Compare 3 more cases
parent
ce196d962f
commit
360dc4138c
|
@ -32,7 +32,7 @@ from gtsam import (
|
|||
K = gtsam.symbol_shorthand.K
|
||||
|
||||
# Methods to compare
|
||||
methods = ["SimpleF", "Fundamental", "Essential+Ks", "Calibrated"]
|
||||
methods = ["SimpleF", "Fundamental", "Essential+Ks", "Essential+K", "Calibrated", "Binary+Ks", "Binary+K"]
|
||||
|
||||
|
||||
# Formatter function for printing keys
|
||||
|
@ -76,8 +76,8 @@ def simulate_data(points, poses, cal, rng, noise_std):
|
|||
return measurements
|
||||
|
||||
|
||||
# Function to compute ground truth matrices
|
||||
def compute_ground_truth(method, poses, cal):
|
||||
"""Function to compute ground truth edge variables."""
|
||||
E1 = EssentialMatrix.FromPose3(poses[0].between(poses[1]))
|
||||
E2 = EssentialMatrix.FromPose3(poses[0].between(poses[2]))
|
||||
F1 = FundamentalMatrix(cal.K(), E1, cal.K())
|
||||
|
@ -90,44 +90,62 @@ def compute_ground_truth(method, poses, cal):
|
|||
SF1 = SimpleFundamentalMatrix(E1, f, f, c, c)
|
||||
SF2 = SimpleFundamentalMatrix(E2, f, f, c, c)
|
||||
return SF1, SF2
|
||||
elif method == "Essential+Ks" or method == "Calibrated":
|
||||
return E1, E2
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
return E1, E2
|
||||
|
||||
|
||||
def build_factor_graph(method, num_cameras, measurements, cal):
|
||||
"""build the factor graph"""
|
||||
graph = NonlinearFactorGraph()
|
||||
|
||||
# Determine the FactorClass based on the method
|
||||
if method == "Fundamental":
|
||||
FactorClass = gtsam.TransferFactorFundamentalMatrix
|
||||
elif method == "SimpleF":
|
||||
FactorClass = gtsam.TransferFactorSimpleFundamentalMatrix
|
||||
elif method == "Essential+Ks":
|
||||
elif method in ["Essential+Ks", "Essential+K"]:
|
||||
FactorClass = gtsam.EssentialTransferFactorKCal3f
|
||||
# add priors on all calibrations:
|
||||
elif method == "Binary+K":
|
||||
FactorClass = gtsam.EssentialMatrixFactor4Cal3f
|
||||
elif method == "Binary+Ks":
|
||||
FactorClass = gtsam.EssentialMatrixFactor5Cal3f
|
||||
elif method == "Calibrated":
|
||||
FactorClass = gtsam.EssentialTransferFactorCal3f
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
# Add priors on calibrations if necessary
|
||||
if method in ["Essential+Ks", "Binary+Ks"]:
|
||||
for i in range(num_cameras):
|
||||
model = gtsam.noiseModel.Isotropic.Sigma(1, 10.0)
|
||||
graph.addPriorCal3f(K(i), cal, model)
|
||||
elif method == "Calibrated":
|
||||
FactorClass = gtsam.EssentialTransferFactorCal3f
|
||||
# No priors on calibration needed
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
elif method in ["Essential+K", "Binary+K"]:
|
||||
model = gtsam.noiseModel.Isotropic.Sigma(1, 10.0)
|
||||
graph.addPriorCal3f(K(0), cal, model)
|
||||
|
||||
z = measurements # shorthand
|
||||
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras # Next camera
|
||||
c = (a + 2) % num_cameras # Camera after next
|
||||
if method in ["Binary+Ks", "Binary+K"]:
|
||||
# Add binary Essential Matrix factors
|
||||
ab, ac = EdgeKey(a, b).key(), EdgeKey(a, c).key()
|
||||
for j in range(len(measurements[0])):
|
||||
if method == "Binary+Ks":
|
||||
graph.add(FactorClass(ab, K(a), K(b), z[a][j], z[b][j]))
|
||||
graph.add(FactorClass(ac, K(a), K(c), z[a][j], z[c][j]))
|
||||
else: # Binary+K
|
||||
graph.add(FactorClass(ab, K(0), z[a][j], z[b][j]))
|
||||
graph.add(FactorClass(ac, K(0), z[a][j], z[c][j]))
|
||||
else:
|
||||
# Add transfer factors between views a, b, and c
|
||||
|
||||
# Vectors to collect tuples for each factor
|
||||
tuples1 = []
|
||||
tuples2 = []
|
||||
tuples3 = []
|
||||
|
||||
# Collect data for the three factors
|
||||
for j in range(len(measurements[0])):
|
||||
tuples1.append((z[a][j], z[b][j], z[c][j]))
|
||||
tuples2.append((z[a][j], z[c][j], z[b][j]))
|
||||
|
@ -138,6 +156,10 @@ def build_factor_graph(method, num_cameras, measurements, cal):
|
|||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(b, c), tuples1, cal))
|
||||
graph.add(FactorClass(EdgeKey(a, b), EdgeKey(b, c), tuples2, cal))
|
||||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(a, b), tuples3, cal))
|
||||
elif method == "Essential+K":
|
||||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(b, c), K(0), tuples1))
|
||||
graph.add(FactorClass(EdgeKey(a, b), EdgeKey(b, c), K(0), tuples2))
|
||||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(a, b), K(0), tuples3))
|
||||
else:
|
||||
graph.add(FactorClass(EdgeKey(a, c), EdgeKey(b, c), tuples1))
|
||||
graph.add(FactorClass(EdgeKey(a, b), EdgeKey(b, c), tuples2))
|
||||
|
@ -159,22 +181,23 @@ def get_initial_estimate(method, num_cameras, ground_truth, cal):
|
|||
initialEstimate.insert(EdgeKey(a, b).key(), F1)
|
||||
initialEstimate.insert(EdgeKey(a, c).key(), F2)
|
||||
total_dimension += F1.dim() + F2.dim()
|
||||
elif method in ["Essential+Ks", "Calibrated"]:
|
||||
elif method in ["Essential+Ks", "Essential+K", "Binary+Ks", "Binary+K", "Calibrated"]:
|
||||
E1, E2 = ground_truth
|
||||
for a in range(num_cameras):
|
||||
b = (a + 1) % num_cameras # Next camera
|
||||
c = (a + 2) % num_cameras # Camera after next
|
||||
b = (a + 1) % num_cameras
|
||||
c = (a + 2) % num_cameras
|
||||
initialEstimate.insert(EdgeKey(a, b).key(), E1)
|
||||
initialEstimate.insert(EdgeKey(a, c).key(), E2)
|
||||
total_dimension += E1.dim() + E2.dim()
|
||||
else:
|
||||
raise ValueError(f"Unknown method {method}")
|
||||
|
||||
if method == "Essential+Ks":
|
||||
# Insert initial calibrations
|
||||
if method in ["Essential+Ks", "Binary+Ks"]:
|
||||
for i in range(num_cameras):
|
||||
initialEstimate.insert(K(i), cal)
|
||||
total_dimension += cal.dim()
|
||||
elif method in ["Essential+K", "Binary+K"]:
|
||||
initialEstimate.insert(K(0), cal)
|
||||
total_dimension += cal.dim()
|
||||
|
||||
print(f"Total dimension of the problem: {total_dimension}")
|
||||
return initialEstimate
|
||||
|
@ -205,7 +228,7 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
|||
key_ab = EdgeKey(a, b).key()
|
||||
key_ac = EdgeKey(a, c).key()
|
||||
|
||||
if method in ["Essential+Ks", "Calibrated"]:
|
||||
if method in ["Essential+Ks", "Essential+K", "Binary+Ks", "Binary+K", "Calibrated"]:
|
||||
E_est_ab = result.atEssentialMatrix(key_ab)
|
||||
E_est_ac = result.atEssentialMatrix(key_ac)
|
||||
|
||||
|
@ -218,15 +241,18 @@ def compute_distances(method, result, ground_truth, num_cameras, cal):
|
|||
SF_est_ac = result.atSimpleFundamentalMatrix(key_ac).matrix()
|
||||
F_est_ab = FundamentalMatrix(SF_est_ab)
|
||||
F_est_ac = FundamentalMatrix(SF_est_ac)
|
||||
elif method == "Essential+Ks":
|
||||
# Retrieve calibrations from result:
|
||||
elif method in ["Essential+Ks", "Binary+Ks"]:
|
||||
# Retrieve calibrations from result for each camera
|
||||
cal_a = result.atCal3f(K(a))
|
||||
cal_b = result.atCal3f(K(b))
|
||||
cal_c = result.atCal3f(K(c))
|
||||
|
||||
# Convert estimated EssentialMatrices to FundamentalMatrices
|
||||
F_est_ab = FundamentalMatrix(cal_a.K(), E_est_ab, cal_b.K())
|
||||
F_est_ac = FundamentalMatrix(cal_a.K(), E_est_ac, cal_c.K())
|
||||
elif method in ["Essential+K", "Binary+K"]:
|
||||
# Use single shared calibration
|
||||
cal_shared = result.atCal3f(K(0))
|
||||
F_est_ab = FundamentalMatrix(cal_shared.K(), E_est_ab, cal_shared.K())
|
||||
F_est_ac = FundamentalMatrix(cal_shared.K(), E_est_ac, cal_shared.K())
|
||||
elif method == "Calibrated":
|
||||
# Use ground truth calibration
|
||||
F_est_ab = FundamentalMatrix(cal.K(), E_est_ab, cal.K())
|
||||
|
|
Loading…
Reference in New Issue