remove monocular triangulation hack and make tests pass again

release/4.3a0
cbeall3 2015-07-19 20:37:16 -04:00
parent 3f0e695cc9
commit 36c652ac40
2 changed files with 56 additions and 72 deletions

View File

@ -234,67 +234,58 @@ public:
TriangulationResult triangulateSafe(const Cameras& cameras) const {
size_t m = cameras.size();
if (m < 2) { // if we have a single pose the corresponding factor is uninformative
return TriangulationResult::Degenerate();
}
// if (m < 2) { // if we have a single pose the corresponding factor is uninformative
// return TriangulationResult::Degenerate();
// }
bool retriangulate = decideIfTriangulate(cameras);
if (retriangulate) {
// We triangulate the 3D position of the landmark
std::cout << "triangulateSafe i \n" << std::endl;
//TODO: Chris will replace this with something else for stereo
// point_ = triangulatePoint3<CALIBRATION>(cameras, this->measured_,
// rankTolerance_, enableEPI_);
// // // Temporary hack to use monocular triangulation
std::vector<Point2> mono_measurements;
BOOST_FOREACH(const StereoPoint2& sp, this->measured_) {
mono_measurements.push_back(sp.point2());
std::vector<Point3> reprojections;
reprojections.reserve(m);
for(size_t i = 0; i < m; i++) {
reprojections.push_back(cameras[i].backproject(measured_[i]));
}
std::vector<PinholeCamera<Cal3_S2> > mono_cameras;
BOOST_FOREACH(const StereoCamera& camera, cameras) {
const Pose3& pose = camera.pose();
const Cal3_S2& K = camera.calibration()->calibration();
mono_cameras.push_back(PinholeCamera<Cal3_S2>(pose, K));
Point3 pw_sum;
BOOST_FOREACH(const Point3& pw, reprojections) {
pw_sum = pw_sum + pw;
}
// Point3 point = triangulatePoint3<PinholeCamera<Cal3_S2> >(mono_cameras, mono_measurements,
// params_.triangulation.rankTolerance, params_.triangulation.enableEPI);
result_ = gtsam::triangulateSafe(mono_cameras, mono_measurements,
params_.triangulation);
// average reprojected landmark
Point3 pw_avg = pw_sum / double(m);
// // // End temporary hack
// check if it lies in front of all cameras
bool cheirality_ok = true;
double totalReprojError = 0;
for(size_t i = 0; i < m; i++) {
const Pose3& pose = cameras[i].pose();
const Point3& pl = pose.transform_to(pw_avg);
if (pl.z() <= 0) {
cheirality_ok = false;
break;
}
// FIXME: temporary: triangulation using only first camera
// const StereoPoint2& z0 = this->measured_.at(0);
// point_ = cameras[0].backproject(z0);
// check landmark distance
if (params_.triangulation.landmarkDistanceThreshold > 0 &&
pl.norm() > params_.triangulation.landmarkDistanceThreshold) {
return TriangulationResult::Degenerate();
}
// Check landmark distance and reprojection errors to avoid outliers
// double totalReprojError = 0.0;
// size_t i = 0;
// BOOST_FOREACH(const StereoCamera& camera, cameras) {
// Point3 cameraTranslation = camera.pose().translation();
// // we discard smart factors corresponding to points that are far away
// if (cameraTranslation.distance(*result_) > params_.triangulation.landmarkDistanceThreshold) {
// return TriangulationResult::Degenerate();
// }
// const StereoPoint2& zi = this->measured_.at(i);
// try {
// StereoPoint2 reprojectionError(camera.project(*result_) - zi);
// totalReprojError += reprojectionError.vector().norm();
// } catch (CheiralityException) {
// return TriangulationResult::BehindCamera();
// }
// i += 1;
// }
//std::cout << "totalReprojError error: " << totalReprojError << std::endl;
// we discard smart factors that have large reprojection error
// if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
// && totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold)
// return TriangulationResult::Degenerate();
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0) {
const StereoPoint2& zi = measured_[i];
StereoPoint2 reprojectionError(cameras[i].project(pw_avg) - zi);
totalReprojError += reprojectionError.vector().norm();
}
} // for
// result_ = TriangulationResult(point);
if (params_.triangulation.dynamicOutlierRejectionThreshold > 0
&& totalReprojError / m > params_.triangulation.dynamicOutlierRejectionThreshold)
return TriangulationResult::Degenerate();
if(cheirality_ok == false) {
result_ = TriangulationResult::BehindCamera();
}
result_ = TriangulationResult(pw_avg);
}
return result_;
@ -389,11 +380,11 @@ public:
return boost::make_shared<JacobianFactorSVD<Base::Dim, ZDim> >(this->keys_);
}
/// linearize to a Hessianfactor
virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
const Values& values, double lambda = 0.0) const {
return createHessianFactor(this->cameras(values), lambda);
}
// /// linearize to a Hessianfactor
// virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
// const Values& values, double lambda = 0.0) const {
// return createHessianFactor(this->cameras(values), lambda);
// }
// /// linearize to an Implicit Schur factor
// virtual boost::shared_ptr<RegularImplicitSchurFactor<StereoCamera> > linearizeToImplicit(
@ -420,8 +411,8 @@ public:
return createHessianFactor(cameras, lambda);
// case IMPLICIT_SCHUR:
// return createRegularImplicitSchurFactor(cameras, lambda);
// case JACOBIAN_SVD:
// return createJacobianSVDFactor(cameras, lambda);
case JACOBIAN_SVD:
return createJacobianSVDFactor(cameras, lambda);
// case JACOBIAN_Q:
// return createJacobianQFactor(cameras, lambda);
default:
@ -535,14 +526,11 @@ public:
else
result_ = triangulateSafe(cameras);
std::cout << "Triangulation result in totalReprojectionError" << std::endl;
std::cout << result_ << std::endl;
if (result_)
// All good, just use version in base class
return Base::totalReprojectionError(cameras, *result_);
else if (params_.degeneracyMode == HANDLE_INFINITY) {
throw("Backproject at infinity");
throw(std::runtime_error("Backproject at infinity not implemented for SmartStereo."));
// // Otherwise, manage the exceptions with rotation-only factors
// const StereoPoint2& z0 = this->measured_.at(0);
// Unit3 backprojected; //= cameras.front().backprojectPointAtInfinity(z0);

View File

@ -124,7 +124,7 @@ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
Point3(0, 0, 1));
StereoCamera level_camera(level_pose, K2);
cout << "Test 122 STARTS HERE ----------------------------------------- 122 " << endl;
// create second camera 1 meter to the right of first camera
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
StereoCamera level_camera_right(level_pose_right, K2);
@ -277,7 +277,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
EXPECT_DOUBLES_EQUAL(1888864, graph.error(values), 1);
EXPECT_DOUBLES_EQUAL(991819.94, graph.error(values), 1);
Values result;
gttic_(SmartStereoProjectionPoseFactor);
@ -286,7 +286,7 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
gttoc_(SmartStereoProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-6);
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
VectorValues delta = GFG->optimize();
@ -436,7 +436,6 @@ TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
vector<Key> views;
@ -474,7 +473,6 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
SmartStereoProjectionParams params;
params.setLinearizationMode(JACOBIAN_SVD);
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
@ -668,11 +666,8 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
vector<StereoPoint2> measurements_cam3 = stereo_projectToMultipleCameras(cam1,
cam2, cam3, landmark3);
// Create smartfactors
double rankTol = 10;
SmartStereoProjectionParams params;
params.setRankTolerance(rankTol);
params.setRankTolerance(10);
SmartFactor::shared_ptr smartFactor1(new SmartFactor(params));
smartFactor1->add(measurements_cam1, views, model, K);
@ -979,6 +974,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
/* *************************************************************************/
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
@ -1023,7 +1019,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRot->information(), 1e-8));
hessianFactorRot->information(), 1e-7));
Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
@ -1039,7 +1035,7 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRotTran->information(), 1e-8));
hessianFactorRotTran->information(), 1e-6));
}
/* ************************************************************************* */