Merge branch 'hybrid/hybrid-factor-graph' into hybrid/hybrid-optimize
commit
36d6097d2b
|
|
@ -108,7 +108,7 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
|
||||
|
||||
void print(
|
||||
const std::string &s = "HybridFactor\n",
|
||||
const std::string &s = "GaussianMixtureFactor\n",
|
||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||
/// @}
|
||||
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
* @file HybridBayesNet.cpp
|
||||
* @brief A bayes net of Gaussian Conditionals indexed by discrete keys.
|
||||
* @author Fan Jiang
|
||||
* @author Varun Agrawal
|
||||
* @author Shangjie Xue
|
||||
* @date January 2022
|
||||
*/
|
||||
|
|
@ -20,10 +21,32 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianMixture::shared_ptr HybridBayesNet::atGaussian(size_t i) const {
|
||||
return boost::dynamic_pointer_cast<GaussianMixture>(factors_.at(i)->inner());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
DiscreteConditional::shared_ptr HybridBayesNet::atDiscrete(size_t i) const {
|
||||
return boost::dynamic_pointer_cast<DiscreteConditional>(
|
||||
factors_.at(i)->inner());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianBayesNet HybridBayesNet::choose(
|
||||
const DiscreteValues &assignment) const {
|
||||
GaussianBayesNet gbn;
|
||||
for (size_t idx = 0; idx < size(); idx++) {
|
||||
GaussianMixture gm = *this->atGaussian(idx);
|
||||
gbn.push_back(gm(assignment));
|
||||
}
|
||||
return gbn;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
auto dag = HybridLookupDAG::FromBayesNet(*this);
|
||||
return dag.argmax();
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@
|
|||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
@ -35,11 +36,32 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
using shared_ptr = boost::shared_ptr<HybridBayesNet>;
|
||||
using sharedConditional = boost::shared_ptr<ConditionalType>;
|
||||
|
||||
/// Construct empty bayes net
|
||||
/** Construct empty bayes net */
|
||||
HybridBayesNet() = default;
|
||||
|
||||
/// Destructor
|
||||
virtual ~HybridBayesNet() {}
|
||||
/// Add HybridConditional to Bayes Net
|
||||
using Base::add;
|
||||
|
||||
/// Add a discrete conditional to the Bayes Net.
|
||||
void add(const DiscreteKey &key, const std::string &table) {
|
||||
push_back(
|
||||
HybridConditional(boost::make_shared<DiscreteConditional>(key, table)));
|
||||
}
|
||||
|
||||
/// Get a specific Gaussian mixture by index `i`.
|
||||
GaussianMixture::shared_ptr atGaussian(size_t i) const;
|
||||
|
||||
/// Get a specific discrete conditional by index `i`.
|
||||
DiscreteConditional::shared_ptr atDiscrete(size_t i) const;
|
||||
|
||||
/**
|
||||
* @brief Get the Gaussian Bayes Net which corresponds to a specific discrete
|
||||
* value assignment.
|
||||
*
|
||||
* @param assignment The discrete value assignment for the discrete keys.
|
||||
* @return GaussianBayesNet
|
||||
*/
|
||||
GaussianBayesNet choose(const DiscreteValues &assignment) const;
|
||||
|
||||
/// Solve the HybridBayesNet by back-substitution.
|
||||
HybridValues optimize() const;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,140 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridFactorGraph.h
|
||||
* @brief Hybrid factor graph base class that uses type erasure
|
||||
* @author Varun Agrawal
|
||||
* @date May 28, 2022
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteFactor.h>
|
||||
#include <gtsam/hybrid/HybridDiscreteFactor.h>
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
namespace gtsam {
|
||||
|
||||
using SharedFactor = boost::shared_ptr<Factor>;
|
||||
|
||||
/**
|
||||
* Hybrid Factor Graph
|
||||
* -----------------------
|
||||
* This is the base hybrid factor graph.
|
||||
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||
*/
|
||||
class HybridFactorGraph : public FactorGraph<HybridFactor> {
|
||||
public:
|
||||
using Base = FactorGraph<HybridFactor>;
|
||||
using This = HybridFactorGraph; ///< this class
|
||||
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
|
||||
|
||||
using Values = gtsam::Values; ///< backwards compatibility
|
||||
using Indices = KeyVector; ///> map from keys to values
|
||||
|
||||
protected:
|
||||
/// Check if FACTOR type is derived from DiscreteFactor.
|
||||
template <typename FACTOR>
|
||||
using IsDiscrete = typename std::enable_if<
|
||||
std::is_base_of<DiscreteFactor, FACTOR>::value>::type;
|
||||
|
||||
/// Check if FACTOR type is derived from HybridFactor.
|
||||
template <typename FACTOR>
|
||||
using IsHybrid = typename std::enable_if<
|
||||
std::is_base_of<HybridFactor, FACTOR>::value>::type;
|
||||
|
||||
public:
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
|
||||
/// Default constructor
|
||||
HybridFactorGraph() = default;
|
||||
|
||||
/**
|
||||
* Implicit copy/downcast constructor to override explicit template container
|
||||
* constructor. In BayesTree this is used for:
|
||||
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
|
||||
* */
|
||||
template <class DERIVEDFACTOR>
|
||||
HybridFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph) : Base(graph) {}
|
||||
|
||||
/// @}
|
||||
|
||||
// Allow use of selected FactorGraph methods:
|
||||
using Base::empty;
|
||||
using Base::reserve;
|
||||
using Base::size;
|
||||
using Base::operator[];
|
||||
using Base::add;
|
||||
using Base::push_back;
|
||||
using Base::resize;
|
||||
|
||||
/**
|
||||
* Add a discrete factor *pointer* to the internal discrete graph
|
||||
* @param discreteFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsDiscrete<FACTOR> push_discrete(
|
||||
const boost::shared_ptr<FACTOR>& discreteFactor) {
|
||||
Base::push_back(boost::make_shared<HybridDiscreteFactor>(discreteFactor));
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a discrete-continuous (Hybrid) factor *pointer* to the graph
|
||||
* @param hybridFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsHybrid<FACTOR> push_hybrid(const boost::shared_ptr<FACTOR>& hybridFactor) {
|
||||
Base::push_back(hybridFactor);
|
||||
}
|
||||
|
||||
/// delete emplace_shared.
|
||||
template <class FACTOR, class... Args>
|
||||
void emplace_shared(Args&&... args) = delete;
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsDiscrete<FACTOR> emplace_discrete(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_discrete(factor);
|
||||
}
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsHybrid<FACTOR> emplace_hybrid(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_hybrid(factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||
* Dynamically handles the factor type and assigns it to the correct
|
||||
* underlying container.
|
||||
*
|
||||
* @param sharedFactor The factor to add to this factor graph.
|
||||
*/
|
||||
void push_back(const SharedFactor& sharedFactor) {
|
||||
if (auto p = boost::dynamic_pointer_cast<DiscreteFactor>(sharedFactor)) {
|
||||
push_discrete(p);
|
||||
}
|
||||
if (auto p = boost::dynamic_pointer_cast<HybridFactor>(sharedFactor)) {
|
||||
push_hybrid(p);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
@ -19,6 +19,8 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/inference/EliminateableFactorGraph.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
|
|
@ -53,10 +55,9 @@ struct EliminationTraits<HybridGaussianFactorGraph> {
|
|||
typedef HybridBayesNet
|
||||
BayesNetType; ///< Type of Bayes net from sequential elimination
|
||||
typedef HybridEliminationTree
|
||||
EliminationTreeType; ///< Type of elimination tree
|
||||
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
|
||||
typedef HybridJunctionTree
|
||||
JunctionTreeType; ///< Type of Junction tree
|
||||
EliminationTreeType; ///< Type of elimination tree
|
||||
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
|
||||
typedef HybridJunctionTree JunctionTreeType; ///< Type of Junction tree
|
||||
/// The default dense elimination function
|
||||
static std::pair<boost::shared_ptr<ConditionalType>,
|
||||
boost::shared_ptr<FactorType> >
|
||||
|
|
@ -72,10 +73,16 @@ struct EliminationTraits<HybridGaussianFactorGraph> {
|
|||
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridGaussianFactorGraph
|
||||
: public FactorGraph<HybridFactor>,
|
||||
: public HybridFactorGraph,
|
||||
public EliminateableFactorGraph<HybridGaussianFactorGraph> {
|
||||
protected:
|
||||
/// Check if FACTOR type is derived from GaussianFactor.
|
||||
template <typename FACTOR>
|
||||
using IsGaussian = typename std::enable_if<
|
||||
std::is_base_of<GaussianFactor, FACTOR>::value>::type;
|
||||
|
||||
public:
|
||||
using Base = FactorGraph<HybridFactor>;
|
||||
using Base = HybridFactorGraph;
|
||||
using This = HybridGaussianFactorGraph; ///< this class
|
||||
using BaseEliminateable =
|
||||
EliminateableFactorGraph<This>; ///< for elimination
|
||||
|
|
@ -100,7 +107,13 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
|
||||
/// @}
|
||||
|
||||
using FactorGraph::add;
|
||||
using Base::empty;
|
||||
using Base::reserve;
|
||||
using Base::size;
|
||||
using Base::operator[];
|
||||
using Base::add;
|
||||
using Base::push_back;
|
||||
using Base::resize;
|
||||
|
||||
/// Add a Jacobian factor to the factor graph.
|
||||
void add(JacobianFactor&& factor);
|
||||
|
|
@ -113,6 +126,39 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
|
||||
/// Add a DecisionTreeFactor as a shared ptr.
|
||||
void add(boost::shared_ptr<DecisionTreeFactor> factor);
|
||||
|
||||
/**
|
||||
* Add a gaussian factor *pointer* to the internal gaussian factor graph
|
||||
* @param gaussianFactor - boost::shared_ptr to the factor to add
|
||||
*/
|
||||
template <typename FACTOR>
|
||||
IsGaussian<FACTOR> push_gaussian(
|
||||
const boost::shared_ptr<FACTOR>& gaussianFactor) {
|
||||
Base::push_back(boost::make_shared<HybridGaussianFactor>(gaussianFactor));
|
||||
}
|
||||
|
||||
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||
template <class FACTOR, class... Args>
|
||||
IsGaussian<FACTOR> emplace_gaussian(Args&&... args) {
|
||||
auto factor = boost::allocate_shared<FACTOR>(
|
||||
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||
push_gaussian(factor);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||
* Dynamically handles the factor type and assigns it to the correct
|
||||
* underlying container.
|
||||
*
|
||||
* @param sharedFactor The factor to add to this factor graph.
|
||||
*/
|
||||
void push_back(const SharedFactor& sharedFactor) {
|
||||
if (auto p = boost::dynamic_pointer_cast<GaussianFactor>(sharedFactor)) {
|
||||
push_gaussian(p);
|
||||
} else {
|
||||
Base::push_back(sharedFactor);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -18,17 +18,135 @@
|
|||
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#pragma once
|
||||
|
||||
using gtsam::symbol_shorthand::C;
|
||||
using gtsam::symbol_shorthand::X;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using symbol_shorthand::C;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test fixture with switching network.
|
||||
// TODO(Varun) Currently this is only linear. We need to add nonlinear support
|
||||
// and then update to
|
||||
// https://github.com/borglab/gtsam/pull/973/files#diff-58c02b3b197ebf731694946e87762d252e9eaa2f5c6c4ba22d618085b321ca23
|
||||
struct Switching {
|
||||
size_t K;
|
||||
DiscreteKeys modes;
|
||||
HybridGaussianFactorGraph linearizedFactorGraph;
|
||||
Values linearizationPoint;
|
||||
|
||||
using MotionModel = BetweenFactor<double>;
|
||||
// using MotionMixture = MixtureFactor<MotionModel>;
|
||||
|
||||
/// Create with given number of time steps.
|
||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
||||
: K(K) {
|
||||
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
||||
modes = addDiscreteModes(K);
|
||||
|
||||
// Create hybrid factor graph.
|
||||
// Add a prior on X(1).
|
||||
auto prior = boost::make_shared<JacobianFactor>(
|
||||
X(1), Matrix11::Ones() / prior_sigma, Vector1::Zero());
|
||||
linearizedFactorGraph.push_back(prior);
|
||||
|
||||
// Add "motion models".
|
||||
linearizedFactorGraph = addMotionModels(K);
|
||||
|
||||
// Add measurement factors
|
||||
for (size_t k = 1; k <= K; k++) {
|
||||
linearizedFactorGraph.emplace_gaussian<JacobianFactor>(
|
||||
X(k), Matrix11::Ones() / 0.1, Vector1::Zero());
|
||||
}
|
||||
|
||||
// Add "mode chain"
|
||||
linearizedFactorGraph = addModeChain(linearizedFactorGraph);
|
||||
|
||||
// Create the linearization point.
|
||||
for (size_t k = 1; k <= K; k++) {
|
||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
||||
}
|
||||
}
|
||||
|
||||
/// Create DiscreteKeys for K binary modes.
|
||||
DiscreteKeys addDiscreteModes(size_t K) {
|
||||
DiscreteKeys m;
|
||||
for (size_t k = 0; k <= K; k++) {
|
||||
m.emplace_back(M(k), 2);
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
/// Helper function to add motion models for each [k, k+1] interval.
|
||||
HybridGaussianFactorGraph addMotionModels(size_t K) {
|
||||
HybridGaussianFactorGraph hgfg;
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
auto keys = {X(k), X(k + 1)};
|
||||
auto components = motionModels(k);
|
||||
hgfg.emplace_hybrid<GaussianMixtureFactor>(keys, DiscreteKeys{modes[k]},
|
||||
components);
|
||||
}
|
||||
return hgfg;
|
||||
}
|
||||
|
||||
// Create motion models for a given time step
|
||||
static std::vector<GaussianFactor::shared_ptr> motionModels(
|
||||
size_t k, double sigma = 1.0) {
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
auto still = boost::make_shared<JacobianFactor>(
|
||||
X(k), -Matrix11::Ones() / sigma, X(k + 1),
|
||||
Matrix11::Ones() / sigma, Vector1::Zero()),
|
||||
moving = boost::make_shared<JacobianFactor>(
|
||||
X(k), -Matrix11::Ones() / sigma, X(k + 1),
|
||||
Matrix11::Ones() / sigma, -Vector1::Ones() / sigma);
|
||||
return {boost::dynamic_pointer_cast<GaussianFactor>(still),
|
||||
boost::dynamic_pointer_cast<GaussianFactor>(moving)};
|
||||
}
|
||||
|
||||
// // Add "mode chain" to NonlinearHybridFactorGraph
|
||||
// void addModeChain(HybridNonlinearFactorGraph& fg) {
|
||||
// auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||
// fg.push_discrete(prior);
|
||||
// for (size_t k = 1; k < K - 1; k++) {
|
||||
// auto parents = {modes[k]};
|
||||
// auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
// modes[k + 1], parents, "1/2 3/2");
|
||||
// fg.push_discrete(conditional);
|
||||
// }
|
||||
// }
|
||||
|
||||
// Add "mode chain" to GaussianHybridFactorGraph
|
||||
HybridGaussianFactorGraph addModeChain(HybridGaussianFactorGraph& fg) {
|
||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||
fg.push_discrete(prior);
|
||||
for (size_t k = 1; k < K - 1; k++) {
|
||||
auto parents = {modes[k]};
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
modes[k + 1], parents, "1/2 3/2");
|
||||
fg.push_discrete(conditional);
|
||||
}
|
||||
return fg;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Create a switching system chain. A switching system is a continuous
|
||||
* system which depends on a discrete mode at each time step of the chain.
|
||||
*
|
||||
* @param n The number of chain elements.
|
||||
* @param keyFunc The functional to help specify the continuous key.
|
||||
* @param dKeyFunc The functional to help specify the discrete key.
|
||||
* @return HybridGaussianFactorGraph::shared_ptr
|
||||
*/
|
||||
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
||||
size_t n, std::function<Key(int)> keyFunc = X,
|
||||
std::function<Key(int)> dKeyFunc = C) {
|
||||
|
|
@ -54,9 +172,19 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
|||
return boost::make_shared<HybridGaussianFactorGraph>(std::move(hfg));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the ordering as a binary tree such that all parent nodes are
|
||||
* above their children.
|
||||
*
|
||||
* This will result in a nested dissection Bayes tree after elimination.
|
||||
*
|
||||
* @param input The original ordering.
|
||||
* @return std::pair<KeyVector, std::vector<int>>
|
||||
*/
|
||||
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
||||
std::vector<Key> &input) {
|
||||
std::vector<Key>& input) {
|
||||
KeyVector new_order;
|
||||
|
||||
std::vector<int> levels(input.size());
|
||||
std::function<void(std::vector<Key>::iterator, std::vector<Key>::iterator,
|
||||
int)>
|
||||
|
|
@ -79,7 +207,7 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
|||
|
||||
bsg(input.begin(), input.end(), 0);
|
||||
std::reverse(new_order.begin(), new_order.end());
|
||||
// std::reverse(levels.begin(), levels.end());
|
||||
|
||||
return {new_order, levels};
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -60,26 +60,30 @@ using gtsam::symbol_shorthand::X;
|
|||
using gtsam::symbol_shorthand::Y;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, creation) {
|
||||
HybridConditional test;
|
||||
TEST(HybridGaussianFactorGraph, Creation) {
|
||||
HybridConditional conditional;
|
||||
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(X(0), I_3x3, Z_3x1)));
|
||||
|
||||
GaussianMixture clgc(
|
||||
{X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{C(0), 2}),
|
||||
GaussianMixture::Conditionals(
|
||||
C(0),
|
||||
boost::make_shared<GaussianConditional>(X(0), Z_3x1, I_3x3, X(1),
|
||||
I_3x3),
|
||||
boost::make_shared<GaussianConditional>(X(0), Vector3::Ones(), I_3x3,
|
||||
X(1), I_3x3)));
|
||||
GTSAM_PRINT(clgc);
|
||||
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
|
||||
// graph
|
||||
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{C(0), 2}),
|
||||
GaussianMixture::Conditionals(
|
||||
C(0),
|
||||
boost::make_shared<GaussianConditional>(
|
||||
X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
||||
boost::make_shared<GaussianConditional>(
|
||||
X(0), Vector3::Ones(), I_3x3, X(1), I_3x3)));
|
||||
hfg.add(gm);
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, hfg.size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminate) {
|
||||
TEST(HybridGaussianFactorGraph, EliminateSequential) {
|
||||
// Test elimination of a single variable.
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
|
||||
|
|
@ -90,11 +94,13 @@ TEST(HybridGaussianFactorGraph, eliminate) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, eliminateMultifrontal) {
|
||||
TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
|
||||
// Test multifrontal elimination
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c(C(1), 2);
|
||||
|
||||
// Add priors on x0 and c1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
|
||||
|
|
@ -112,9 +118,12 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
|||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
|
||||
// Add prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Add factor between x0 and x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// Add a gaussian mixture factor ϕ(x1, c1)
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
|
@ -125,9 +134,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
|||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
|
||||
|
||||
auto dc = result->at(2)->asDiscreteConditional();
|
||||
DiscreteValues dv;
|
||||
dv[C(1)] = 0;
|
||||
EXPECT_DOUBLES_EQUAL(0.6225, dc->operator()(dv), 1e-3);
|
||||
DiscreteValues mode;
|
||||
mode[C(1)] = 0;
|
||||
EXPECT_DOUBLES_EQUAL(0.6225, (*dc)(mode), 1e-3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -136,26 +145,26 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
|||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
|
||||
// Add prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Add factor between x0 and x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
// hfg.add(GaussianMixtureFactor({X(0)}, {c1}, dt));
|
||||
|
||||
// Discrete probability table for c1
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c1, {2, 8})));
|
||||
// Joint discrete probability table for c1, c2
|
||||
hfg.add(HybridDiscreteFactor(
|
||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(2), 2}, {C(3), 2}}, "1
|
||||
// 2 3 4"))); hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(3), 2},
|
||||
// {C(1), 2}}, "1 2 2 1")));
|
||||
|
||||
auto result = hfg.eliminateSequential(
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
||||
|
||||
GTSAM_PRINT(*result);
|
||||
EXPECT_LONGS_EQUAL(4, result->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -167,28 +176,19 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
|||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
// C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
// boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
// hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||
{X(1)}, {{C(1), 2}},
|
||||
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
||||
|
||||
// hfg.add(GaussianMixtureFactor({X(0)}, {c1}, dt));
|
||||
hfg.add(DecisionTreeFactor(c1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4"));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(2), 2}, {C(3), 2}}, "1
|
||||
// 2 3 4"))); hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(3), 2},
|
||||
// {C(1), 2}}, "1 2 2 1")));
|
||||
|
||||
auto result = hfg.eliminateMultifrontal(
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
||||
|
||||
GTSAM_PRINT(*result);
|
||||
GTSAM_PRINT(*result->marginalFactor(C(2)));
|
||||
// GTSAM_PRINT(*result);
|
||||
// GTSAM_PRINT(*result->marginalFactor(C(2)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -197,30 +197,28 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
|||
|
||||
DiscreteKey c(C(1), 2);
|
||||
|
||||
// Prior on x0
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
// Factor between x0-x1
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
// Decision tree with different modes on x1
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
// Hybrid factor P(x1|c1)
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c}, dt));
|
||||
// Prior factor on c1
|
||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1
|
||||
// 2 3 4")));
|
||||
|
||||
// Get a constrained ordering keeping c1 last
|
||||
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {C(1)});
|
||||
|
||||
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
||||
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
||||
|
||||
GTSAM_PRINT(*hbt);
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
*/
|
||||
EXPECT_LONGS_EQUAL(3, hbt->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -235,10 +233,6 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
|||
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
|
||||
|
||||
{
|
||||
// DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
// C(0), boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
||||
// boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||
{X(0)}, {{C(0), 2}},
|
||||
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
||||
|
|
@ -251,7 +245,6 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
|||
hfg.add(GaussianMixtureFactor({X(2)}, {{C(1), 2}}, dt1));
|
||||
}
|
||||
|
||||
// hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
||||
hfg.add(HybridDiscreteFactor(
|
||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
||||
|
||||
|
|
@ -275,26 +268,37 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
|||
auto ordering_full =
|
||||
Ordering::ColamdConstrainedLast(hfg, {C(0), C(1), C(2), C(3)});
|
||||
|
||||
GTSAM_PRINT(ordering_full);
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
GTSAM_PRINT(*hbt);
|
||||
// GTSAM_PRINT(*hbt);
|
||||
// GTSAM_PRINT(*remaining);
|
||||
|
||||
GTSAM_PRINT(*remaining);
|
||||
|
||||
hbt->dot(std::cout);
|
||||
// hbt->marginalFactor(X(1))->print("HBT: ");
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
|
||||
marginal on X(1), which is not possible because it involves eliminating
|
||||
discrete before continuous. The solution to this, however, is in Murphy02.
|
||||
TLDR is that this is 1. expensive and 2. inexact. nevertheless it is doable.
|
||||
And I believe that we should do this.
|
||||
*/
|
||||
}
|
||||
|
||||
void dotPrint(const HybridGaussianFactorGraph::shared_ptr &hfg,
|
||||
const HybridBayesTree::shared_ptr &hbt,
|
||||
const Ordering &ordering) {
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering)->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// TODO(fan): make a graph like Varun's paper one
|
||||
TEST(HybridGaussianFactorGraph, Switching) {
|
||||
|
|
@ -328,9 +332,6 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
|||
for (auto &l : lvls) {
|
||||
l = -l;
|
||||
}
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
std::cout << "\n";
|
||||
}
|
||||
{
|
||||
std::vector<int> naturalC(N - 1);
|
||||
|
|
@ -344,63 +345,19 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
|||
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
||||
std::tie(ndC, lvls) = makeBinaryOrdering(ordC);
|
||||
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
}
|
||||
auto ordering_full = Ordering(ordering);
|
||||
|
||||
// auto ordering_full =
|
||||
// Ordering();
|
||||
|
||||
// for (int i = 1; i <= 9; i++) {
|
||||
// ordering_full.push_back(X(i));
|
||||
// }
|
||||
|
||||
// for (int i = 1; i < 9; i++) {
|
||||
// ordering_full.push_back(C(i));
|
||||
// }
|
||||
|
||||
// auto ordering_full =
|
||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||
// X(5),
|
||||
// C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8)});
|
||||
|
||||
// GTSAM_PRINT(*hfg);
|
||||
GTSAM_PRINT(ordering_full);
|
||||
// GTSAM_PRINT(ordering_full);
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
// GTSAM_PRINT(*hbt);
|
||||
|
||||
// GTSAM_PRINT(*remaining);
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
}
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
// dw.positionHints['c'] = 2;
|
||||
// dw.positionHints['x'] = 1;
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering_full)
|
||||
->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
/*
|
||||
Explanation: the Junction tree will need to reeliminate to get to the marginal
|
||||
on X(1), which is not possible because it involves eliminating discrete before
|
||||
continuous. The solution to this, however, is in Murphy02. TLDR is that this
|
||||
is 1. expensive and 2. inexact. neverless it is doable. And I believe that we
|
||||
should do this.
|
||||
*/
|
||||
hbt->marginalFactor(C(11))->print("HBT: ");
|
||||
// hbt->marginalFactor(C(11))->print("HBT: ");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -436,9 +393,6 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|||
for (auto &l : lvls) {
|
||||
l = -l;
|
||||
}
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
std::cout << "\n";
|
||||
}
|
||||
{
|
||||
std::vector<int> naturalC(N - 1);
|
||||
|
|
@ -452,40 +406,16 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|||
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
||||
std::tie(ndC, lvls) = makeBinaryOrdering(ordC);
|
||||
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
||||
std::copy(lvls.begin(), lvls.end(),
|
||||
std::ostream_iterator<int>(std::cout, ","));
|
||||
}
|
||||
auto ordering_full = Ordering(ordering);
|
||||
|
||||
// GTSAM_PRINT(*hfg);
|
||||
GTSAM_PRINT(ordering_full);
|
||||
// GTSAM_PRINT(ordering_full);
|
||||
|
||||
HybridBayesTree::shared_ptr hbt;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||
|
||||
// GTSAM_PRINT(*hbt);
|
||||
|
||||
// GTSAM_PRINT(*remaining);
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
dw.positionHints['c'] = 2;
|
||||
dw.positionHints['x'] = 1;
|
||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||
std::cout << "\n";
|
||||
hbt->dot(std::cout);
|
||||
}
|
||||
|
||||
{
|
||||
DotWriter dw;
|
||||
// dw.positionHints['c'] = 2;
|
||||
// dw.positionHints['x'] = 1;
|
||||
std::cout << "\n";
|
||||
std::cout << hfg->eliminateSequential(ordering_full)
|
||||
->dot(DefaultKeyFormatter, dw);
|
||||
}
|
||||
|
||||
auto new_fg = makeSwitchingChain(12);
|
||||
auto isam = HybridGaussianISAM(*hbt);
|
||||
|
||||
|
|
@ -494,13 +424,14 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|||
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
||||
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
||||
isam.update(factorGraph);
|
||||
std::cout << isam.dot();
|
||||
isam.marginalFactor(C(11))->print();
|
||||
// std::cout << isam.dot();
|
||||
// isam.marginalFactor(C(11))->print();
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||
// TODO(Varun) Actually test something!
|
||||
TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||
const int N = 7;
|
||||
auto hfg = makeSwitchingChain(N, X);
|
||||
hfg->push_back(*makeSwitchingChain(N, Y, D));
|
||||
|
|
@ -519,21 +450,6 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
ordX.emplace_back(Y(i));
|
||||
}
|
||||
|
||||
// {
|
||||
// KeyVector ndX;
|
||||
// std::vector<int> lvls;
|
||||
// std::tie(ndX, lvls) = makeBinaryOrdering(naturalX);
|
||||
// std::copy(ndX.begin(), ndX.end(), std::back_inserter(ordering));
|
||||
// std::copy(lvls.begin(), lvls.end(),
|
||||
// std::ostream_iterator<int>(std::cout, ","));
|
||||
// std::cout << "\n";
|
||||
|
||||
// for (size_t i = 0; i < N; i++) {
|
||||
// ordX.emplace_back(X(ndX[i]));
|
||||
// ordX.emplace_back(Y(ndX[i]));
|
||||
// }
|
||||
// }
|
||||
|
||||
for (size_t i = 1; i <= N - 1; i++) {
|
||||
ordX.emplace_back(C(i));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,93 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridBayesNet.cpp
|
||||
* @brief Unit tests for HybridBayesNet
|
||||
* @author Varun Agrawal
|
||||
* @author Fan Jiang
|
||||
* @author Frank Dellaert
|
||||
* @date December 2021
|
||||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
static const DiscreteKey Asia(0, 2);
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test creation
|
||||
TEST(HybridBayesNet, Creation) {
|
||||
HybridBayesNet bayesNet;
|
||||
|
||||
bayesNet.add(Asia, "99/1");
|
||||
|
||||
DiscreteConditional expected(Asia, "99/1");
|
||||
|
||||
CHECK(bayesNet.atDiscrete(0));
|
||||
auto& df = *bayesNet.atDiscrete(0);
|
||||
EXPECT(df.equals(expected));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test choosing an assignment of conditionals
|
||||
TEST(HybridBayesNet, Choose) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering ordering;
|
||||
for (auto&& kvp : s.linearizationPoint) {
|
||||
ordering += kvp.key;
|
||||
}
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
DiscreteValues assignment;
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
assignment[M(3)] = 0;
|
||||
|
||||
GaussianBayesNet gbn = hybridBayesNet->choose(assignment);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, gbn.size());
|
||||
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atGaussian(0)))(assignment),
|
||||
*gbn.at(0)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atGaussian(1)))(assignment),
|
||||
*gbn.at(1)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atGaussian(2)))(assignment),
|
||||
*gbn.at(2)));
|
||||
EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
hybridBayesNet->atGaussian(3)))(assignment),
|
||||
*gbn.at(3)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
Loading…
Reference in New Issue