After discussion with Andrei, a final version of logic, and new tests to check more cases. Tested with both typedef and old Point3 configs.

release/4.3a0
Frank Dellaert 2018-10-13 12:18:25 -04:00
parent 88c4bd0a33
commit 35d4bb1a76
2 changed files with 70 additions and 51 deletions

View File

@ -65,6 +65,19 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
return Unit3(d[0], d[1], d[2]);
}
/* ************************************************************************* */
// Get the axis of rotation with the minimum projected length of the point
static Point3 CalculateBestAxis(const Point3& n) {
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
if ((mx <= my) && (mx <= mz)) {
return Point3(1.0, 0.0, 0.0);
} else if ((my <= mx) && (my <= mz)) {
return Point3(0.0, 1.0, 0.0);
} else {
return Point3(0, 0, 1);
}
}
/* ************************************************************************* */
const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const {
#ifdef GTSAM_USE_TBB
@ -74,58 +87,54 @@ const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const {
tbb::mutex::scoped_lock lock(B_mutex_);
#endif
bool cachedBasis = static_cast<bool>(B_);
const bool cachedBasis = static_cast<bool>(B_);
const bool cachedJacobian = static_cast<bool>(H_B_);
if (H) {
if (!cachedJacobian) {
// Compute Jacobian. Recomputes B_
Matrix32 B;
Matrix62 jacobian;
Matrix33 H_B1_n, H_b1_B1, H_b2_n, H_b2_b1;
if (!cachedBasis) {
// Get the unit vector
// NOTE(hayk): We can't call point3(), due to the recursive call of basis().
const Point3 n(p_);
// Get the axis of rotation with the minimum projected length of the point
Point3 axis(0, 0, 1);
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
if ((mx <= my) && (mx <= mz)) {
axis = Point3(1.0, 0.0, 0.0);
} else if ((my <= mx) && (my <= mz)) {
axis = Point3(0.0, 1.0, 0.0);
}
// Choose the direction of the first basis vector b1 in the tangent plane
// by crossing n with the chosen axis.
Point3 B1 = gtsam::cross(n, axis, H ? &H_B1_n : nullptr);
const Point3 n(p_), axis = CalculateBestAxis(n);
const Point3 B1 = gtsam::cross(n, axis, &H_B1_n);
// Normalize result to get a unit vector: b1 = B1 / |B1|.
Point3 b1 = normalize(B1, H ? &H_b1_B1 : nullptr);
B.col(0) = normalize(B1, &H_b1_B1);
// Get the second basis vector b2, through the cross-product of n and b1.
// No need to normalize this, p and b1 are orthogonal unit vectors.
Point3 b2 =
gtsam::cross(n, b1, H ? &H_b2_n : nullptr, H ? &H_b2_b1 : nullptr);
// Get the second basis vector b2, which is orthogonal to n and b1.
B.col(1) = gtsam::cross(n, B.col(0), &H_b2_n, &H_b2_b1);
// Create the basis by stacking b1 and b2.
Matrix32 stacked;
stacked << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
B_.reset(stacked);
}
if (H) {
if (!cachedBasis || !H_B_) {
// If Jacobian not cached or the basis was not cached, recompute it.
// Chain rule tomfoolery to compute the derivative.
const Matrix32& H_n_p = *B_;
const Matrix32 H_b1_p = H_b1_B1 * H_B1_n * H_n_p;
const Matrix32 H_b2_p = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
// Cache the derivative and fill the result.
Matrix62 derivative;
derivative << H_b1_p, H_b2_p;
H_B_.reset(derivative);
// Chain rule tomfoolery to compute the jacobian.
const Matrix32& H_n_p = B;
jacobian.block<3, 2>(0, 0) = H_b1_B1 * H_B1_n * H_n_p;
auto H_b1_p = jacobian.block<3, 2>(0, 0);
jacobian.block<3, 2>(3, 0) = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
// Cache the result and jacobian
H_B_.reset(jacobian);
B_.reset(B);
}
// Return cached jacobian, possibly computed just above
*H = *H_B_;
}
if (!cachedBasis) {
// Same calculation as above, without derivatives.
// Done after H block, as that possibly computes B_ for the first time
Matrix32 B;
const Point3 n(p_), axis = CalculateBestAxis(n);
const Point3 B1 = gtsam::cross(n, axis);
B.col(0) = normalize(B1);
B.col(1) = gtsam::cross(n, B.col(0));
B_.reset(B);
}
return *B_;
}

View File

@ -314,15 +314,24 @@ TEST(Unit3, basis) {
Unit3 p(0.1, -0.2, 0.9);
Matrix expected(3, 2);
expected << 0.0, -0.994169047, 0.97618706,
-0.0233922129, 0.216930458, 0.105264958;
expected << 0.0, -0.994169047, 0.97618706, -0.0233922129, 0.216930458, 0.105264958;
Matrix62 actualH;
Matrix actual = p.basis(actualH);
EXPECT(assert_equal(expected, actual, 1e-6));
Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
boost::bind(BasisTest, _1, boost::none), p);
// without H, first time
EXPECT(assert_equal(expected, p.basis(), 1e-6));
// without H, cached
EXPECT(assert_equal(expected, p.basis(), 1e-6));
// with H, first time
EXPECT(assert_equal(expected, p.basis(actualH), 1e-6));
EXPECT(assert_equal(expectedH, actualH, 1e-8));
// with H, cached
EXPECT(assert_equal(expected, p.basis(actualH), 1e-6));
EXPECT(assert_equal(expectedH, actualH, 1e-8));
}
@ -432,7 +441,8 @@ TEST(Unit3, ErrorBetweenFactor) {
// Add process factors using the dot product error function.
SharedNoiseModel R_process = noiseModel::Isotropic::Sigma(2, 0.01);
for (size_t i = 0; i < data.size() - 1; i++) {
Expression<Vector2> exp(Expression<Unit3>(U(i)), &Unit3::errorVector, Expression<Unit3>(U(i + 1)));
Expression<Vector2> exp(Expression<Unit3>(U(i)), &Unit3::errorVector,
Expression<Unit3>(U(i + 1)));
graph.addExpressionFactor<Vector2>(R_process, Vector2::Zero(), exp);
}