Fixed all examples

release/4.3a0
Frank Dellaert 2021-11-20 16:34:53 -05:00
parent 8206d8d09d
commit 371fe3e865
8 changed files with 29 additions and 29 deletions

View File

@ -57,7 +57,7 @@ int main(int argc, char **argv) {
// solve // solve
auto mpe = chordal->optimize(); auto mpe = chordal->optimize();
GTSAM_PRINT(*mpe); GTSAM_PRINT(mpe);
// We can also build a Bayes tree (directed junction tree). // We can also build a Bayes tree (directed junction tree).
// The elimination order above will do fine: // The elimination order above will do fine:
@ -71,13 +71,13 @@ int main(int argc, char **argv) {
// solve again, now with evidence // solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering); DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
auto mpe2 = chordal2->optimize(); auto mpe2 = chordal2->optimize();
GTSAM_PRINT(*mpe2); GTSAM_PRINT(mpe2);
// We can also sample from it // We can also sample from it
cout << "\n10 samples:" << endl; cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) { for (size_t i = 0; i < 10; i++) {
auto sample = chordal2->sample(); auto sample = chordal2->sample();
GTSAM_PRINT(*sample); GTSAM_PRINT(sample);
} }
return 0; return 0;
} }

View File

@ -34,10 +34,10 @@ int main(int argc, char **argv) {
// Define keys and a print function // Define keys and a print function
Key C(1), S(2), R(3), W(4); Key C(1), S(2), R(3), W(4);
auto print = [=](const DiscreteFactor::Values& values) { auto print = [=](const DiscreteFactor::Values& values) {
cout << boolalpha << "Cloudy = " << static_cast<bool>(values[C]) cout << boolalpha << "Cloudy = " << static_cast<bool>(values.at(C))
<< " Sprinkler = " << static_cast<bool>(values[S]) << " Sprinkler = " << static_cast<bool>(values.at(S))
<< " Rain = " << boolalpha << static_cast<bool>(values[R]) << " Rain = " << boolalpha << static_cast<bool>(values.at(R))
<< " WetGrass = " << static_cast<bool>(values[W]) << endl; << " WetGrass = " << static_cast<bool>(values.at(W)) << endl;
}; };
// We assume binary state variables // We assume binary state variables

View File

@ -67,13 +67,13 @@ int main(int argc, char **argv) {
// solve // solve
auto mpe = chordal->optimize(); auto mpe = chordal->optimize();
GTSAM_PRINT(*mpe); GTSAM_PRINT(mpe);
// We can also sample from it // We can also sample from it
cout << "\n10 samples:" << endl; cout << "\n10 samples:" << endl;
for (size_t k = 0; k < 10; k++) { for (size_t k = 0; k < 10; k++) {
auto sample = chordal->sample(); auto sample = chordal->sample();
GTSAM_PRINT(*sample); GTSAM_PRINT(sample);
} }
// Or compute the marginals. This re-eliminates the FG into a Bayes tree // Or compute the marginals. This re-eliminates the FG into a Bayes tree

View File

@ -71,7 +71,7 @@ int main(int argc, char** argv) {
// We use sequential variable elimination // We use sequential variable elimination
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential(); DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
auto optimalDecoding = chordal->optimize(); auto optimalDecoding = chordal->optimize();
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n"); optimalDecoding.print("\nMost Probable Explanation (optimalDecoding)\n");
// "Inference" Computing marginals for each node // "Inference" Computing marginals for each node
// Here we'll make use of DiscreteMarginals class, which makes use of // Here we'll make use of DiscreteMarginals class, which makes use of

View File

@ -64,7 +64,7 @@ int main(int argc, char** argv) {
// We use sequential variable elimination // We use sequential variable elimination
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential(); DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
auto optimalDecoding = chordal->optimize(); auto optimalDecoding = chordal->optimize();
optimalDecoding->print("\noptimalDecoding"); GTSAM_PRINT(optimalDecoding);
// "Inference" Computing marginals // "Inference" Computing marginals
cout << "\nComputing Node Marginals .." << endl; cout << "\nComputing Node Marginals .." << endl;

View File

@ -225,7 +225,7 @@ void sampleSolutions() {
// now, sample schedules // now, sample schedules
for (size_t n = 0; n < 500; n++) { for (size_t n = 0; n < 500; n++) {
vector<size_t> stats(19, 0); vector<size_t> stats(19, 0);
vector<Scheduler::sharedValues> samples; vector<Scheduler::Values> samples;
for (size_t i = 0; i < 7; i++) { for (size_t i = 0; i < 7; i++) {
samples.push_back(samplers[i]->sample()); samples.push_back(samplers[i]->sample());
schedulers[i].accumulateStats(samples[i], stats); schedulers[i].accumulateStats(samples[i], stats);

View File

@ -234,7 +234,7 @@ void sampleSolutions() {
// now, sample schedules // now, sample schedules
for (size_t n = 0; n < 500; n++) { for (size_t n = 0; n < 500; n++) {
vector<size_t> stats(19, 0); vector<size_t> stats(19, 0);
vector<Scheduler::sharedValues> samples; vector<Scheduler::Values> samples;
for (size_t i = 0; i < NRSTUDENTS; i++) { for (size_t i = 0; i < NRSTUDENTS; i++) {
samples.push_back(samplers[i]->sample()); samples.push_back(samplers[i]->sample());
schedulers[i].accumulateStats(samples[i], stats); schedulers[i].accumulateStats(samples[i], stats);

View File

@ -259,7 +259,7 @@ void sampleSolutions() {
// now, sample schedules // now, sample schedules
for (size_t n = 0; n < 10000; n++) { for (size_t n = 0; n < 10000; n++) {
vector<size_t> stats(nrFaculty, 0); vector<size_t> stats(nrFaculty, 0);
vector<Scheduler::sharedValues> samples; vector<Scheduler::Values> samples;
for (size_t i = 0; i < NRSTUDENTS; i++) { for (size_t i = 0; i < NRSTUDENTS; i++) {
samples.push_back(samplers[i]->sample()); samples.push_back(samplers[i]->sample());
schedulers[i].accumulateStats(samples[i], stats); schedulers[i].accumulateStats(samples[i], stats);