Fixed all examples
parent
8206d8d09d
commit
371fe3e865
|
@ -56,8 +56,8 @@ int main(int argc, char **argv) {
|
|||
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
|
||||
|
||||
// solve
|
||||
autompe = chordal->optimize();
|
||||
GTSAM_PRINT(*mpe);
|
||||
auto mpe = chordal->optimize();
|
||||
GTSAM_PRINT(mpe);
|
||||
|
||||
// We can also build a Bayes tree (directed junction tree).
|
||||
// The elimination order above will do fine:
|
||||
|
@ -70,14 +70,14 @@ int main(int argc, char **argv) {
|
|||
|
||||
// solve again, now with evidence
|
||||
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
|
||||
autompe2 = chordal2->optimize();
|
||||
GTSAM_PRINT(*mpe2);
|
||||
auto mpe2 = chordal2->optimize();
|
||||
GTSAM_PRINT(mpe2);
|
||||
|
||||
// We can also sample from it
|
||||
cout << "\n10 samples:" << endl;
|
||||
for (size_t i = 0; i < 10; i++) {
|
||||
autosample = chordal2->sample();
|
||||
GTSAM_PRINT(*sample);
|
||||
auto sample = chordal2->sample();
|
||||
GTSAM_PRINT(sample);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -34,10 +34,10 @@ int main(int argc, char **argv) {
|
|||
// Define keys and a print function
|
||||
Key C(1), S(2), R(3), W(4);
|
||||
auto print = [=](const DiscreteFactor::Values& values) {
|
||||
cout << boolalpha << "Cloudy = " << static_cast<bool>(values[C])
|
||||
<< " Sprinkler = " << static_cast<bool>(values[S])
|
||||
<< " Rain = " << boolalpha << static_cast<bool>(values[R])
|
||||
<< " WetGrass = " << static_cast<bool>(values[W]) << endl;
|
||||
cout << boolalpha << "Cloudy = " << static_cast<bool>(values.at(C))
|
||||
<< " Sprinkler = " << static_cast<bool>(values.at(S))
|
||||
<< " Rain = " << boolalpha << static_cast<bool>(values.at(R))
|
||||
<< " WetGrass = " << static_cast<bool>(values.at(W)) << endl;
|
||||
};
|
||||
|
||||
// We assume binary state variables
|
||||
|
@ -85,7 +85,7 @@ int main(int argc, char **argv) {
|
|||
}
|
||||
|
||||
// "Most Probable Explanation", i.e., configuration with largest value
|
||||
autompe = graph.eliminateSequential()->optimize();
|
||||
auto mpe = graph.eliminateSequential()->optimize();
|
||||
cout << "\nMost Probable Explanation (MPE):" << endl;
|
||||
print(mpe);
|
||||
|
||||
|
@ -97,7 +97,7 @@ int main(int argc, char **argv) {
|
|||
|
||||
// solve again, now with evidence
|
||||
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||
autompe_with_evidence = chordal->optimize();
|
||||
auto mpe_with_evidence = chordal->optimize();
|
||||
|
||||
cout << "\nMPE given C=0:" << endl;
|
||||
print(mpe_with_evidence);
|
||||
|
@ -113,7 +113,7 @@ int main(int argc, char **argv) {
|
|||
// We can also sample from it
|
||||
cout << "\n10 samples:" << endl;
|
||||
for (size_t i = 0; i < 10; i++) {
|
||||
autosample = chordal->sample();
|
||||
auto sample = chordal->sample();
|
||||
print(sample);
|
||||
}
|
||||
return 0;
|
||||
|
|
|
@ -66,14 +66,14 @@ int main(int argc, char **argv) {
|
|||
chordal->print("Eliminated");
|
||||
|
||||
// solve
|
||||
autompe = chordal->optimize();
|
||||
GTSAM_PRINT(*mpe);
|
||||
auto mpe = chordal->optimize();
|
||||
GTSAM_PRINT(mpe);
|
||||
|
||||
// We can also sample from it
|
||||
cout << "\n10 samples:" << endl;
|
||||
for (size_t k = 0; k < 10; k++) {
|
||||
autosample = chordal->sample();
|
||||
GTSAM_PRINT(*sample);
|
||||
auto sample = chordal->sample();
|
||||
GTSAM_PRINT(sample);
|
||||
}
|
||||
|
||||
// Or compute the marginals. This re-eliminates the FG into a Bayes tree
|
||||
|
|
|
@ -70,8 +70,8 @@ int main(int argc, char** argv) {
|
|||
// "Decoding", i.e., configuration with largest value
|
||||
// We use sequential variable elimination
|
||||
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||
autooptimalDecoding = chordal->optimize();
|
||||
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
|
||||
auto optimalDecoding = chordal->optimize();
|
||||
optimalDecoding.print("\nMost Probable Explanation (optimalDecoding)\n");
|
||||
|
||||
// "Inference" Computing marginals for each node
|
||||
// Here we'll make use of DiscreteMarginals class, which makes use of
|
||||
|
|
|
@ -63,8 +63,8 @@ int main(int argc, char** argv) {
|
|||
// "Decoding", i.e., configuration with largest value (MPE)
|
||||
// We use sequential variable elimination
|
||||
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
|
||||
autooptimalDecoding = chordal->optimize();
|
||||
optimalDecoding->print("\noptimalDecoding");
|
||||
auto optimalDecoding = chordal->optimize();
|
||||
GTSAM_PRINT(optimalDecoding);
|
||||
|
||||
// "Inference" Computing marginals
|
||||
cout << "\nComputing Node Marginals .." << endl;
|
||||
|
|
|
@ -122,7 +122,7 @@ void runLargeExample() {
|
|||
// SETDEBUG("timing-verbose", true);
|
||||
SETDEBUG("DiscreteConditional::DiscreteConditional", true);
|
||||
gttic(large);
|
||||
autoMPE = scheduler.optimalAssignment();
|
||||
auto MPE = scheduler.optimalAssignment();
|
||||
gttoc(large);
|
||||
tictoc_finishedIteration();
|
||||
tictoc_print();
|
||||
|
@ -225,7 +225,7 @@ void sampleSolutions() {
|
|||
// now, sample schedules
|
||||
for (size_t n = 0; n < 500; n++) {
|
||||
vector<size_t> stats(19, 0);
|
||||
vector<Scheduler::sharedValues> samples;
|
||||
vector<Scheduler::Values> samples;
|
||||
for (size_t i = 0; i < 7; i++) {
|
||||
samples.push_back(samplers[i]->sample());
|
||||
schedulers[i].accumulateStats(samples[i], stats);
|
||||
|
|
|
@ -129,7 +129,7 @@ void runLargeExample() {
|
|||
tictoc_finishedIteration();
|
||||
tictoc_print();
|
||||
for (size_t i=0;i<100;i++) {
|
||||
autoassignment = chordal->sample();
|
||||
auto assignment = chordal->sample();
|
||||
vector<size_t> stats(scheduler.nrFaculty());
|
||||
scheduler.accumulateStats(assignment, stats);
|
||||
size_t max = *max_element(stats.begin(), stats.end());
|
||||
|
@ -143,7 +143,7 @@ void runLargeExample() {
|
|||
}
|
||||
#else
|
||||
gttic(large);
|
||||
autoMPE = scheduler.optimalAssignment();
|
||||
auto MPE = scheduler.optimalAssignment();
|
||||
gttoc(large);
|
||||
tictoc_finishedIteration();
|
||||
tictoc_print();
|
||||
|
@ -234,7 +234,7 @@ void sampleSolutions() {
|
|||
// now, sample schedules
|
||||
for (size_t n = 0; n < 500; n++) {
|
||||
vector<size_t> stats(19, 0);
|
||||
vector<Scheduler::sharedValues> samples;
|
||||
vector<Scheduler::Values> samples;
|
||||
for (size_t i = 0; i < NRSTUDENTS; i++) {
|
||||
samples.push_back(samplers[i]->sample());
|
||||
schedulers[i].accumulateStats(samples[i], stats);
|
||||
|
|
|
@ -153,7 +153,7 @@ void runLargeExample() {
|
|||
tictoc_finishedIteration();
|
||||
tictoc_print();
|
||||
for (size_t i=0;i<100;i++) {
|
||||
autoassignment = sample(*chordal);
|
||||
auto assignment = sample(*chordal);
|
||||
vector<size_t> stats(scheduler.nrFaculty());
|
||||
scheduler.accumulateStats(assignment, stats);
|
||||
size_t max = *max_element(stats.begin(), stats.end());
|
||||
|
@ -167,7 +167,7 @@ void runLargeExample() {
|
|||
}
|
||||
#else
|
||||
gttic(large);
|
||||
autoMPE = scheduler.optimalAssignment();
|
||||
auto MPE = scheduler.optimalAssignment();
|
||||
gttoc(large);
|
||||
tictoc_finishedIteration();
|
||||
tictoc_print();
|
||||
|
@ -259,7 +259,7 @@ void sampleSolutions() {
|
|||
// now, sample schedules
|
||||
for (size_t n = 0; n < 10000; n++) {
|
||||
vector<size_t> stats(nrFaculty, 0);
|
||||
vector<Scheduler::sharedValues> samples;
|
||||
vector<Scheduler::Values> samples;
|
||||
for (size_t i = 0; i < NRSTUDENTS; i++) {
|
||||
samples.push_back(samplers[i]->sample());
|
||||
schedulers[i].accumulateStats(samples[i], stats);
|
||||
|
|
Loading…
Reference in New Issue