Added incremental version using the normal Projection Factor.
Supports initialization both using read-in landmark poses or triangulation.release/4.3a0
parent
90ddac8fac
commit
35327d0d56
|
|
@ -37,6 +37,8 @@
|
|||
|
||||
// We will use a non-liear solver to batch-inituialize from the first 150 frames
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
|
||||
// have been provided with the library for solving robotics SLAM problems.
|
||||
|
|
@ -60,6 +62,13 @@ using symbol_shorthand::X;
|
|||
using symbol_shorthand::L;
|
||||
|
||||
typedef PriorFactor<Pose3> Pose3Prior;
|
||||
typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
|
||||
typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
|
||||
typedef FastMap<Key, boost::shared_ptr<SmartProjectionFactorState> > SmartFactorToStateMap;
|
||||
typedef FastMap<Key, boost::shared_ptr<SmartFactor> > SmartFactorMap;
|
||||
typedef FastMap<Key, std::vector<boost::shared_ptr<ProjectionFactor> > > ProjectionFactorMap;
|
||||
|
||||
bool debug = false;
|
||||
|
||||
//// Helper functions taken from VO code
|
||||
// Loaded all pose values into list
|
||||
|
|
@ -175,28 +184,78 @@ void writeValues(string directory_, const Values& values){
|
|||
}
|
||||
}
|
||||
|
||||
// main
|
||||
int main(int argc, char** argv) {
|
||||
void addTriangulatedLandmarks(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr loadedValues,
|
||||
gtsam::Values::shared_ptr graphValues, boost::shared_ptr<Cal3_S2> K, ProjectionFactorMap &projectionFactors) {
|
||||
|
||||
bool debug = false;
|
||||
unsigned int maxNumLandmarks = 2000000;
|
||||
unsigned int maxNumPoses = 200000;
|
||||
std::vector<boost::shared_ptr<ProjectionFactor> > projectionFactorVector;
|
||||
std::vector<boost::shared_ptr<ProjectionFactor> >::iterator vfit;
|
||||
std::vector<Key> keys;
|
||||
Point3 point;
|
||||
Pose3 cameraPose;
|
||||
|
||||
// Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
|
||||
bool useSmartProjectionFactor = true;
|
||||
std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
|
||||
ProjectionFactorMap::iterator pfit;
|
||||
|
||||
// Get home directory and dataset
|
||||
string HOME = getenv("HOME");
|
||||
//string input_dir = HOME + "/data/kitti/loop_closures_merged/";
|
||||
string input_dir = HOME + "/data/KITTI_00_200/";
|
||||
// Iterate through all landmarks
|
||||
for (pfit = projectionFactors.begin(); pfit != projectionFactors.end(); pfit++) {
|
||||
projectionFactorVector = (*pfit).second;
|
||||
|
||||
typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
|
||||
typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
|
||||
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)));
|
||||
NonlinearFactorGraph graph;
|
||||
std::vector<Pose3> cameraPoses;
|
||||
std::vector<Point2> measured;
|
||||
|
||||
// Iterate through projection factors
|
||||
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
|
||||
|
||||
if (debug) std::cout << "ProjectionFactor: " << std::endl;
|
||||
if (debug) (*vfit)->print("ProjectionFactor");
|
||||
|
||||
// Iterate through poses
|
||||
cameraPoses.push_back( loadedValues->at<Pose3>((*vfit)->key1() ) );
|
||||
measured.push_back( (*vfit)->measured() );
|
||||
|
||||
}
|
||||
|
||||
// Triangulate landmark based on set of poses and measurements
|
||||
if (debug) std::cout << "Triangulating: " << std::endl;
|
||||
try {
|
||||
point = triangulatePoint3(cameraPoses, measured, *K);
|
||||
if (1||debug) std::cout << "Triangulation succeeded: " << point << std::endl;
|
||||
} catch( TriangulationUnderconstrainedException& e) {
|
||||
if (1||debug) std::cout << "Triangulation failed because of unconstrained exception" << std::endl;
|
||||
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
|
||||
std::cout << " Pose: " << pose << std::endl;
|
||||
}
|
||||
//exit(EXIT_FAILURE);
|
||||
continue;
|
||||
} catch( TriangulationCheiralityException& e) {
|
||||
if (1||debug) std::cout << "Triangulation failed because of cheirality exception" << std::endl;
|
||||
BOOST_FOREACH(const Pose3& pose, cameraPoses) {
|
||||
std::cout << " Pose: " << pose << std::endl;
|
||||
}
|
||||
//exit(EXIT_FAILURE);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Add projection factors and pose values
|
||||
for (vfit = projectionFactorVector.begin(); vfit != projectionFactorVector.end(); vfit++) {
|
||||
if (debug) std::cout << "Adding factor " << std::endl;
|
||||
if (debug) (*vfit)->print("Projection Factor");
|
||||
graph.push_back( (*vfit) );
|
||||
|
||||
// TODO: Add poses to values here!
|
||||
if (!graphValues->exists<Pose3>( (*vfit)->key1()) && loadedValues->exists<Pose3>((*vfit)->key1())) {
|
||||
graphValues->insert((*vfit)->key1(), loadedValues->at<Pose3>((*vfit)->key1()));
|
||||
}
|
||||
}
|
||||
|
||||
// Add landmark value
|
||||
if (debug) std::cout << "Adding value " << std::endl;
|
||||
graphValues->insert( projectionFactorVector[0]->key2(), point); // add point;
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void optimizeGraphLM(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
||||
// Optimization parameters
|
||||
LevenbergMarquardtParams params;
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
|
|
@ -210,6 +269,61 @@ int main(int argc, char** argv) {
|
|||
params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
params.linearSolverType = SuccessiveLinearizationParams::MULTIFRONTAL_CHOLESKY;
|
||||
|
||||
cout << "Graph size: " << graph.size() << endl;
|
||||
std::cout << " OPTIMIZATION " << std::endl;
|
||||
|
||||
std::cout << "\n\n=================================================\n\n";
|
||||
if (debug) {
|
||||
graph.print("thegraph");
|
||||
}
|
||||
std::cout << "\n\n=================================================\n\n";
|
||||
|
||||
//for (int i = 0; i < 3; i++) {
|
||||
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
||||
gttic_(SmartProjectionFactorExample_kitti);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartProjectionFactorExample_kitti);
|
||||
tictoc_finishedIteration_();
|
||||
//}
|
||||
|
||||
}
|
||||
|
||||
void optimizeGraphGN(NonlinearFactorGraph &graph, gtsam::Values::shared_ptr graphValues, Values &result) {
|
||||
GaussNewtonParams params;
|
||||
//params.maxIterations = 1;
|
||||
params.verbosity = NonlinearOptimizerParams::DELTA;
|
||||
|
||||
GaussNewtonOptimizer optimizer(graph, *graphValues, params);
|
||||
gttic_(SmartProjectionFactorExample_kitti);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartProjectionFactorExample_kitti);
|
||||
tictoc_finishedIteration_();
|
||||
|
||||
}
|
||||
// main
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
unsigned int maxNumLandmarks = 37106; //1000000;
|
||||
unsigned int maxNumPoses = 200;
|
||||
|
||||
// Set to true to use SmartProjectionFactor. Otherwise GenericProjectionFactor will be used
|
||||
bool useSmartProjectionFactor = true;
|
||||
bool useTriangulation = false;
|
||||
bool useLM = true;
|
||||
|
||||
std::cout << "PARAM SmartFactor: " << useSmartProjectionFactor << std::endl;
|
||||
std::cout << "PARAM Triangulation: " << useTriangulation << std::endl;
|
||||
std::cout << "PARAM LM: " << useLM << std::endl;
|
||||
|
||||
// Get home directory and dataset
|
||||
string HOME = getenv("HOME");
|
||||
//string input_dir = HOME + "/data/kitti/loop_closures_merged/";
|
||||
string input_dir = HOME + "/data/KITTI_00_200/";
|
||||
|
||||
static SharedNoiseModel pixel_sigma(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Diagonal::Sigmas(Vector_(6, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)));
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Load calibration
|
||||
//Cal3_S2::shared_ptr K(new Cal3_S2(718.856, 718.856, 0.0, 607.1928, 185.2157));
|
||||
boost::shared_ptr<Cal3_S2> K = loadCalibration(input_dir+"calibration.txt");
|
||||
|
|
@ -239,83 +353,140 @@ int main(int argc, char** argv) {
|
|||
std::vector<Key> views;
|
||||
std::vector<Point2> measurements;
|
||||
Values values;
|
||||
FastMap<Key, boost::shared_ptr<SmartProjectionFactorState> > smartFactorStates;
|
||||
FastMap<Key, boost::shared_ptr<SmartFactor> > smartFactors;
|
||||
SmartFactorToStateMap smartFactorStates;
|
||||
SmartFactorMap smartFactors;
|
||||
ProjectionFactorMap projectionFactors;
|
||||
Values result;
|
||||
while (fin >> r >> l >> uL >> uR >> v >> x >> y >> z) {
|
||||
fprintf(stderr,"Landmark %ld\n", l);
|
||||
fprintf(stderr,"Line %d: %d landmarks, (max landmarks %d), %d poses, max poses %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
|
||||
if (debug) fprintf(stderr,"Landmark %ld\n", l);
|
||||
if (debug) fprintf(stderr,"Line %d: %d landmarks, (max landmarks %d), %d poses, max poses %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
|
||||
|
||||
if (currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) { //numLandmarks > 3 && ) {
|
||||
cout << "Graph size: " << graph.size() << endl;
|
||||
graph.print("thegraph");
|
||||
std::cout << " OPTIMIZATION " << std::endl;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
||||
gttic_(SmartProjectionFactorExample_kitti);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartProjectionFactorExample_kitti);
|
||||
tictoc_finishedIteration_();
|
||||
// Optimize if have a certain number of poses/landmarks
|
||||
if (currentLandmark != l && (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) {
|
||||
|
||||
if (1||debug) fprintf(stderr,"%d: %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
|
||||
|
||||
cout << "Adding triangulated landmarks: " << graph.size() << endl;
|
||||
if (useTriangulation) {
|
||||
addTriangulatedLandmarks(graph, loadedValues, graphValues, K, projectionFactors);
|
||||
}
|
||||
cout << "Adding triangulated landmarks: " << graph.size() << endl;
|
||||
|
||||
if (useLM)
|
||||
optimizeGraphLM(graph, graphValues, result);
|
||||
else
|
||||
optimizeGraphGN(graph, graphValues, result);
|
||||
|
||||
// Only process first N measurements (for development/debugging)
|
||||
if ( (numPoses > maxNumPoses || numLandmarks > maxNumLandmarks) ) {
|
||||
fprintf(stderr,"BREAKING %d %d\n", count, maxNumLandmarks);
|
||||
if (1||debug) fprintf(stderr,"%d: BREAKING %d > %d, %d > %d\n", count, numLandmarks, maxNumLandmarks, numPoses, maxNumPoses);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
// Check if landmark exists in mapping
|
||||
FastMap<Key, boost::shared_ptr<SmartProjectionFactorState> >::iterator fsit = smartFactorStates.find(L(l));
|
||||
FastMap<Key, boost::shared_ptr<SmartFactor> >::iterator fit = smartFactors.find(L(l));
|
||||
if (fsit != smartFactorStates.end() && fit != smartFactors.end()) {
|
||||
fprintf(stderr,"Adding measurement to existing landmark\n");
|
||||
if (useSmartProjectionFactor) {
|
||||
|
||||
// Add measurement to smart factor
|
||||
(*fit).second->add(Point2(uL,v), X(r));
|
||||
// Check if landmark exists in mapping
|
||||
SmartFactorToStateMap::iterator fsit = smartFactorStates.find(L(l));
|
||||
SmartFactorMap::iterator fit = smartFactors.find(L(l));
|
||||
if (fsit != smartFactorStates.end() && fit != smartFactors.end()) {
|
||||
if (debug) fprintf(stderr,"Adding measurement to existing landmark\n");
|
||||
|
||||
// Add measurement to smart factor
|
||||
(*fit).second->add(Point2(uL,v), X(r));
|
||||
|
||||
if (debug) (*fit).second->print();
|
||||
} else {
|
||||
if (debug) fprintf(stderr,"New landmark (%d,%d)\n", fsit != smartFactorStates.end(), fit != smartFactors.end());
|
||||
|
||||
views += X(r);
|
||||
measurements += Point2(uL,v);
|
||||
|
||||
// This is a new landmark, create a new factor and add to mapping
|
||||
boost::shared_ptr<SmartProjectionFactorState> smartFactorState(new SmartProjectionFactorState());
|
||||
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurements, pixel_sigma, views, K));
|
||||
smartFactorStates.insert( make_pair(L(l), smartFactorState) );
|
||||
smartFactors.insert( make_pair(L(l), smartFactor) );
|
||||
graph.push_back(smartFactor);
|
||||
numLandmarks++;
|
||||
|
||||
views.clear();
|
||||
measurements.clear();
|
||||
|
||||
}
|
||||
|
||||
// Add initial pose value if pose does not exist
|
||||
if (!graphValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
|
||||
graphValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
|
||||
numPoses++;
|
||||
}
|
||||
|
||||
(*fit).second->print();
|
||||
} else {
|
||||
fprintf(stderr,"New landmark (%d,%d)\n", fsit != smartFactorStates.end(), fit != smartFactors.end());
|
||||
|
||||
views += X(r);
|
||||
measurements += Point2(uL,v);
|
||||
|
||||
// This is a new landmark, create a new factor and add to mapping
|
||||
boost::shared_ptr<SmartProjectionFactorState> smartFactorState(new SmartProjectionFactorState());
|
||||
SmartFactor::shared_ptr smartFactor(new SmartFactor(measurements, pixel_sigma, views, K));
|
||||
smartFactorStates.insert( make_pair(L(l), smartFactorState) );
|
||||
smartFactors.insert( make_pair(L(l), smartFactor) );
|
||||
graph.push_back(smartFactor);
|
||||
numLandmarks++;
|
||||
|
||||
views.clear();
|
||||
measurements.clear();
|
||||
|
||||
if (!graphValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
|
||||
graphValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
|
||||
numPoses++;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr,"%d %d\n", count, maxNumLandmarks);
|
||||
|
||||
if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
|
||||
|
||||
if (useSmartProjectionFactor == false) {
|
||||
// For projection factor, landmarks positions are used, but have to be transformed to world coordinates
|
||||
//if (loaded_values->exists<Point3>(L(l)) == boost::none) {
|
||||
//Pose3 camera = loaded_values->at<Pose3>(X(r));
|
||||
//Point3 worldPoint = camera.transform_from(Point3(x, y, z));
|
||||
//loaded_values->insert(L(l), worldPoint); // add point;
|
||||
//}
|
||||
|
||||
// Create projection factor
|
||||
ProjectionFactor::shared_ptr projectionFactor(new ProjectionFactor(Point2(uL,v), pixel_sigma, X(r), L(l), K));
|
||||
graph.push_back(projectionFactor);
|
||||
|
||||
// Check if landmark exists in mapping
|
||||
ProjectionFactorMap::iterator pfit = projectionFactors.find(L(l));
|
||||
if (pfit != projectionFactors.end()) {
|
||||
if (debug) fprintf(stderr,"Adding measurement to existing landmark\n");
|
||||
|
||||
// Add projection factor to list of projection factors associated with this landmark
|
||||
(*pfit).second.push_back(projectionFactor);
|
||||
|
||||
} else {
|
||||
if (debug) fprintf(stderr,"New landmark (%d)\n", pfit != projectionFactors.end());
|
||||
|
||||
// Create a new vector of projection factors
|
||||
std::vector<ProjectionFactor::shared_ptr> projectionFactorVector;
|
||||
projectionFactorVector.push_back(projectionFactor);
|
||||
|
||||
// Insert projection factor to NEW list of projection factors associated with this landmark
|
||||
projectionFactors.insert( make_pair(L(l), projectionFactorVector) );
|
||||
|
||||
// Add projection factor to graph
|
||||
//graph.push_back(projectionFactor);
|
||||
|
||||
// We have a new landmark
|
||||
numLandmarks++;
|
||||
}
|
||||
|
||||
// Add landmark if triangulation is not being used to initialize them
|
||||
if (!useTriangulation) {
|
||||
// For projection factor, landmarks positions are used, but have to be transformed to world coordinates
|
||||
if (graphValues->exists<Point3>(L(l)) == boost::none) {
|
||||
Pose3 camera = loadedValues->at<Pose3>(X(r));
|
||||
Point3 worldPoint = camera.transform_from(Point3(x, y, z));
|
||||
graphValues->insert(L(l), worldPoint); // add point;
|
||||
}
|
||||
|
||||
// Add initial pose value if pose does not exist
|
||||
// Only do this if triangulation is not used. Otherwise, it depends what projection factors are added
|
||||
// based on triangulation success
|
||||
if (!graphValues->exists<Pose3>(X(r)) && loadedValues->exists<Pose3>(X(r))) {
|
||||
graphValues->insert(X(r), loadedValues->at<Pose3>(X(r)));
|
||||
numPoses++;
|
||||
}
|
||||
|
||||
// Add projection factor to graph
|
||||
graph.push_back(projectionFactor);
|
||||
|
||||
|
||||
} else {
|
||||
|
||||
// Alternatively: Triangulate similar to how SmartProjectionFactor does it
|
||||
// We only do this at the end, when all of the camera poses are available
|
||||
// Note we do not add anything to the graph until then, since in some cases
|
||||
// of triangulation failure we cannot add the landmark to the graph
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (debug) fprintf(stderr,"%d %d\n", count, maxNumLandmarks);
|
||||
if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
|
||||
|
||||
currentLandmark = l;
|
||||
count++;
|
||||
if(count==100000) {
|
||||
|
|
@ -323,15 +494,6 @@ int main(int argc, char** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
cout << "Graph size: " << graph.size() << endl;
|
||||
graph.print("thegraph");
|
||||
std::cout << " OPTIMIZATION " << std::endl;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, *graphValues, params);
|
||||
gttic_(SmartProjectionFactorExample_kitti);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartProjectionFactorExample_kitti);
|
||||
tictoc_finishedIteration_();
|
||||
|
||||
cout << "===================================================" << endl;
|
||||
graphValues->print("before optimization ");
|
||||
result.print("results of kitti optimization ");
|
||||
|
|
|
|||
Loading…
Reference in New Issue