconditioner (Ab1) and the constraints that are left out (Ab2)
|
||||
SubgraphSolver solver(Ab1_, Ab2_, kParameters, kOrdering);
|
||||
SubgraphSolver solver(*Ab1, Ab2, kParameters, kOrdering);
|
||||
VectorValues optimized = solver.optimize();
|
||||
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
||||
}
|
||||
|
@ -91,15 +98,15 @@ TEST( SubgraphSolver, constructor3 )
|
|||
boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree and corresponding kOrdering
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = example::splitOffPlanarTree(N, Ab);
|
||||
GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1, Ab2) = example::splitOffPlanarTree(N, Ab);
|
||||
|
||||
// The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
|
||||
auto Rc1 = Ab1_.eliminateSequential();
|
||||
auto Rc1 = Ab1->eliminateSequential();
|
||||
|
||||
// The third constructor allows the caller to pass an already solved preconditioner Rc1_
|
||||
// as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
|
||||
SubgraphSolver solver(Rc1, Ab2_, kParameters);
|
||||
SubgraphSolver solver(Rc1, Ab2, kParameters);
|
||||
VectorValues optimized = solver.optimize();
|
||||
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue