Merge branch 'develop' into fix-1496
commit
369d08bc92
|
|
@ -99,26 +99,67 @@ jobs:
|
|||
cmake -B build -S . -DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF -DBOOST_ROOT="${env:BOOST_ROOT}" -DBOOST_INCLUDEDIR="${env:BOOST_ROOT}\boost\include" -DBOOST_LIBRARYDIR="${env:BOOST_ROOT}\lib"
|
||||
|
||||
- name: Build
|
||||
shell: bash
|
||||
run: |
|
||||
# Since Visual Studio is a multi-generator, we need to use --config
|
||||
# https://stackoverflow.com/a/24470998/1236990
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target gtsam
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target gtsam_unstable
|
||||
cmake --build build -j 4 --config ${{ matrix.build_type }} --target wrap
|
||||
|
||||
# Target doesn't exist
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target wrap
|
||||
|
||||
- name: Test
|
||||
shell: bash
|
||||
run: |
|
||||
# Run GTSAM tests
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.base
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.basis
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.discrete
|
||||
|
||||
# Compilation error
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry
|
||||
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.inference
|
||||
|
||||
# Compile. Fail with exception
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.linear
|
||||
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.navigation
|
||||
#cmake --build build -j 4 --config ${{ matrix.build_type }} --target check.nonlinear
|
||||
#cmake --build build -j 4 --config ${{ matrix.build_type }} --target check.sam
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.sam
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.sfm
|
||||
#cmake --build build -j 4 --config ${{ matrix.build_type }} --target check.slam
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.symbolic
|
||||
|
||||
# Compile. Fail with exception
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.hybrid
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear
|
||||
|
||||
# Compilation error
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam
|
||||
|
||||
|
||||
# Run GTSAM_UNSTABLE tests
|
||||
#cmake --build build -j 4 --config ${{ matrix.build_type }} --target check.base_unstable
|
||||
cmake --build build -j4 --config ${{ matrix.build_type }} --target check.base_unstable
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.geometry_unstable
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.linear_unstable
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.discrete_unstable
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.dynamics_unstable
|
||||
|
||||
# Compile. Fail with exception
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.nonlinear_unstable
|
||||
|
||||
# Compilation error
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.slam_unstable
|
||||
|
||||
# Compilation error
|
||||
# cmake --build build -j4 --config ${{ matrix.build_type }} --target check.partition
|
||||
|
|
|
|||
|
|
@ -32,6 +32,14 @@ set (CMAKE_PROJECT_VERSION_PATCH ${GTSAM_VERSION_PATCH})
|
|||
###############################################################################
|
||||
# Gather information, perform checks, set defaults
|
||||
|
||||
if(MSVC)
|
||||
set(MSVC_LINKER_FLAGS "/FORCE:MULTIPLE")
|
||||
set(CMAKE_EXE_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
|
||||
set(CMAKE_MODULE_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
|
||||
set(CMAKE_SHARED_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
|
||||
set(CMAKE_STATIC_LINKER_FLAGS ${MSVC_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
|
||||
include(GtsamMakeConfigFile)
|
||||
include(GNUInstallDirs)
|
||||
|
|
|
|||
|
|
@ -21,6 +21,10 @@ else()
|
|||
find_dependency(Boost @BOOST_FIND_MINIMUM_VERSION@ COMPONENTS @BOOST_FIND_MINIMUM_COMPONENTS@)
|
||||
endif()
|
||||
|
||||
if(@GTSAM_USE_TBB@)
|
||||
find_dependency(TBB 4.4 COMPONENTS tbb tbbmalloc)
|
||||
endif()
|
||||
|
||||
if(@GTSAM_USE_SYSTEM_EIGEN@)
|
||||
find_dependency(Eigen3 REQUIRED)
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -80,7 +80,7 @@ using Weights = Eigen::Matrix<double, 1, -1>; /* 1xN vector */
|
|||
*
|
||||
* @ingroup basis
|
||||
*/
|
||||
Matrix kroneckerProductIdentity(size_t M, const Weights& w);
|
||||
Matrix GTSAM_EXPORT kroneckerProductIdentity(size_t M, const Weights& w);
|
||||
|
||||
/**
|
||||
* CRTP Base class for function bases
|
||||
|
|
|
|||
|
|
@ -82,6 +82,22 @@ namespace gtsam {
|
|||
ADT::print("", formatter);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTreeFactor DecisionTreeFactor::apply(ADT::Unary op) const {
|
||||
// apply operand
|
||||
ADT result = ADT::apply(op);
|
||||
// Make a new factor
|
||||
return DecisionTreeFactor(discreteKeys(), result);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTreeFactor DecisionTreeFactor::apply(ADT::UnaryAssignment op) const {
|
||||
// apply operand
|
||||
ADT result = ADT::apply(op);
|
||||
// Make a new factor
|
||||
return DecisionTreeFactor(discreteKeys(), result);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTreeFactor DecisionTreeFactor::apply(const DecisionTreeFactor& f,
|
||||
ADT::Binary op) const {
|
||||
|
|
@ -101,14 +117,6 @@ namespace gtsam {
|
|||
return DecisionTreeFactor(keys, result);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTreeFactor DecisionTreeFactor::apply(ADT::UnaryAssignment op) const {
|
||||
// apply operand
|
||||
ADT result = ADT::apply(op);
|
||||
// Make a new factor
|
||||
return DecisionTreeFactor(discreteKeys(), result);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
DecisionTreeFactor::shared_ptr DecisionTreeFactor::combine(
|
||||
size_t nrFrontals, ADT::Binary op) const {
|
||||
|
|
@ -188,10 +196,45 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************ */
|
||||
std::vector<double> DecisionTreeFactor::probabilities() const {
|
||||
// Set of all keys
|
||||
std::set<Key> allKeys(keys().begin(), keys().end());
|
||||
|
||||
std::vector<double> probs;
|
||||
for (auto&& [key, value] : enumerate()) {
|
||||
probs.push_back(value);
|
||||
|
||||
/* An operation that takes each leaf probability, and computes the
|
||||
* nrAssignments by checking the difference between the keys in the factor
|
||||
* and the keys in the assignment.
|
||||
* The nrAssignments is then used to append
|
||||
* the correct number of leaf probability values to the `probs` vector
|
||||
* defined above.
|
||||
*/
|
||||
auto op = [&](const Assignment<Key>& a, double p) {
|
||||
// Get all the keys in the current assignment
|
||||
std::set<Key> assignment_keys;
|
||||
for (auto&& [k, _] : a) {
|
||||
assignment_keys.insert(k);
|
||||
}
|
||||
|
||||
// Find the keys missing in the assignment
|
||||
std::vector<Key> diff;
|
||||
std::set_difference(allKeys.begin(), allKeys.end(),
|
||||
assignment_keys.begin(), assignment_keys.end(),
|
||||
std::back_inserter(diff));
|
||||
|
||||
// Compute the total number of assignments in the (pruned) subtree
|
||||
size_t nrAssignments = 1;
|
||||
for (auto&& k : diff) {
|
||||
nrAssignments *= cardinalities_.at(k);
|
||||
}
|
||||
// Add p `nrAssignments` times to the probs vector.
|
||||
probs.insert(probs.end(), nrAssignments, p);
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
// Go through the tree
|
||||
this->apply(op);
|
||||
|
||||
return probs;
|
||||
}
|
||||
|
||||
|
|
@ -305,11 +348,7 @@ namespace gtsam {
|
|||
const size_t N = maxNrAssignments;
|
||||
|
||||
// Get the probabilities in the decision tree so we can threshold.
|
||||
std::vector<double> probabilities;
|
||||
// NOTE(Varun) this is potentially slow due to the cartesian product
|
||||
for (auto&& [assignment, prob] : this->enumerate()) {
|
||||
probabilities.push_back(prob);
|
||||
}
|
||||
std::vector<double> probabilities = this->probabilities();
|
||||
|
||||
// The number of probabilities can be lower than max_leaves
|
||||
if (probabilities.size() <= N) {
|
||||
|
|
|
|||
|
|
@ -186,6 +186,13 @@ namespace gtsam {
|
|||
* Apply unary operator (*this) "op" f
|
||||
* @param op a unary operator that operates on AlgebraicDecisionTree
|
||||
*/
|
||||
DecisionTreeFactor apply(ADT::Unary op) const;
|
||||
|
||||
/**
|
||||
* Apply unary operator (*this) "op" f
|
||||
* @param op a unary operator that operates on AlgebraicDecisionTree. Takes
|
||||
* both the assignment and the value.
|
||||
*/
|
||||
DecisionTreeFactor apply(ADT::UnaryAssignment op) const;
|
||||
|
||||
/**
|
||||
|
|
|
|||
|
|
@ -22,6 +22,8 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <gtsam/dllexport.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
* @brief A simple parser that replaces the boost spirit parser.
|
||||
|
|
@ -47,7 +49,7 @@ namespace gtsam {
|
|||
*
|
||||
* Also fails if the rows are not of the same size.
|
||||
*/
|
||||
struct SignatureParser {
|
||||
struct GTSAM_EXPORT SignatureParser {
|
||||
using Row = std::vector<double>;
|
||||
using Table = std::vector<Row>;
|
||||
|
||||
|
|
|
|||
|
|
@ -56,9 +56,45 @@ TableFactor::TableFactor(const DiscreteKeys& dkeys,
|
|||
sort(sorted_dkeys_.begin(), sorted_dkeys_.end());
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
TableFactor::TableFactor(const DiscreteKeys& dkeys,
|
||||
const DecisionTree<Key, double>& dtree)
|
||||
: TableFactor(dkeys, DecisionTreeFactor(dkeys, dtree)) {}
|
||||
|
||||
/**
|
||||
* @brief Compute the correct ordering of the leaves in the decision tree.
|
||||
*
|
||||
* This is done by first taking all the values which have modulo 0 value with
|
||||
* the cardinality of the innermost key `n`, and we go up to modulo n.
|
||||
*
|
||||
* @param dt The DecisionTree
|
||||
* @return std::vector<double>
|
||||
*/
|
||||
std::vector<double> ComputeLeafOrdering(const DiscreteKeys& dkeys,
|
||||
const DecisionTreeFactor& dt) {
|
||||
std::vector<double> probs = dt.probabilities();
|
||||
std::vector<double> ordered;
|
||||
|
||||
size_t n = dkeys[0].second;
|
||||
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
for (size_t idx = 0; idx < probs.size(); ++idx) {
|
||||
if (idx % n == k) {
|
||||
ordered.push_back(probs[idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return ordered;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
TableFactor::TableFactor(const DiscreteKeys& dkeys,
|
||||
const DecisionTreeFactor& dtf)
|
||||
: TableFactor(dkeys, ComputeLeafOrdering(dkeys, dtf)) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
TableFactor::TableFactor(const DiscreteConditional& c)
|
||||
: TableFactor(c.discreteKeys(), c.probabilities()) {}
|
||||
: TableFactor(c.discreteKeys(), c) {}
|
||||
|
||||
/* ************************************************************************ */
|
||||
Eigen::SparseVector<double> TableFactor::Convert(
|
||||
|
|
|
|||
|
|
@ -144,6 +144,12 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
|
|||
TableFactor(const DiscreteKey& key, const std::vector<double>& row)
|
||||
: TableFactor(DiscreteKeys{key}, row) {}
|
||||
|
||||
/// Constructor from DecisionTreeFactor
|
||||
TableFactor(const DiscreteKeys& keys, const DecisionTreeFactor& dtf);
|
||||
|
||||
/// Constructor from DecisionTree<Key, double>/AlgebraicDecisionTree
|
||||
TableFactor(const DiscreteKeys& keys, const DecisionTree<Key, double>& dtree);
|
||||
|
||||
/** Construct from a DiscreteConditional type */
|
||||
explicit TableFactor(const DiscreteConditional& c);
|
||||
|
||||
|
|
@ -180,7 +186,7 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
|
|||
return apply(f, Ring::mul);
|
||||
};
|
||||
|
||||
/// multiple with DecisionTreeFactor
|
||||
/// multiply with DecisionTreeFactor
|
||||
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
|
||||
|
||||
static double safe_div(const double& a, const double& b);
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@
|
|||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <gtsam/discrete/DiscreteConditional.h>
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/discrete/Signature.h>
|
||||
#include <gtsam/discrete/TableFactor.h>
|
||||
|
|
@ -131,6 +132,16 @@ TEST(TableFactor, constructors) {
|
|||
// Manually constructed via inspection and comparison to DecisionTreeFactor
|
||||
TableFactor expected(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
|
||||
EXPECT(assert_equal(expected, f4));
|
||||
|
||||
// Test for 9=3x3 values.
|
||||
DiscreteKey V(0, 3), W(1, 3);
|
||||
DiscreteConditional conditional5(V | W = "1/2/3 5/6/7 9/10/11");
|
||||
TableFactor f5(conditional5);
|
||||
// GTSAM_PRINT(f5);
|
||||
TableFactor expected_f5(
|
||||
X & Y,
|
||||
"0.166667 0.277778 0.3 0.333333 0.333333 0.333333 0.5 0.388889 0.366667");
|
||||
EXPECT(assert_equal(expected_f5, f5, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -146,7 +146,7 @@ class GTSAM_EXPORT Line3 {
|
|||
* @param Dline - OptionalJacobian of transformed line with respect to l
|
||||
* @return Transformed line in camera frame
|
||||
*/
|
||||
friend Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
|
||||
GTSAM_EXPORT friend Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
|
||||
OptionalJacobian<4, 6> Dpose,
|
||||
OptionalJacobian<4, 4> Dline);
|
||||
};
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ namespace gtsam {
|
|||
* @ingroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class Pose2: public LieGroup<Pose2, 3> {
|
||||
class GTSAM_EXPORT Pose2: public LieGroup<Pose2, 3> {
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -112,10 +112,10 @@ public:
|
|||
/// @{
|
||||
|
||||
/** print with optional string */
|
||||
GTSAM_EXPORT void print(const std::string& s = "") const;
|
||||
void print(const std::string& s = "") const;
|
||||
|
||||
/** assert equality up to a tolerance */
|
||||
GTSAM_EXPORT bool equals(const Pose2& pose, double tol = 1e-9) const;
|
||||
bool equals(const Pose2& pose, double tol = 1e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Group
|
||||
|
|
@ -125,7 +125,7 @@ public:
|
|||
inline static Pose2 Identity() { return Pose2(); }
|
||||
|
||||
/// inverse
|
||||
GTSAM_EXPORT Pose2 inverse() const;
|
||||
Pose2 inverse() const;
|
||||
|
||||
/// compose syntactic sugar
|
||||
inline Pose2 operator*(const Pose2& p2) const {
|
||||
|
|
@ -137,16 +137,16 @@ public:
|
|||
/// @{
|
||||
|
||||
///Exponential map at identity - create a rotation from canonical coordinates \f$ [T_x,T_y,\theta] \f$
|
||||
GTSAM_EXPORT static Pose2 Expmap(const Vector3& xi, ChartJacobian H = {});
|
||||
static Pose2 Expmap(const Vector3& xi, ChartJacobian H = {});
|
||||
|
||||
///Log map at identity - return the canonical coordinates \f$ [T_x,T_y,\theta] \f$ of this rotation
|
||||
GTSAM_EXPORT static Vector3 Logmap(const Pose2& p, ChartJacobian H = {});
|
||||
static Vector3 Logmap(const Pose2& p, ChartJacobian H = {});
|
||||
|
||||
/**
|
||||
* Calculate Adjoint map
|
||||
* Ad_pose is 3*3 matrix that when applied to twist xi \f$ [T_x,T_y,\theta] \f$, returns Ad_pose(xi)
|
||||
*/
|
||||
GTSAM_EXPORT Matrix3 AdjointMap() const;
|
||||
Matrix3 AdjointMap() const;
|
||||
|
||||
/// Apply AdjointMap to twist xi
|
||||
inline Vector3 Adjoint(const Vector3& xi) const {
|
||||
|
|
@ -156,7 +156,7 @@ public:
|
|||
/**
|
||||
* Compute the [ad(w,v)] operator for SE2 as in [Kobilarov09siggraph], pg 19
|
||||
*/
|
||||
GTSAM_EXPORT static Matrix3 adjointMap(const Vector3& v);
|
||||
static Matrix3 adjointMap(const Vector3& v);
|
||||
|
||||
/**
|
||||
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
|
||||
|
|
@ -192,15 +192,15 @@ public:
|
|||
}
|
||||
|
||||
/// Derivative of Expmap
|
||||
GTSAM_EXPORT static Matrix3 ExpmapDerivative(const Vector3& v);
|
||||
static Matrix3 ExpmapDerivative(const Vector3& v);
|
||||
|
||||
/// Derivative of Logmap
|
||||
GTSAM_EXPORT static Matrix3 LogmapDerivative(const Pose2& v);
|
||||
static Matrix3 LogmapDerivative(const Pose2& v);
|
||||
|
||||
// Chart at origin, depends on compile-time flag SLOW_BUT_CORRECT_EXPMAP
|
||||
struct ChartAtOrigin {
|
||||
GTSAM_EXPORT static Pose2 Retract(const Vector3& v, ChartJacobian H = {});
|
||||
GTSAM_EXPORT static Vector3 Local(const Pose2& r, ChartJacobian H = {});
|
||||
struct GTSAM_EXPORT ChartAtOrigin {
|
||||
static Pose2 Retract(const Vector3& v, ChartJacobian H = {});
|
||||
static Vector3 Local(const Pose2& r, ChartJacobian H = {});
|
||||
};
|
||||
|
||||
using LieGroup<Pose2, 3>::inverse; // version with derivative
|
||||
|
|
@ -210,7 +210,7 @@ public:
|
|||
/// @{
|
||||
|
||||
/** Return point coordinates in pose coordinate frame */
|
||||
GTSAM_EXPORT Point2 transformTo(const Point2& point,
|
||||
Point2 transformTo(const Point2& point,
|
||||
OptionalJacobian<2, 3> Dpose = {},
|
||||
OptionalJacobian<2, 2> Dpoint = {}) const;
|
||||
|
||||
|
|
@ -222,7 +222,7 @@ public:
|
|||
Matrix transformTo(const Matrix& points) const;
|
||||
|
||||
/** Return point coordinates in global frame */
|
||||
GTSAM_EXPORT Point2 transformFrom(const Point2& point,
|
||||
Point2 transformFrom(const Point2& point,
|
||||
OptionalJacobian<2, 3> Dpose = {},
|
||||
OptionalJacobian<2, 2> Dpoint = {}) const;
|
||||
|
||||
|
|
@ -273,14 +273,14 @@ public:
|
|||
}
|
||||
|
||||
//// return transformation matrix
|
||||
GTSAM_EXPORT Matrix3 matrix() const;
|
||||
Matrix3 matrix() const;
|
||||
|
||||
/**
|
||||
* Calculate bearing to a landmark
|
||||
* @param point 2D location of landmark
|
||||
* @return 2D rotation \f$ \in SO(2) \f$
|
||||
*/
|
||||
GTSAM_EXPORT Rot2 bearing(const Point2& point,
|
||||
Rot2 bearing(const Point2& point,
|
||||
OptionalJacobian<1, 3> H1={}, OptionalJacobian<1, 2> H2={}) const;
|
||||
|
||||
/**
|
||||
|
|
@ -288,7 +288,7 @@ public:
|
|||
* @param point SO(2) location of other pose
|
||||
* @return 2D rotation \f$ \in SO(2) \f$
|
||||
*/
|
||||
GTSAM_EXPORT Rot2 bearing(const Pose2& pose,
|
||||
Rot2 bearing(const Pose2& pose,
|
||||
OptionalJacobian<1, 3> H1={}, OptionalJacobian<1, 3> H2={}) const;
|
||||
|
||||
/**
|
||||
|
|
@ -296,7 +296,7 @@ public:
|
|||
* @param point 2D location of landmark
|
||||
* @return range (double)
|
||||
*/
|
||||
GTSAM_EXPORT double range(const Point2& point,
|
||||
double range(const Point2& point,
|
||||
OptionalJacobian<1, 3> H1={},
|
||||
OptionalJacobian<1, 2> H2={}) const;
|
||||
|
||||
|
|
@ -305,7 +305,7 @@ public:
|
|||
* @param point 2D location of other pose
|
||||
* @return range (double)
|
||||
*/
|
||||
GTSAM_EXPORT double range(const Pose2& point,
|
||||
double range(const Pose2& point,
|
||||
OptionalJacobian<1, 3> H1={},
|
||||
OptionalJacobian<1, 3> H2={}) const;
|
||||
|
||||
|
|
|
|||
|
|
@ -204,7 +204,7 @@ public:
|
|||
static Matrix6 LogmapDerivative(const Pose3& xi);
|
||||
|
||||
// Chart at origin, depends on compile-time flag GTSAM_POSE3_EXPMAP
|
||||
struct ChartAtOrigin {
|
||||
struct GTSAM_EXPORT ChartAtOrigin {
|
||||
static Pose3 Retract(const Vector6& xi, ChartJacobian Hxi = {});
|
||||
static Vector6 Local(const Pose3& pose, ChartJacobian Hpose = {});
|
||||
};
|
||||
|
|
|
|||
|
|
@ -597,6 +597,25 @@ TEST(Rot3, quaternion) {
|
|||
EXPECT(assert_equal(expected2, actual2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Rot3, ConvertQuaternion) {
|
||||
Eigen::Quaterniond eigenQuaternion;
|
||||
eigenQuaternion.w() = 1.0;
|
||||
eigenQuaternion.x() = 2.0;
|
||||
eigenQuaternion.y() = 3.0;
|
||||
eigenQuaternion.z() = 4.0;
|
||||
EXPECT_DOUBLES_EQUAL(1, eigenQuaternion.w(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(2, eigenQuaternion.x(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(3, eigenQuaternion.y(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(4, eigenQuaternion.z(), 1e-9);
|
||||
|
||||
Rot3 R(eigenQuaternion);
|
||||
EXPECT_DOUBLES_EQUAL(1, R.toQuaternion().w(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(2, R.toQuaternion().x(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(3, R.toQuaternion().y(), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(4, R.toQuaternion().z(), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cayley(const Matrix& A) {
|
||||
Matrix::Index n = A.cols();
|
||||
|
|
|
|||
|
|
@ -286,8 +286,6 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
|
|||
|
||||
/* *******************************************************************************/
|
||||
void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
|
||||
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
|
||||
auto gmKeySet = DiscreteKeysAsSet(this->discreteKeys());
|
||||
// Functional which loops over all assignments and create a set of
|
||||
// GaussianConditionals
|
||||
auto pruner = prunerFunc(discreteProbs);
|
||||
|
|
|
|||
|
|
@ -129,7 +129,6 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
|||
DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
|
||||
size_t maxNrLeaves) {
|
||||
// Get the joint distribution of only the discrete keys
|
||||
gttic_(HybridBayesNet_PruneDiscreteConditionals);
|
||||
// The joint discrete probability.
|
||||
DiscreteConditional discreteProbs;
|
||||
|
||||
|
|
@ -163,7 +162,6 @@ DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
|
|||
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
|
||||
|
||||
// Eliminate joint probability back into conditionals
|
||||
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
|
||||
DiscreteFactorGraph dfg{prunedDiscreteProbs};
|
||||
DiscreteBayesNet::shared_ptr dbn = dfg.eliminateSequential(discrete_frontals);
|
||||
|
||||
|
|
@ -174,7 +172,6 @@ DecisionTreeFactor HybridBayesNet::pruneDiscreteConditionals(
|
|||
// dbn->at(i)->print();
|
||||
this->at(idx) = std::make_shared<HybridConditional>(dbn->at(i));
|
||||
}
|
||||
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
|
||||
|
||||
return prunedDiscreteProbs;
|
||||
}
|
||||
|
|
@ -193,7 +190,6 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
|
||||
HybridBayesNet prunedBayesNetFragment;
|
||||
|
||||
gttic_(HybridBayesNet_PruneMixtures);
|
||||
// Go through all the conditionals in the
|
||||
// Bayes Net and prune them as per prunedDiscreteProbs.
|
||||
for (auto &&conditional : *this) {
|
||||
|
|
@ -210,7 +206,6 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
prunedBayesNetFragment.push_back(conditional);
|
||||
}
|
||||
}
|
||||
gttoc_(HybridBayesNet_PruneMixtures);
|
||||
|
||||
return prunedBayesNetFragment;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ using SharedFactor = std::shared_ptr<Factor>;
|
|||
* Hybrid Factor Graph
|
||||
* Factor graph with utilities for hybrid factors.
|
||||
*/
|
||||
class HybridFactorGraph : public FactorGraph<Factor> {
|
||||
class GTSAM_EXPORT HybridFactorGraph : public FactorGraph<Factor> {
|
||||
public:
|
||||
using Base = FactorGraph<Factor>;
|
||||
using This = HybridFactorGraph; ///< this class
|
||||
|
|
|
|||
|
|
@ -96,7 +96,6 @@ static GaussianFactorGraphTree addGaussian(
|
|||
// TODO(dellaert): it's probably more efficient to first collect the discrete
|
||||
// keys, and then loop over all assignments to populate a vector.
|
||||
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
||||
gttic_(assembleGraphTree);
|
||||
|
||||
GaussianFactorGraphTree result;
|
||||
|
||||
|
|
@ -129,8 +128,6 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
|||
}
|
||||
}
|
||||
|
||||
gttoc_(assembleGraphTree);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
class HybridSmoother {
|
||||
class GTSAM_EXPORT HybridSmoother {
|
||||
private:
|
||||
HybridBayesNet hybridBayesNet_;
|
||||
HybridGaussianFactorGraph remainingFactorGraph_;
|
||||
|
|
|
|||
|
|
@ -43,6 +43,7 @@
|
|||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
#include "Switching.h"
|
||||
#include "TinyHybridExample.h"
|
||||
|
|
|
|||
|
|
@ -420,7 +420,7 @@ TEST(HybridFactorGraph, Full_Elimination) {
|
|||
DiscreteFactorGraph discrete_fg;
|
||||
// TODO(Varun) Make this a function of HybridGaussianFactorGraph?
|
||||
for (auto& factor : (*remainingFactorGraph_partial)) {
|
||||
auto df = dynamic_pointer_cast<DecisionTreeFactor>(factor);
|
||||
auto df = dynamic_pointer_cast<DiscreteFactor>(factor);
|
||||
assert(df);
|
||||
discrete_fg.push_back(df);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
class Ordering: public KeyVector {
|
||||
class GTSAM_EXPORT Ordering: public KeyVector {
|
||||
protected:
|
||||
typedef KeyVector Base;
|
||||
|
||||
|
|
@ -45,7 +45,6 @@ public:
|
|||
typedef std::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
|
||||
|
||||
/// Create an empty ordering
|
||||
GTSAM_EXPORT
|
||||
Ordering() {
|
||||
}
|
||||
|
||||
|
|
@ -99,7 +98,7 @@ public:
|
|||
}
|
||||
|
||||
/// Compute a fill-reducing ordering using COLAMD from a VariableIndex.
|
||||
static GTSAM_EXPORT Ordering Colamd(const VariableIndex& variableIndex);
|
||||
static Ordering Colamd(const VariableIndex& variableIndex);
|
||||
|
||||
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
||||
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
||||
|
|
@ -124,7 +123,7 @@ public:
|
|||
/// variables in \c constrainLast will be ordered in the same order specified in the KeyVector
|
||||
/// \c constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
|
||||
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
||||
static GTSAM_EXPORT Ordering ColamdConstrainedLast(
|
||||
static Ordering ColamdConstrainedLast(
|
||||
const VariableIndex& variableIndex, const KeyVector& constrainLast,
|
||||
bool forceOrder = false);
|
||||
|
||||
|
|
@ -152,7 +151,7 @@ public:
|
|||
/// KeyVector \c constrainFirst. If \c forceOrder is false, the variables in \c
|
||||
/// constrainFirst will be ordered before all the others, but will be rearranged by CCOLAMD to
|
||||
/// reduce fill-in as well.
|
||||
static GTSAM_EXPORT Ordering ColamdConstrainedFirst(
|
||||
static Ordering ColamdConstrainedFirst(
|
||||
const VariableIndex& variableIndex,
|
||||
const KeyVector& constrainFirst, bool forceOrder = false);
|
||||
|
||||
|
|
@ -181,7 +180,7 @@ public:
|
|||
/// appear in \c groups in arbitrary order. Any variables not present in \c groups will be
|
||||
/// assigned to group 0. This function simply fills the \c cmember argument to CCOLAMD with the
|
||||
/// supplied indices, see the CCOLAMD documentation for more information.
|
||||
static GTSAM_EXPORT Ordering ColamdConstrained(
|
||||
static Ordering ColamdConstrained(
|
||||
const VariableIndex& variableIndex, const FastMap<Key, int>& groups);
|
||||
|
||||
/// Return a natural Ordering. Typically used by iterative solvers
|
||||
|
|
@ -195,11 +194,11 @@ public:
|
|||
|
||||
/// METIS Formatting function
|
||||
template<class FACTOR_GRAPH>
|
||||
static GTSAM_EXPORT void CSRFormat(std::vector<int>& xadj,
|
||||
static void CSRFormat(std::vector<int>& xadj,
|
||||
std::vector<int>& adj, const FACTOR_GRAPH& graph);
|
||||
|
||||
/// Compute an ordering determined by METIS from a VariableIndex
|
||||
static GTSAM_EXPORT Ordering Metis(const MetisIndex& met);
|
||||
static Ordering Metis(const MetisIndex& met);
|
||||
|
||||
template<class FACTOR_GRAPH>
|
||||
static Ordering Metis(const FACTOR_GRAPH& graph) {
|
||||
|
|
@ -241,18 +240,16 @@ public:
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
GTSAM_EXPORT
|
||||
void print(const std::string& str = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const;
|
||||
|
||||
GTSAM_EXPORT
|
||||
bool equals(const Ordering& other, double tol = 1e-9) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/// Internal COLAMD function
|
||||
static GTSAM_EXPORT Ordering ColamdConstrained(
|
||||
static Ordering ColamdConstrained(
|
||||
const VariableIndex& variableIndex, std::vector<int>& cmember);
|
||||
|
||||
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||
|
|
|
|||
|
|
@ -894,6 +894,9 @@ template <size_t d>
|
|||
std::pair<Values, double> ShonanAveraging<d>::run(const Values &initialEstimate,
|
||||
size_t pMin,
|
||||
size_t pMax) const {
|
||||
if (pMin < d) {
|
||||
throw std::runtime_error("pMin is smaller than the base dimension d");
|
||||
}
|
||||
Values Qstar;
|
||||
Values initialSOp = LiftTo<Rot>(pMin, initialEstimate); // lift to pMin!
|
||||
for (size_t p = pMin; p <= pMax; p++) {
|
||||
|
|
|
|||
|
|
@ -415,6 +415,20 @@ TEST(ShonanAveraging3, PriorWeights) {
|
|||
auto result = shonan.run(initial, 3, 3);
|
||||
EXPECT_DOUBLES_EQUAL(0.0015, shonan.cost(result.first), 1e-4);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Check a small graph created using binary measurements
|
||||
TEST(ShonanAveraging3, BinaryMeasurements) {
|
||||
std::vector<BinaryMeasurement<Rot3>> measurements;
|
||||
auto unit3 = noiseModel::Unit::Create(3);
|
||||
measurements.emplace_back(0, 1, Rot3::Yaw(M_PI_2), unit3);
|
||||
measurements.emplace_back(1, 2, Rot3::Yaw(M_PI_2), unit3);
|
||||
ShonanAveraging3 shonan(measurements);
|
||||
Values initial = shonan.initializeRandomly();
|
||||
auto result = shonan.run(initial, 3, 5);
|
||||
EXPECT_DOUBLES_EQUAL(0.0, shonan.cost(result.first), 1e-4);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/dllexport.h>
|
||||
#include <gtsam_unstable/linear/LP.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
|
||||
|
|
@ -49,7 +50,7 @@ namespace gtsam {
|
|||
* inequality constraint, we can't conclude that the problem is infeasible.
|
||||
* However, whether it is infeasible or unbounded, we don't have a unique solution anyway.
|
||||
*/
|
||||
class LPInitSolver {
|
||||
class GTSAM_UNSTABLE_EXPORT LPInitSolver {
|
||||
private:
|
||||
const LP& lp_;
|
||||
|
||||
|
|
|
|||
|
|
@ -18,12 +18,13 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/dllexport.h>
|
||||
#include <gtsam_unstable/linear/QP.h>
|
||||
#include <fstream>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class QPSParser {
|
||||
class GTSAM_UNSTABLE_EXPORT QPSParser {
|
||||
|
||||
private:
|
||||
std::string fileName_;
|
||||
|
|
|
|||
|
|
@ -10,14 +10,16 @@ Author: Frank Dellaert
|
|||
"""
|
||||
# pylint: disable=invalid-name, no-name-in-module, no-member
|
||||
|
||||
import math
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
import gtsam
|
||||
from gtsam import (BetweenFactorPose2, LevenbergMarquardtParams, Pose2, Rot2,
|
||||
ShonanAveraging2, ShonanAveraging3,
|
||||
from gtsam import (BetweenFactorPose2, BetweenFactorPose3,
|
||||
BinaryMeasurementRot3, LevenbergMarquardtParams, Pose2,
|
||||
Pose3, Rot2, Rot3, ShonanAveraging2, ShonanAveraging3,
|
||||
ShonanAveragingParameters2, ShonanAveragingParameters3)
|
||||
|
||||
DEFAULT_PARAMS = ShonanAveragingParameters3(
|
||||
|
|
@ -197,6 +199,19 @@ class TestShonanAveraging(GtsamTestCase):
|
|||
expected_thetas_deg = np.array([0.0, 90.0, 0.0])
|
||||
np.testing.assert_allclose(thetas_deg, expected_thetas_deg, atol=0.1)
|
||||
|
||||
def test_measurements3(self):
|
||||
"""Create from Measurements."""
|
||||
measurements = []
|
||||
unit3 = gtsam.noiseModel.Unit.Create(3)
|
||||
m01 = BinaryMeasurementRot3(0, 1, Rot3.Yaw(math.radians(90)), unit3)
|
||||
m12 = BinaryMeasurementRot3(1, 2, Rot3.Yaw(math.radians(90)), unit3)
|
||||
measurements.append(m01)
|
||||
measurements.append(m12)
|
||||
obj = ShonanAveraging3(measurements)
|
||||
self.assertIsInstance(obj, ShonanAveraging3)
|
||||
initial = obj.initializeRandomly()
|
||||
_, cost = obj.run(initial, min_p=3, max_p=5)
|
||||
self.assertAlmostEqual(cost, 0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
|||
Loading…
Reference in New Issue