remove BAL for now, and add get3dPoint() for p access
parent
749971d57c
commit
34f670e9d5
|
@ -2847,6 +2847,7 @@ virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
|
|||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
class SfmTrack {
|
||||
Point3 get3dPoint() const;
|
||||
size_t number_measurements() const;
|
||||
pair<size_t, gtsam::Point2> measurement(size_t idx) const;
|
||||
pair<size_t, size_t> siftIndex(size_t idx) const;
|
||||
|
|
|
@ -233,6 +233,9 @@ struct SfmTrack {
|
|||
SiftIndex siftIndex(size_t idx) const {
|
||||
return siftIndices[idx];
|
||||
}
|
||||
Point3 get3dPoint() const {
|
||||
return p;
|
||||
}
|
||||
};
|
||||
|
||||
/// Define the structure for the camera poses
|
||||
|
|
|
@ -1,117 +0,0 @@
|
|||
"""
|
||||
GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
|
||||
Author: John Lambert
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from gtsam import symbol_shorthand
|
||||
from gtsam import readBal
|
||||
|
||||
C = symbol_shorthand.C
|
||||
P = symbol_shorthand.P
|
||||
|
||||
import pdb
|
||||
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
|
||||
# We will be using a projection factor that ties a SFM_Camera to a 3D point.
|
||||
# An SFM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
|
||||
# and has a total of 9 free parameters
|
||||
#typedef GeneralSFMFactor<SfmCamera,Point3> MyFactor;
|
||||
|
||||
|
||||
def run(args):
|
||||
""" Run LM optimization with BAL input data and report resulting error """
|
||||
# Find default file, but if an argument is given, try loading a file
|
||||
if args.input_file:
|
||||
input_file = args.input_file
|
||||
else:
|
||||
input_file = gtsam.findExampleDataFile("dubrovnik-3-7-pre")
|
||||
|
||||
# # Load the SfM data from file
|
||||
mydata = readBal(input_file)
|
||||
logging.info(f"read {mydata.number_tracks()} tracks on {mydata.number_cameras()} cameras\n")
|
||||
|
||||
# # Create a factor graph
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# # We share *one* noiseModel between all projection factors
|
||||
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
|
||||
|
||||
# Add measurements to the factor graph
|
||||
j = 0
|
||||
pdb.set_trace()
|
||||
for t_idx in range(mydata.number_tracks()):
|
||||
track = mydata.track(t_idx) # SfmTrack
|
||||
# retrieve the SfmMeasurement objects
|
||||
for m_idx in range(track.number_measurements()):
|
||||
# i represents the camera index, and uv is the 2d measurement
|
||||
i, uv = track.measurement(0) #
|
||||
#graph.emplace_shared<MyFactor>(uv, noise, C(i), P(j)) # note use of shorthand symbols C and P
|
||||
#graph.add
|
||||
j += 1
|
||||
pdb.set_trace()
|
||||
|
||||
# # Add a prior on pose x1. This indirectly specifies where the origin is.
|
||||
# # and a prior on the position of the first landmark to fix the scale
|
||||
|
||||
|
||||
graph.push_back(gtsam.PriorFactorVector(
|
||||
C(0), mydata.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)))
|
||||
# # graph.addPrior(P(0), mydata.track(0).p,
|
||||
# equivalent of addPrior
|
||||
graph.push_back(gtsam.PriorFactorVector(
|
||||
P(0), mydata.track(0)[1], gtsam.noiseModel.Isotropic.Sigma(3, 0.1)))
|
||||
|
||||
# # Create initial estimate
|
||||
initial = gtsam.Values()
|
||||
|
||||
i = 0
|
||||
# add each SfmCamera
|
||||
for cam_idx in range(mydata.number_cameras()):
|
||||
camera = mydata.camera(0)
|
||||
initial.insert(C(i), camera)
|
||||
i += 1
|
||||
|
||||
j = 0
|
||||
# add each SfmTrack
|
||||
for t_idx in range(mydata.number_tracks()):
|
||||
track = mydata.track(0)
|
||||
initial.insert(P(j), track.p)
|
||||
j += 1
|
||||
|
||||
# Optimize the graph and print results
|
||||
try:
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
params.setVerbosityLM("ERROR")
|
||||
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||
result = lm.optimize()
|
||||
except Exception as e:
|
||||
logging.exception("LM Optimization failed")
|
||||
return
|
||||
|
||||
logging.info(f"final error: {graph.error(result)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-i', '--input_file', type=str, default="",
|
||||
help='Read SFM data from the specified BAL file')
|
||||
run(parser.parse_args())
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue