Merged in fix/458_scenario_examples (pull request #433)

close issue #458
ImuFactor python examples ported
release/4.3a0
Frank Dellaert 2019-05-18 03:07:40 +00:00
commit 357e739127
8 changed files with 360 additions and 6 deletions

View File

@ -0,0 +1,143 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
A script validating the ImuFactor inference.
"""
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.utils.plot import plot_pose3
from PreintegrationExample import POSES_FIG, PreintegrationExample
BIAS_KEY = int(gtsam.symbol(ord('b'), 0))
def X(key):
"""Create symbol for pose key."""
return gtsam.symbol(ord('x'), key)
def V(key):
"""Create symbol for velocity key."""
return gtsam.symbol(ord('v'), key)
np.set_printoptions(precision=3, suppress=True)
class ImuFactorExample(PreintegrationExample):
def __init__(self):
self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
self.velNoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
# Choose one of these twists to change scenario:
zero_twist = (np.zeros(3), np.zeros(3))
forward_twist = (np.zeros(3), self.velocity)
loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
sick_twist = (
np.array([math.radians(30), -math.radians(30), 0]), self.velocity)
accBias = np.array([-0.3, 0.1, 0.2])
gyroBias = np.array([0.1, 0.3, -0.1])
bias = gtsam.imuBias_ConstantBias(accBias, gyroBias)
dt = 1e-2
super(ImuFactorExample, self).__init__(sick_twist, bias, dt)
def addPrior(self, i, graph):
state = self.scenario.navState(i)
graph.push_back(gtsam.PriorFactorPose3(
X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector(
V(i), state.velocity(), self.velNoise))
def run(self):
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
T = 12
num_poses = T + 1 # assumes 1 factor per second
initial = gtsam.Values()
initial.insert(BIAS_KEY, self.actualBias)
for i in range(num_poses):
state_i = self.scenario.navState(float(i))
initial.insert(X(i), state_i.pose())
initial.insert(V(i), state_i.velocity())
# simulate the loop
i = 0 # state index
actual_state_i = self.scenario.navState(0)
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
# Plot IMU many times
if k % 10 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
# Plot every second
if k % int(1 / self.dt) == 0:
self.plotGroundTruthPose(t)
# create IMU factor every second
if (k + 1) % int(1 / self.dt) == 0:
factor = gtsam.ImuFactor(X(i), V(i), X(
i + 1), V(i + 1), BIAS_KEY, pim)
graph.push_back(factor)
if True:
print(factor)
print(pim.predict(actual_state_i, self.actualBias))
pim.resetIntegration()
actual_state_i = self.scenario.navState(t + self.dt)
i += 1
# add priors on beginning and end
self.addPrior(0, graph)
self.addPrior(num_poses - 1, graph)
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
# Calculate and print marginal covariances
marginals = gtsam.Marginals(graph, result)
print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
for i in range(num_poses):
print("Covariance on pose {}:\n{}\n".format(
i, marginals.marginalCovariance(X(i))))
print("Covariance on vel {}:\n{}\n".format(
i, marginals.marginalCovariance(V(i))))
# Plot resulting poses
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG, pose_i, 0.1)
i += 1
print(result.atimuBias_ConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
if __name__ == '__main__':
ImuFactorExample().run()

View File

@ -0,0 +1,140 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
A script validating the Preintegration of IMU measurements
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.utils.plot import plot_pose3
IMU_FIG = 1
POSES_FIG = 2
class PreintegrationExample(object):
@staticmethod
def defaultParams(g):
"""Create default parameters with Z *up* and realistic noise parameters"""
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.setGyroscopeCovariance(
kGyroSigma ** 2 * np.identity(3, np.float))
params.setAccelerometerCovariance(
kAccelSigma ** 2 * np.identity(3, np.float))
params.setIntegrationCovariance(
0.0000001 ** 2 * np.identity(3, np.float))
return params
def __init__(self, twist=None, bias=None, dt=1e-2):
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
# setup interactive plotting
plt.ion()
# Setup loop as default scenario
if twist is not None:
(W, V) = twist
else:
# default = loop with forward velocity 2m/s, while pitching up
# with angular velocity 30 degree/sec (negative in FLU)
W = np.array([0, -math.radians(30), 0])
V = np.array([2, 0, 0])
self.scenario = gtsam.ConstantTwistScenario(W, V)
self.dt = dt
self.maxDim = 5
self.labels = list('xyz')
self.colors = list('rgb')
# Create runner
self.g = 10 # simple gravity constant
self.params = self.defaultParams(self.g)
if bias is not None:
self.actualBias = bias
else:
accBias = np.array([0, 0.1, 0])
gyroBias = np.array([0, 0, 0])
self.actualBias = gtsam.imuBias_ConstantBias(accBias, gyroBias)
self.runner = gtsam.ScenarioRunner(
self.scenario, self.params, self.dt, self.actualBias)
def plotImu(self, t, measuredOmega, measuredAcc):
plt.figure(IMU_FIG)
# plot angular velocity
omega_b = self.scenario.omega_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 1)
plt.scatter(t, omega_b[i], color='k', marker='.')
plt.scatter(t, measuredOmega[i], color=color, marker='.')
plt.xlabel('angular velocity ' + label)
# plot acceleration in nav
acceleration_n = self.scenario.acceleration_n(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 4)
plt.scatter(t, acceleration_n[i], color=color, marker='.')
plt.xlabel('acceleration in nav ' + label)
# plot acceleration in body
acceleration_b = self.scenario.acceleration_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 7)
plt.scatter(t, acceleration_b[i], color=color, marker='.')
plt.xlabel('acceleration in body ' + label)
# plot actual specific force, as well as corrupted
actual = self.runner.actualSpecificForce(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 10)
plt.scatter(t, actual[i], color='k', marker='.')
plt.scatter(t, measuredAcc[i], color=color, marker='.')
plt.xlabel('specific force ' + label)
def plotGroundTruthPose(self, t):
# plot ground truth pose, as well as prediction from integrated IMU measurements
actualPose = self.scenario.pose(t)
plot_pose3(POSES_FIG, actualPose, 0.3)
t = actualPose.translation()
self.maxDim = max([abs(t.x()), abs(t.y()), abs(t.z()), self.maxDim])
ax = plt.gca()
ax.set_xlim3d(-self.maxDim, self.maxDim)
ax.set_ylim3d(-self.maxDim, self.maxDim)
ax.set_zlim3d(-self.maxDim, self.maxDim)
plt.pause(0.01)
def run(self):
# simulate the loop
T = 12
for i, t in enumerate(np.arange(0, T, self.dt)):
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
if i % 25 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
self.plotGroundTruthPose(t)
pim = self.runner.integrate(t, self.actualBias, True)
predictedNavState = self.runner.predict(pim, self.actualBias)
plot_pose3(POSES_FIG, predictedNavState.pose(), 0.1)
plt.ioff()
plt.show()
if __name__ == '__main__':
PreintegrationExample().run()

View File

@ -0,0 +1,47 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
ScenarioRunner unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestScenarioRunner(GtsamTestCase):
def setUp(self):
self.g = 10 # simple gravity constant
def test_loop_runner(self):
# Forward velocity 2m/s
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
v = 2
w = math.radians(6)
W = np.array([0, -w, 0])
V = np.array([v, 0, 0])
scenario = gtsam.ConstantTwistScenario(W, V)
dt = 0.1
params = gtsam.PreintegrationParams.MakeSharedU(self.g)
bias = gtsam.imuBias_ConstantBias()
runner = gtsam.ScenarioRunner(
scenario, params, dt, bias)
# Test specific force at time 0: a is pointing up
t = 0.0
a = w * v
np.testing.assert_almost_equal(
np.array([0, 0, a + self.g]), runner.actualSpecificForce(t))
if __name__ == '__main__':
unittest.main()

24
gtsam.h
View File

@ -2856,6 +2856,30 @@ virtual class AcceleratingScenario : gtsam::Scenario {
Vector omega_b); Vector omega_b);
}; };
#include <gtsam/navigation/ScenarioRunner.h>
class ScenarioRunner {
ScenarioRunner(const gtsam::Scenario& scenario,
const gtsam::PreintegrationParams* p,
double imuSampleTime,
const gtsam::imuBias::ConstantBias& bias);
Vector gravity_n() const;
Vector actualAngularVelocity(double t) const;
Vector actualSpecificForce(double t) const;
Vector measuredAngularVelocity(double t) const;
Vector measuredSpecificForce(double t) const;
double imuSampleTime() const;
gtsam::PreintegratedImuMeasurements integrate(
double T, const gtsam::imuBias::ConstantBias& estimatedBias,
bool corrupted) const;
gtsam::NavState predict(
const gtsam::PreintegratedImuMeasurements& pim,
const gtsam::imuBias::ConstantBias& estimatedBias) const;
Matrix estimateCovariance(
double T, size_t N,
const gtsam::imuBias::ConstantBias& estimatedBias) const;
Matrix estimateNoiseCovariance(size_t N) const;
};
//************************************************************************* //*************************************************************************
// Utilities // Utilities
//************************************************************************* //*************************************************************************

View File

@ -235,8 +235,8 @@ ImuFactor::ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
const bool use2ndOrderCoriolis) : const bool use2ndOrderCoriolis) :
Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i, Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i,
pose_j, vel_j, bias), _PIM_(pim) { pose_j, vel_j, bias), _PIM_(pim) {
boost::shared_ptr<PreintegratedImuMeasurements::Params> p = boost::make_shared< boost::shared_ptr<PreintegrationParams> p = boost::make_shared<
PreintegratedImuMeasurements::Params>(pim.p()); PreintegrationParams>(pim.p());
p->n_gravity = n_gravity; p->n_gravity = n_gravity;
p->omegaCoriolis = omegaCoriolis; p->omegaCoriolis = omegaCoriolis;
p->body_P_sensor = body_P_sensor; p->body_P_sensor = body_P_sensor;

View File

@ -39,7 +39,7 @@ static noiseModel::Diagonal::shared_ptr Diagonal(const Matrix& covariance) {
class ScenarioRunner { class ScenarioRunner {
public: public:
typedef imuBias::ConstantBias Bias; typedef imuBias::ConstantBias Bias;
typedef boost::shared_ptr<PreintegratedImuMeasurements::Params> SharedParams; typedef boost::shared_ptr<PreintegrationParams> SharedParams;
private: private:
const Scenario& scenario_; const Scenario& scenario_;

View File

@ -803,11 +803,11 @@ TEST(ImuFactor, bodyPSensorWithBias) {
static const double kVelocity = 2.0, kAngularVelocity = M_PI / 6; static const double kVelocity = 2.0, kAngularVelocity = M_PI / 6;
struct ImuFactorMergeTest { struct ImuFactorMergeTest {
boost::shared_ptr<PreintegratedImuMeasurements::Params> p_; boost::shared_ptr<PreintegrationParams> p_;
const ConstantTwistScenario forward_, loop_; const ConstantTwistScenario forward_, loop_;
ImuFactorMergeTest() ImuFactorMergeTest()
: p_(PreintegratedImuMeasurements::Params::MakeSharedU(kGravity)), : p_(PreintegrationParams::MakeSharedU(kGravity)),
forward_(kZero, Vector3(kVelocity, 0, 0)), forward_(kZero, Vector3(kVelocity, 0, 0)),
loop_(Vector3(0, -kAngularVelocity, 0), Vector3(kVelocity, 0, 0)) { loop_(Vector3(0, -kAngularVelocity, 0), Vector3(kVelocity, 0, 0)) {
// arbitrary noise values // arbitrary noise values

View File

@ -34,7 +34,7 @@ static const Vector3 kAccBias(0.2, 0, 0), kRotBias(0.1, 0, 0.3);
static const imuBias::ConstantBias kNonZeroBias(kAccBias, kRotBias); static const imuBias::ConstantBias kNonZeroBias(kAccBias, kRotBias);
// Create default parameters with Z-up and above noise parameters // Create default parameters with Z-up and above noise parameters
static boost::shared_ptr<PreintegratedImuMeasurements::Params> defaultParams() { static boost::shared_ptr<PreintegrationParams> defaultParams() {
auto p = PreintegrationParams::MakeSharedU(10); auto p = PreintegrationParams::MakeSharedU(10);
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3; p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3; p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;