Brought some relevant changes from aspn-imu-factor branch (is correct this time)

release/4.3a0
Richard Roberts 2013-08-02 16:04:17 +00:00
parent 3545b114ab
commit 34dc67c1af
11 changed files with 2306 additions and 36 deletions

56
gtsam.h
View File

@ -2079,8 +2079,9 @@ virtual class ISAM2 : gtsam::ISAM2BayesTree {
gtsam::Values getLinearizationPoint() const;
gtsam::Values calculateEstimate() const;
Matrix marginalCovariance(size_t key) const;
gtsam::Value calculateEstimate(size_t key) const;
gtsam::Values calculateBestEstimate() const;
Matrix marginalCovariance(size_t key) const;
gtsam::VectorValues getDelta() const;
gtsam::NonlinearFactorGraph getFactorsUnsafe() const;
gtsam::Ordering getOrdering() const;
@ -2122,8 +2123,8 @@ class NonlinearISAM {
#include <gtsam/geometry/StereoPoint2.h>
#include <gtsam/slam/PriorFactor.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera}>
virtual class PriorFactor : gtsam::NoiseModelFactor {
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class PriorFactor : gtsam::NonlinearFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
T prior() const;
@ -2133,8 +2134,8 @@ virtual class PriorFactor : gtsam::NoiseModelFactor {
#include <gtsam/slam/BetweenFactor.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
virtual class BetweenFactor : gtsam::NoiseModelFactor {
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::imuBias::ConstantBias}>
virtual class BetweenFactor : gtsam::NonlinearFactor {
BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel);
T measured() const;
@ -2144,8 +2145,8 @@ virtual class BetweenFactor : gtsam::NoiseModelFactor {
#include <gtsam/nonlinear/NonlinearEquality.h>
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera}>
virtual class NonlinearEquality : gtsam::NoiseModelFactor {
template<T = {gtsam::LieScalar, gtsam::LieVector, gtsam::LieMatrix, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class NonlinearEquality : gtsam::NonlinearFactor {
// Constructor - forces exact evaluation
NonlinearEquality(size_t j, const T& feasible);
// Constructor - allows inexact evaluation
@ -2284,6 +2285,47 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
//*************************************************************************
// Navigation
//*************************************************************************
namespace imuBias {
#include <gtsam/navigation/ImuBias.h>
virtual class ConstantBias : gtsam::Value {
// Standard Constructor
ConstantBias();
ConstantBias(Vector biasAcc, Vector biasGyro);
// Testable
void print(string s) const;
bool equals(const gtsam::imuBias::ConstantBias& expected, double tol) const;
// Group
static gtsam::imuBias::ConstantBias identity();
gtsam::imuBias::ConstantBias inverse() const;
gtsam::imuBias::ConstantBias compose(const gtsam::imuBias::ConstantBias& b) const;
gtsam::imuBias::ConstantBias between(const gtsam::imuBias::ConstantBias& b) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::imuBias::ConstantBias retract(Vector v) const;
Vector localCoordinates(const gtsam::imuBias::ConstantBias& b) const;
// Lie Group
static gtsam::imuBias::ConstantBias Expmap(Vector v);
static Vector Logmap(const gtsam::imuBias::ConstantBias& b);
// Standard Interface
Vector vector() const;
Vector accelerometer() const;
Vector gyroscope() const;
Vector correctAccelerometer(Vector measurement) const;
Vector correctGyroscope(Vector measurement) const;
};
}///\namespace imuBias
//*************************************************************************
// Utilities
//*************************************************************************

View File

@ -70,21 +70,21 @@ namespace imuBias {
const Vector3& gyroscope() const { return biasGyro_; }
/** Correct an accelerometer measurement using this bias model, and optionally compute Jacobians */
Vector correctAccelerometer(const Vector3& measurment, boost::optional<Matrix&> H=boost::none) const {
Vector correctAccelerometer(const Vector3& measurement, boost::optional<Matrix&> H=boost::none) const {
if (H){
H->resize(3,6);
(*H) << -Matrix3::Identity(), Matrix3::Zero();
}
return measurment - biasAcc_;
return measurement - biasAcc_;
}
/** Correct a gyroscope measurement using this bias model, and optionally compute Jacobians */
Vector correctGyroscope(const Vector3& measurment, boost::optional<Matrix&> H=boost::none) const {
Vector correctGyroscope(const Vector3& measurement, boost::optional<Matrix&> H=boost::none) const {
if (H){
H->resize(3,6);
(*H) << Matrix3::Zero(), -Matrix3::Identity();
}
return measurment - biasGyro_;
return measurement - biasGyro_;
}
// // H1: Jacobian w.r.t. IMUBias
@ -148,30 +148,14 @@ namespace imuBias {
inline ConstantBias retract(const Vector& v) const { return ConstantBias(biasAcc_ + v.head(3), biasGyro_ + v.tail(3)); }
/** @return the local coordinates of another object */
inline Vector localCoordinates(const ConstantBias& t2) const { return t2.vector() - vector(); }
inline Vector localCoordinates(const ConstantBias& b) const { return b.vector() - vector(); }
/// @}
/// @name Group
/// @{
ConstantBias compose(const ConstantBias& b2,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
if(H1) *H1 = gtsam::Matrix::Identity(6,6);
if(H2) *H2 = gtsam::Matrix::Identity(6,6);
return ConstantBias(biasAcc_ + b2.biasAcc_, biasGyro_ + b2.biasGyro_);
}
/** between operation */
ConstantBias between(const ConstantBias& b2,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
if(H1) *H1 = -gtsam::Matrix::Identity(6,6);
if(H2) *H2 = gtsam::Matrix::Identity(6,6);
return ConstantBias(b2.biasAcc_ - biasAcc_, b2.biasGyro_ - biasGyro_);
}
/** identity for group operation */
static ConstantBias identity() { return ConstantBias(); }
/** invert the object and yield a new one */
inline ConstantBias inverse(boost::optional<Matrix&> H=boost::none) const {
@ -180,6 +164,25 @@ namespace imuBias {
return ConstantBias(-biasAcc_, -biasGyro_);
}
ConstantBias compose(const ConstantBias& b,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
if(H1) *H1 = gtsam::Matrix::Identity(6,6);
if(H2) *H2 = gtsam::Matrix::Identity(6,6);
return ConstantBias(biasAcc_ + b.biasAcc_, biasGyro_ + b.biasGyro_);
}
/** between operation */
ConstantBias between(const ConstantBias& b,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
if(H1) *H1 = -gtsam::Matrix::Identity(6,6);
if(H2) *H2 = gtsam::Matrix::Identity(6,6);
return ConstantBias(b.biasAcc_ - biasAcc_, b.biasGyro_ - biasGyro_);
}
/// @}
/// @name Lie Group
/// @{
@ -188,7 +191,7 @@ namespace imuBias {
static inline ConstantBias Expmap(const Vector& v) { return ConstantBias(v.head(3), v.tail(3)); }
/** Logmap around identity - just returns with default cast back */
static inline Vector Logmap(const ConstantBias& p) { return p.vector(); }
static inline Vector Logmap(const ConstantBias& b) { return b.vector(); }
/// @}

View File

@ -677,6 +677,74 @@ TEST (InertialNavFactor_GlobalVelocity, JacobianWithTransform ) {
CHECK( gtsam::assert_equal(H5_expectedVel, H5_actualVel, 1e-5));
}
#include <gtsam/linear/GaussianFactorGraph.h>
/* ************************************************************************* */
TEST( InertialNavFactor_GlobalVelocity, LinearizeTiming)
{
gtsam::Key PoseKey1(11);
gtsam::Key PoseKey2(12);
gtsam::Key VelKey1(21);
gtsam::Key VelKey2(22);
gtsam::Key BiasKey1(31);
double measurement_dt(0.1);
Vector world_g(Vector_(3, 0.0, 0.0, 9.81));
Vector world_rho(Vector_(3, 0.0, -1.5724e-05, 0.0)); // NED system
gtsam::Vector ECEF_omega_earth(Vector_(3, 0.0, 0.0, 7.292115e-5));
gtsam::Vector world_omega_earth(world_R_ECEF.matrix() * ECEF_omega_earth);
SharedGaussian model(noiseModel::Isotropic::Sigma(9, 0.1));
// Second test: zero angular motion, some acceleration - generated in matlab
Vector measurement_acc(Vector_(3, 6.501390843381716, -6.763926150509185, -2.300389940090343));
Vector measurement_gyro(Vector_(3, 0.1, 0.2, 0.3));
InertialNavFactor_GlobalVelocity<Pose3, LieVector, imuBias::ConstantBias> f(PoseKey1, VelKey1, BiasKey1, PoseKey2, VelKey2, measurement_acc, measurement_gyro, measurement_dt, world_g, world_rho, world_omega_earth, model);
Rot3 R1(0.487316618, 0.125253866, 0.86419557,
0.580273724, 0.693095498, -0.427669306,
-0.652537293, 0.709880342, 0.265075427);
Point3 t1(2.0,1.0,3.0);
Pose3 Pose1(R1, t1);
LieVector Vel1(3,0.5,-0.5,0.4);
Rot3 R2(0.473618898, 0.119523052, 0.872582019,
0.609241153, 0.67099888, -0.422594037,
-0.636011287, 0.731761397, 0.244979388);
Point3 t2 = t1.compose( Point3(Vel1*measurement_dt) );
Pose3 Pose2(R2, t2);
Vector dv = measurement_dt * (R1.matrix() * measurement_acc + world_g);
LieVector Vel2 = Vel1.compose( dv );
imuBias::ConstantBias Bias1;
Values values;
values.insert(PoseKey1, Pose1);
values.insert(PoseKey2, Pose2);
values.insert(VelKey1, Vel1);
values.insert(VelKey2, Vel2);
values.insert(BiasKey1, Bias1);
Ordering ordering;
ordering.push_back(PoseKey1);
ordering.push_back(VelKey1);
ordering.push_back(BiasKey1);
ordering.push_back(PoseKey2);
ordering.push_back(VelKey2);
GaussianFactorGraph graph;
gttic_(LinearizeTiming);
for(size_t i = 0; i < 100000; ++i) {
GaussianFactor::shared_ptr g = f.linearize(values, ordering);
graph.push_back(g);
}
gttoc_(LinearizeTiming);
tictoc_finishedIteration_();
tictoc_print_();
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -1019,10 +1019,10 @@ Values ISAM2::calculateEstimate() const {
}
/* ************************************************************************* */
Matrix ISAM2::marginalCovariance(Index key) const {
return marginalFactor(ordering_[key],
params_.factorization == ISAM2Params::QR ? EliminateQR : EliminatePreferCholesky)
->information().inverse();
const Value& ISAM2::calculateEstimate(Key key) const {
const Index index = getOrdering()[key];
const Vector& delta = getDelta()[index];
return *theta_.at(key).retract_(delta);
}
/* ************************************************************************* */
@ -1032,6 +1032,13 @@ Values ISAM2::calculateBestEstimate() const {
return theta_.retract(delta, ordering_);
}
/* ************************************************************************* */
Matrix ISAM2::marginalCovariance(Index key) const {
return marginalFactor(ordering_[key],
params_.factorization == ISAM2Params::QR ? EliminateQR : EliminatePreferCholesky)
->information().inverse();
}
/* ************************************************************************* */
const VectorValues& ISAM2::getDelta() const {
if(!deltaUptodate_)

View File

@ -585,6 +585,15 @@ public:
template<class VALUE>
VALUE calculateEstimate(Key key) const;
/** Compute an estimate for a single variable using its incomplete linear delta computed
* during the last update. This is faster than calling the no-argument version of
* calculateEstimate, which operates on all variables. This is a non-templated version
* that returns a Value base class for use with the MATLAB wrapper.
* @param key
* @return
*/
GTSAM_EXPORT const Value& calculateEstimate(Key key) const;
/** Return marginal on any variable as a covariance matrix */
GTSAM_EXPORT Matrix marginalCovariance(Index key) const;

View File

@ -93,7 +93,7 @@ Vector PoseRTV::localCoordinates(const PoseRTV& p1) const {
/* ************************************************************************* */
PoseRTV inverse_(const PoseRTV& p) { return p.inverse(); }
PoseRTV PoseRTV::inverse(boost::optional<Matrix&> H1) const {
if (H1) *H1 = numericalDerivative11(inverse_, *this, 1e-5);
if (H1) *H1 = numericalDerivative11<PoseRTV,PoseRTV>(inverse_, *this, 1e-5);
return PoseRTV(Rt_.inverse(), v_.inverse());
}

View File

@ -13,6 +13,7 @@ virtual class gtsam::Point3;
virtual class gtsam::Rot3;
virtual class gtsam::Pose3;
virtual class gtsam::noiseModel::Base;
virtual class gtsam::imuBias::ConstantBias;
virtual class gtsam::NonlinearFactor;
virtual class gtsam::GaussianFactor;
virtual class gtsam::HessianFactor;
@ -614,6 +615,74 @@ virtual class InvDepthFactorVariant3b : gtsam::NonlinearFactor {
InvDepthFactorVariant3b(size_t poseKey1, size_t poseKey2, size_t landmarkKey, const gtsam::Point2& measured, const gtsam::Cal3_S2* K, const gtsam::noiseModel::Base* model);
};
#include <gtsam_unstable/slam/ImuFactor.h>
class ImuFactorPreintegratedMeasurements {
// Standard Constructor
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance, Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
};
virtual class ImuFactor : gtsam::NonlinearFactor {
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::noiseModel::Base* model);
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::noiseModel::Base* model, const gtsam::Pose3& body_P_sensor);
// Standard Interface
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::LieVector& vel_i, gtsam::Pose3& pose_j, gtsam::LieVector& vel_j,
const gtsam::imuBias::ConstantBias& bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
};
#include <gtsam_unstable/slam/CombinedImuFactor.h>
class CombinedImuFactorPreintegratedMeasurements {
// Standard Constructor
CombinedImuFactorPreintegratedMeasurements(
const gtsam::imuBias::ConstantBias& bias,
Matrix measuredAccCovariance,
Matrix measuredOmegaCovariance,
Matrix integrationErrorCovariance,
Matrix biasAccCovariance,
Matrix biasOmegaCovariance,
Matrix biasAccOmegaInit);
CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::CombinedImuFactorPreintegratedMeasurements& expected, double tol);
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
};
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::noiseModel::Base* model);
// Standard Interface
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::LieVector& vel_i, gtsam::Pose3& pose_j, gtsam::LieVector& vel_j,
const gtsam::imuBias::ConstantBias& bias_i, const gtsam::imuBias::ConstantBias& bias_j,
const gtsam::CombinedImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
};
#include <gtsam_unstable/slam/Mechanization_bRn2.h>
class Mechanization_bRn2 {
Mechanization_bRn2();

View File

@ -0,0 +1,646 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CombinedImuFactor.h
* @author Luca Carlone, Stephen Williams, Richard Roberts
**/
#pragma once
/* GTSAM includes */
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
class CombinedImuFactor: public NoiseModelFactor6<Pose3,LieVector,Pose3,LieVector,imuBias::ConstantBias,imuBias::ConstantBias> {
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
/** Right Jacobian for Exponential map in SO(3) - equation (10.86) and following equations in [1] */
static Matrix3 rightJacobianExpMapSO3(const Vector3& x) {
// x is the axis-angle representation (exponential coordinates) for a rotation
double normx = norm_2(x); // rotation angle
Matrix3 Jr;
if (normx < 10e-8){
Jr = Matrix3::Identity();
}
else{
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
Jr = Matrix3::Identity() - ((1-cos(normx))/(normx*normx)) * X +
((normx-sin(normx))/(normx*normx*normx)) * X * X; // right Jacobian
}
return Jr;
}
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in [1] */
static Matrix3 rightJacobianExpMapSO3inverse(const Vector3& x) {
// x is the axis-angle representation (exponential coordinates) for a rotation
double normx = norm_2(x); // rotation angle
Matrix3 Jrinv;
if (normx < 10e-8){
Jrinv = Matrix3::Identity();
}
else{
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
Jrinv = Matrix3::Identity() +
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
}
return Jrinv;
}
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class CombinedPreintegratedMeasurements {
public:
imuBias::ConstantBias biasHat; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance; ///< (Raw measurements uncertainty) Covariance of the vector
///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
Vector3 deltaPij; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
double deltaTij; ///< Time interval from i to j
Matrix3 delPdelBiasAcc; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
///< In the combined factor is also includes the biases and keeps the correlation between the preintegrated measurements and the biases
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
/** Default constructor, initialize with no IMU measurements */
CombinedPreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
///< (this allows to consider the uncertainty of the BIAS choice when integrating the measurements)
) : biasHat(bias), measurementCovariance(21,21), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(15,15))
{
// COVARIANCE OF: [Integration AccMeasurement OmegaMeasurement BiasAccRandomWalk BiasOmegaRandomWalk (BiasAccInit BiasOmegaInit)] SIZE (21x21)
measurementCovariance << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasOmegaCovariance, Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccOmegaInit.block(0,0,3,3), biasAccOmegaInit.block(0,3,3,3),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccOmegaInit.block(3,0,3,3), biasAccOmegaInit.block(3,3,3,3);
}
CombinedPreintegratedMeasurements() :
biasHat(imuBias::ConstantBias()), measurementCovariance(21,21), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(15,15))
{
}
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat.print(" biasHat");
std::cout << " deltaTij " << deltaTij << std::endl;
std::cout << " deltaPij [ " << deltaPij.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij.transpose() << " ]" << std::endl;
deltaRij.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
}
/** equals */
bool equals(const CombinedPreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat.equals(expected.biasHat, tol)
&& equal_with_abs_tol(measurementCovariance, expected.measurementCovariance, tol)
&& equal_with_abs_tol(deltaPij, expected.deltaPij, tol)
&& equal_with_abs_tol(deltaVij, expected.deltaVij, tol)
&& deltaRij.equals(expected.deltaRij, tol)
&& std::fabs(deltaTij - expected.deltaTij) < tol
&& equal_with_abs_tol(delPdelBiasAcc, expected.delPdelBiasAcc, tol)
&& equal_with_abs_tol(delPdelBiasOmega, expected.delPdelBiasOmega, tol)
&& equal_with_abs_tol(delVdelBiasAcc, expected.delVdelBiasAcc, tol)
&& equal_with_abs_tol(delVdelBiasOmega, expected.delVdelBiasOmega, tol)
&& equal_with_abs_tol(delRdelBiasOmega, expected.delRdelBiasOmega, tol);
}
/** Add a single IMU measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredAcc, ///< Measured linear acceleration (in body frame)
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
Vector3 correctedAcc = biasHat.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
// delPdelBiasAcc += delVdelBiasAcc * deltaT;
// delPdelBiasOmega += delVdelBiasOmega * deltaT;
delPdelBiasAcc += delVdelBiasAcc * deltaT - 0.5 * deltaRij.matrix() * deltaT*deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT - 0.5 * deltaRij.matrix()
* skewSymmetric(biasHat.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega;
delVdelBiasAcc += -deltaRij.matrix() * deltaT;
delVdelBiasOmega += -deltaRij.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega;
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
const Matrix3 Jr_theta_i = rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = rightJacobianExpMapSO3inverse(theta_j);
// Single Jacobians to propagate covariance
Matrix3 H_pos_pos = I_3x3;
Matrix3 H_pos_vel = I_3x3 * deltaT;
Matrix3 H_pos_angles = Z_3x3;
Matrix3 H_vel_pos = Z_3x3;
Matrix3 H_vel_vel = I_3x3;
Matrix3 H_vel_angles = - deltaRij.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix3 H_vel_biasacc = - deltaRij.matrix() * deltaT;
Matrix3 H_angles_pos = Z_3x3;
Matrix3 H_angles_vel = Z_3x3;
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(15,15);
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
// first order uncertainty propagation
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
Matrix G_measCov_Gt = Matrix::Zero(15,15);
// BLOCK DIAGONAL TERMS
G_measCov_Gt.block(0,0,3,3) = deltaT * measurementCovariance.block(0,0,3,3);
G_measCov_Gt.block(3,3,3,3) = (1/deltaT) * (H_vel_biasacc) *
(measurementCovariance.block(3,3,3,3) + measurementCovariance.block(9,9,3,3) + measurementCovariance.block(15,15,3,3) ) *
(H_vel_biasacc.transpose());
G_measCov_Gt.block(6,6,3,3) = (1/deltaT) * (H_angles_biasomega) *
(measurementCovariance.block(6,6,3,3) + measurementCovariance.block(12,12,3,3) + measurementCovariance.block(18,18,3,3) ) *
(H_angles_biasomega.transpose());
G_measCov_Gt.block(9,9,3,3) = deltaT * measurementCovariance.block(9,9,3,3);
G_measCov_Gt.block(12,12,3,3) = deltaT * measurementCovariance.block(12,12,3,3);
// OFF BLOCK DIAGONAL TERMS
Matrix3 block24 = H_vel_biasacc * measurementCovariance.block(9,9,3,3);
G_measCov_Gt.block(3,9,3,3) = block24;
G_measCov_Gt.block(9,3,3,3) = block24.transpose();
Matrix3 block35 = H_angles_biasomega * measurementCovariance.block(12,12,3,3);
G_measCov_Gt.block(6,12,3,3) = block35;
G_measCov_Gt.block(12,6,3,3) = block35.transpose();
PreintMeasCov = F * PreintMeasCov * F.transpose() + G_measCov_Gt;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
deltaPij += deltaVij * deltaT + 0.5 * deltaRij.matrix() * biasHat.correctAccelerometer(measuredAcc) * deltaT*deltaT;
deltaVij += deltaRij.matrix() * correctedAcc * deltaT;
deltaRij = deltaRij * Rincr;
deltaTij += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance);
ar & BOOST_SERIALIZATION_NVP(deltaPij);
ar & BOOST_SERIALIZATION_NVP(deltaVij);
ar & BOOST_SERIALIZATION_NVP(deltaRij);
ar & BOOST_SERIALIZATION_NVP(deltaTij);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega);
}
};
private:
typedef CombinedImuFactor This;
typedef NoiseModelFactor6<Pose3,LieVector,Pose3,LieVector,imuBias::ConstantBias,imuBias::ConstantBias> Base;
CombinedPreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
public:
/** Shorthand for a smart pointer to a factor */
typedef typename boost::shared_ptr<CombinedImuFactor> shared_ptr;
/** Default constructor - only use for serialization */
CombinedImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6)) {}
/** Constructor */
CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
const CombinedPreintegratedMeasurements& preintegratedMeasurements, const Vector3& gravity, const Vector3& omegaCoriolis,
const SharedNoiseModel& model, boost::optional<const Pose3&> body_P_sensor = boost::none) :
Base(model, pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor) {
}
virtual ~CombinedImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "CombinedImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ","
<< keyFormatter(this->key6()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/** Access the preintegrated measurements. */
const CombinedPreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_; }
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none,
boost::optional<Matrix&> H6 = boost::none) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij.retract(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(15,6);
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
// dfP/dPi
- Rot_i.matrix(),
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
// dfV/dPi
Matrix3::Zero(),
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Matrix3::Zero(),
//dBiasAcc/dPi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPi
Matrix3::Zero(), Matrix3::Zero();
}
if(H2) {
H2->resize(15,3);
(*H2) <<
// dfP/dVi
- Matrix3::Identity() * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- Matrix3::Identity()
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Matrix3::Zero(),
//dBiasAcc/dVi
Matrix3::Zero(),
//dBiasOmega/dVi
Matrix3::Zero();
}
if(H3) {
H3->resize(15,6);
(*H3) <<
// dfP/dPosej
Matrix3::Zero(), Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( Matrix3::Identity() ), Matrix3::Zero(),
//dBiasAcc/dPosej
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPosej
Matrix3::Zero(), Matrix3::Zero();
}
if(H4) {
H4->resize(15,3);
(*H4) <<
// dfP/dVj
Matrix3::Zero(),
// dfV/dVj
Matrix3::Identity(),
// dfR/dVj
Matrix3::Zero(),
//dBiasAcc/dVj
Matrix3::Zero(),
//dBiasOmega/dVj
Matrix3::Zero();
}
if(H5) {
const Matrix3 Jrinv_theta_bc = rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega;
H5->resize(15,6);
(*H5) <<
// dfP/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega,
// dfV/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega,
// dfR/dBias_i
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
//dBiasAcc/dBias_i
-Matrix3::Identity(), Matrix3::Zero(),
//dBiasOmega/dBias_i
Matrix3::Zero(), -Matrix3::Identity();
}
if(H6) {
H6->resize(15,6);
(*H6) <<
// dfP/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
// dfV/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
// dfR/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
//dBiasAcc/dBias_j
Matrix3::Identity(), Matrix3::Zero(),
//dBiasOmega/dBias_j
Matrix3::Zero(), Matrix3::Identity();
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
return r;
}
/** predicted states from IMU */
static void Predict(const Pose3& pose_i, const LieVector& vel_i, Pose3& pose_j, LieVector& vel_j,
const imuBias::ConstantBias& bias_i, imuBias::ConstantBias& bias_j,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none)
{
const double& deltaTij = preintegratedMeasurements.deltaTij;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
pose_j = Pose3( Rot_j, Point3(pos_j) );
bias_j = bias_i;
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor6",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
ar & BOOST_SERIALIZATION_NVP(gravity_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // \class CombinedImuFactor
typedef CombinedImuFactor::CombinedPreintegratedMeasurements CombinedImuFactorPreintegratedMeasurements;
} /// namespace gtsam

View File

@ -0,0 +1,559 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ImuFactor.h
* @author Luca Carlone, Stephen Williams, Richard Roberts
**/
#pragma once
/* GTSAM includes */
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
/**
*
* @addtogroup SLAM
* * REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
class ImuFactor: public NoiseModelFactor5<Pose3,LieVector,Pose3,LieVector,imuBias::ConstantBias> {
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
/** Right Jacobian for Exponential map in SO(3) - equation (10.86) and following equations in [1] */
static Matrix3 rightJacobianExpMapSO3(const Vector3& x) {
// x is the axis-angle representation (exponential coordinates) for a rotation
double normx = norm_2(x); // rotation angle
Matrix3 Jr;
if (normx < 10e-8){
Jr = Matrix3::Identity();
}
else{
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
Jr = Matrix3::Identity() - ((1-cos(normx))/(normx*normx)) * X +
((normx-sin(normx))/(normx*normx*normx)) * X * X; // right Jacobian
}
return Jr;
}
/** Right Jacobian for Log map in SO(3) - equation (10.86) and following equations in [1] */
static Matrix3 rightJacobianExpMapSO3inverse(const Vector3& x) {
// x is the axis-angle representation (exponential coordinates) for a rotation
double normx = norm_2(x); // rotation angle
Matrix3 Jrinv;
if (normx < 10e-8){
Jrinv = Matrix3::Identity();
}
else{
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
Jrinv = Matrix3::Identity() +
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
}
return Jrinv;
}
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class PreintegratedMeasurements {
public:
imuBias::ConstantBias biasHat; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance; ///< (Raw measurements uncertainty) Covariance of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
Vector3 deltaPij; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, , in [2]) (in frame i)
Vector3 deltaVij; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
double deltaTij; ///< Time interval from i to j
Matrix3 delPdelBiasAcc; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
/** Default constructor, initialize with no IMU measurements */
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& integrationErrorCovariance ///< Covariance matrix of measuredAcc
) : biasHat(bias), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9)
{
measurementCovariance << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance;
PreintMeasCov = Matrix::Zero(9,9);
}
PreintegratedMeasurements() :
biasHat(imuBias::ConstantBias()), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9)
{
measurementCovariance = Matrix::Zero(9,9);
PreintMeasCov = Matrix::Zero(9,9);
}
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat.print(" biasHat");
std::cout << " deltaTij " << deltaTij << std::endl;
std::cout << " deltaPij [ " << deltaPij.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij.transpose() << " ]" << std::endl;
deltaRij.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
}
/** equals */
bool equals(const PreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat.equals(expected.biasHat, tol)
&& equal_with_abs_tol(measurementCovariance, expected.measurementCovariance, tol)
&& equal_with_abs_tol(deltaPij, expected.deltaPij, tol)
&& equal_with_abs_tol(deltaVij, expected.deltaVij, tol)
&& deltaRij.equals(expected.deltaRij, tol)
&& std::fabs(deltaTij - expected.deltaTij) < tol
&& equal_with_abs_tol(delPdelBiasAcc, expected.delPdelBiasAcc, tol)
&& equal_with_abs_tol(delPdelBiasOmega, expected.delPdelBiasOmega, tol)
&& equal_with_abs_tol(delVdelBiasAcc, expected.delVdelBiasAcc, tol)
&& equal_with_abs_tol(delVdelBiasOmega, expected.delVdelBiasOmega, tol)
&& equal_with_abs_tol(delRdelBiasOmega, expected.delRdelBiasOmega, tol);
}
/** Add a single IMU measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredAcc, ///< Measured linear acceleration (in body frame)
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
// NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedAcc = biasHat.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
// delPdelBiasAcc += delVdelBiasAcc * deltaT;
// delPdelBiasOmega += delVdelBiasOmega * deltaT;
delPdelBiasAcc += delVdelBiasAcc * deltaT - 0.5 * deltaRij.matrix() * deltaT*deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT - 0.5 * deltaRij.matrix()
* skewSymmetric(biasHat.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega;
delVdelBiasAcc += -deltaRij.matrix() * deltaT;
delVdelBiasOmega += -deltaRij.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega;
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega - Jr_theta_incr * deltaT;
// Update preintegrated mesurements covariance
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
const Matrix3 Jr_theta_i = rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = rightJacobianExpMapSO3inverse(theta_j);
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework
Matrix H_pos_pos = I_3x3;
Matrix H_pos_vel = I_3x3 * deltaT;
Matrix H_pos_angles = Z_3x3;
Matrix H_vel_pos = Z_3x3;
Matrix H_vel_vel = I_3x3;
Matrix H_vel_angles = - deltaRij.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix H_angles_pos = Z_3x3;
Matrix H_angles_vel = Z_3x3;
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(9,9);
F << H_pos_pos, H_pos_vel, H_pos_angles,
H_vel_pos, H_vel_vel, H_vel_angles,
H_angles_pos, H_angles_vel, H_angles_angles;
// first order uncertainty propagation
// the deltaT allows to pass from continuous time noise to discrete time noise
PreintMeasCov = F * PreintMeasCov * F.transpose() + measurementCovariance * deltaT ;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
deltaPij += deltaVij * deltaT + 0.5 * deltaRij.matrix() * biasHat.correctAccelerometer(measuredAcc) * deltaT*deltaT;
deltaVij += deltaRij.matrix() * correctedAcc * deltaT;
deltaRij = deltaRij * Rincr;
deltaTij += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance);
ar & BOOST_SERIALIZATION_NVP(deltaPij);
ar & BOOST_SERIALIZATION_NVP(deltaVij);
ar & BOOST_SERIALIZATION_NVP(deltaRij);
ar & BOOST_SERIALIZATION_NVP(deltaTij);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega);
}
};
private:
typedef ImuFactor This;
typedef NoiseModelFactor5<Pose3,LieVector,Pose3,LieVector,imuBias::ConstantBias> Base;
PreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
public:
/** Shorthand for a smart pointer to a factor */
typedef typename boost::shared_ptr<ImuFactor> shared_ptr;
/** Default constructor - only use for serialization */
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()) {}
/** Constructor */
ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
const PreintegratedMeasurements& preintegratedMeasurements, const Vector3& gravity, const Vector3& omegaCoriolis,
const SharedNoiseModel& model, boost::optional<const Pose3&> body_P_sensor = boost::none) :
Base(model, pose_i, vel_i, pose_j, vel_j, bias),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor) {
}
virtual ~ImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "ImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/** Access the preintegrated measurements. */
const PreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_; }
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij.retract(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(9,6);
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
// dfP/dPi
- Rot_i.matrix(),
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
// dfV/dPi
Matrix3::Zero(),
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Matrix3::Zero();
}
if(H2) {
H2->resize(9,3);
(*H2) <<
// dfP/dVi
- Matrix3::Identity() * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- Matrix3::Identity()
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Matrix3::Zero();
}
if(H3) {
H3->resize(9,6);
(*H3) <<
// dfP/dPosej
Matrix3::Zero(), Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( Matrix3::Identity() ), Matrix3::Zero();
}
if(H4) {
H4->resize(9,3);
(*H4) <<
// dfP/dVj
Matrix3::Zero(),
// dfV/dVj
Matrix3::Identity(),
// dfR/dVj
Matrix3::Zero();
}
if(H5) {
const Matrix3 Jrinv_theta_bc = rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega;
H5->resize(9,6);
(*H5) <<
// dfP/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega,
// dfV/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega,
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
Vector r(9); r << fp, fv, fR;
return r;
}
/** predicted states from IMU */
static void Predict(const Pose3& pose_i, const LieVector& vel_i, Pose3& pose_j, LieVector& vel_j,
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none)
{
const double& deltaTij = preintegratedMeasurements.deltaTij;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
pose_j = Pose3( Rot_j, Point3(pos_j) );
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor5",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
ar & BOOST_SERIALIZATION_NVP(gravity_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // \class ImuFactor
typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;
} /// namespace gtsam

View File

@ -0,0 +1,298 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
*/
#include <gtsam_unstable/slam/ImuFactor.h>
#include <gtsam_unstable/slam/CombinedImuFactor.h>
#include <gtsam/navigation/EquivInertialNavFactor_GlobalVel.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <list>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
Vector callEvaluateError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias);
}
Rot3 evaluateRotationError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
}
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
)
{
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
Matrix3::Identity(), Matrix3::Identity());
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
list<double>::const_iterator itDeltaT = deltaTs.begin();
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
return result;
}
Vector3 evaluatePreintegratedMeasurementsPosition(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij;
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
}
Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaRij;
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT)
{
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta)
{
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
}
}
/* ************************************************************************* */
TEST( CombinedImuFactor, PreintegratedMeasurements )
{
cout << "++++++++++++++++++++++++++++++ PreintegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
// Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
double tol = 1e-6;
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements expected1(bias, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero());
expected1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
CombinedImuFactor::CombinedPreintegratedMeasurements actual1(bias,
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6));
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expected1.deltaPij), Vector(actual1.deltaPij), tol));
EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
}
/* ************************************************************************* */
TEST( CombinedImuFactor, ErrorWithBiases )
{
cout << "++++++++++++++++++++++++++++++ ErrorWithBiases +++++++++++++++++++++++++++++++++++++++ " << endl;
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
imuBias::ConstantBias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
LieVector v1(3, 0.5, 0.0, 0.0);
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
LieVector v2(3, 0.5, 0.0, 0.0);
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
double tol = 1e-6;
// const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
// const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
// const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
// const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
// const Matrix& biasAccOmegaInit ///< Covariance of biasAcc & biasOmega when preintegrating measurements
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6 );
Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
noiseModel::Gaussian::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.PreintMeasCov);
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov);
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis, Combinedmodel);
Vector errorExpected = factor.evaluateError(x1, v1, x2, v2, bias);
Vector errorActual = Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2);
EXPECT(assert_equal(errorExpected, errorActual.head(9), tol));
// Expected Jacobians
Matrix H1e, H2e, H3e, H4e, H5e;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1e, H2e, H3e, H4e, H5e);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a, H6a;
(void) Combinedfactor.evaluateError(x1, v1, x2, v2, bias, bias2, H1a, H2a, H3a, H4a, H5a, H6a);
EXPECT(assert_equal(H1e, H1a.topRows(9)));
EXPECT(assert_equal(H2e, H2a.topRows(9)));
EXPECT(assert_equal(H3e, H3a.topRows(9)));
EXPECT(assert_equal(H4e, H4a.topRows(9)));
EXPECT(assert_equal(H5e, H5a.topRows(9)));
}
/* ************************************************************************* */
TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
{
cout << "++++++++++++++++++++++++++++++ FirstOrderPreIntegratedMeasurements +++++++++++++++++++++++++++++++++++++++ " << endl;
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
// Measurements
list<Vector3> measuredAccs, measuredOmegas;
list<double> deltaTs;
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
for(int i=1;i<100;i++)
{
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
deltaTs.push_back(0.01);
}
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements preintegrated =
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
// Compute numerical derivatives
Matrix expectedDelPdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
Matrix expectedDelVdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
Matrix expectedDelRdelBias = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega));
}
#include <gtsam/linear/GaussianFactorGraph.h>
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -0,0 +1,569 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
*/
#include <gtsam_unstable/slam/ImuFactor.h>
#include <gtsam/navigation/EquivInertialNavFactor_GlobalVel.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <list>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
Vector callEvaluateError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias);
}
Rot3 evaluateRotationError(const ImuFactor& factor,
const Pose3& pose_i, const LieVector& vel_i, const Pose3& pose_j, const LieVector& vel_j,
const imuBias::ConstantBias& bias)
{
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
}
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
)
{
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
Matrix3::Identity(), Matrix3::Identity());
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
list<double>::const_iterator itDeltaT = deltaTs.begin();
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
return result;
}
Vector3 evaluatePreintegratedMeasurementsPosition(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaPij;
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
}
Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaRij;
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT)
{
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta)
{
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
}
}
/* ************************************************************************* */
TEST( ImuFactor, PreintegratedMeasurements )
{
// Linearization point
imuBias::ConstantBias bias(Vector3(0,0,0), Vector3(0,0,0)); ///< Current estimate of acceleration and angular rate biases
// Measurements
Vector3 measuredAcc(0.1, 0.0, 0.0);
Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
double deltaT = 0.5;
// Expected preintegrated values
Vector3 expectedDeltaP1; expectedDeltaP1 << 0.5*0.1*0.5*0.5, 0, 0;
Vector3 expectedDeltaV1(0.05, 0.0, 0.0);
Rot3 expectedDeltaR1 = Rot3::RzRyRx(0.5 * M_PI/100.0, 0.0, 0.0);
double expectedDeltaT1(0.5);
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements actual1(bias, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP1), Vector(actual1.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV1), Vector(actual1.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR1, actual1.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij, 1e-6);
// Integrate again
Vector3 expectedDeltaP2; expectedDeltaP2 << 0.025 + expectedDeltaP1(0) + 0.5*0.1*0.5*0.5, 0, 0;
Vector3 expectedDeltaV2 = Vector3(0.05, 0.0, 0.0) + expectedDeltaR1.matrix() * measuredAcc * 0.5;
Rot3 expectedDeltaR2 = Rot3::RzRyRx(2.0 * 0.5 * M_PI/100.0, 0.0, 0.0);
double expectedDeltaT2(1);
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements actual2 = actual1;
actual2.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP2), Vector(actual2.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV2), Vector(actual2.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR2, actual2.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij, 1e-6);
}
/* ************************************************************************* */
TEST( ImuFactor, Error )
{
// Linearization point
imuBias::ConstantBias bias; // Bias
Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
LieVector v1(3, 0.5, 0.0, 0.0);
Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
LieVector v2(3, 0.5, 0.0, 0.0);
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega; measuredOmega << M_PI/100, 0, 0;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector();
double deltaT = 1.0;
ImuFactor::PreintegratedMeasurements pre_int_data(bias, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(9, 0.15, 0.15, 0.15, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5));
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
// Expected error
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
// positions and velocities
Matrix H1etop6 = H1e.topRows(6);
Matrix H1atop6 = H1a.topRows(6);
EXPECT(assert_equal(H1etop6, H1atop6));
// rotations
EXPECT(assert_equal(RH1e, H1a.bottomRows(3))); // evaluate only the rotation residue
EXPECT(assert_equal(H2e, H2a));
// positions and velocities
Matrix H3etop6 = H3e.topRows(6);
Matrix H3atop6 = H3a.topRows(6);
EXPECT(assert_equal(H3etop6, H3atop6));
// rotations
EXPECT(assert_equal(RH3e, H3a.bottomRows(3))); // evaluate only the rotation residue
EXPECT(assert_equal(H4e, H4a));
// EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiases )
{
// Linearization point
// Vector bias(6); bias << 0.2, 0, 0, 0.1, 0, 0; // Biases (acc, rot)
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
// LieVector v1(3, 0.5, 0.0, 0.0);
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
// LieVector v2(3, 0.5, 0.0, 0.0);
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
LieVector v1(3, 0.5, 0.0, 0.0);
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
LieVector v2(3, 0.5, 0.0, 0.0);
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(9, 0.15, 0.15, 0.15, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5));
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
SETDEBUG("ImuFactor evaluateError", false);
Vector errorActual = factor.evaluateError(x1, v1, x2, v2, bias);
SETDEBUG("ImuFactor evaluateError", false);
// Expected error
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
EXPECT(assert_equal(H4e, H4a));
EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
TEST( ImuFactor, PartialDerivativeExpmap )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 0.5;
// Compute numerical derivatives
Matrix expectedDelRdelBiasOmega = numericalDerivative11<Rot3, LieVector>(boost::bind(
&evaluateRotation, measuredOmega, _1, deltaT), biasOmega);
const Matrix3 Jr = ImuFactor::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
Matrix3 actualdelRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
// Compare Jacobians
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega));
}
/* ************************************************************************* */
TEST( ImuFactor, PartialDerivativeLogmap )
{
// Linearization point
Vector3 thetahat; thetahat << 0.1,0.1,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 deltatheta; deltatheta << 0, 0, 0;
// Compute numerical derivatives
Matrix expectedDelFdeltheta = numericalDerivative11<LieVector>(boost::bind(
&evaluateLogRotation, thetahat, _1), deltatheta);
const Vector3 x = thetahat; // parametrization of so(3)
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
double normx = norm_2(x);
const Matrix3 actualDelFdeltheta = Matrix3::Identity() +
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
// std::cout << "actualDelFdeltheta" << actualDelFdeltheta << std::endl;
// std::cout << "expectedDelFdeltheta" << expectedDelFdeltheta << std::endl;
// Compare Jacobians
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
}
/* ************************************************************************* */
TEST( ImuFactor, fistOrderExponential )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 1.0;
// change w.r.t. linearization point
double alpha = 0.0;
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
const Matrix3 Jr = ImuFactor::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
const Matrix expectedRot = Rot3::Expmap((measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
const Matrix3 hatRot = Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
const Matrix3 actualRot =
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
// Compare Jacobians
EXPECT(assert_equal(expectedRot, actualRot));
}
/* ************************************************************************* */
TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
{
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.1,0.1)), Point3(1, 0, 1));
// Measurements
list<Vector3> measuredAccs, measuredOmegas;
list<double> deltaTs;
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
measuredAccs.push_back(Vector3(0.1, 0.0, 0.0));
measuredOmegas.push_back(Vector3(M_PI/100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
for(int i=1;i<100;i++)
{
measuredAccs.push_back(Vector3(0.05, 0.09, 0.01));
measuredOmegas.push_back(Vector3(M_PI/100.0, M_PI/300.0, 2*M_PI/100.0));
deltaTs.push_back(0.01);
}
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements preintegrated =
evaluatePreintegratedMeasurements(bias, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0));
// Compute numerical derivatives
Matrix expectedDelPdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsPosition, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelPdelBiasAcc = expectedDelPdelBias.leftCols(3);
Matrix expectedDelPdelBiasOmega = expectedDelPdelBias.rightCols(3);
Matrix expectedDelVdelBias = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsVelocity, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelVdelBiasAcc = expectedDelVdelBias.leftCols(3);
Matrix expectedDelVdelBiasOmega = expectedDelVdelBias.rightCols(3);
Matrix expectedDelRdelBias = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1, measuredAccs, measuredOmegas, deltaTs, Vector3(M_PI/100.0, 0.0, 0.0)), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega));
}
//#include <gtsam/linear/GaussianFactorGraph.h>
///* ************************************************************************* */
//TEST( ImuFactor, LinearizeTiming)
//{
// // Linearization point
// Pose3 x1(Rot3::RzRyRx(M_PI/12.0, M_PI/6.0, M_PI/4.0), Point3(5.0, 1.0, -50.0));
// LieVector v1(3, 0.5, 0.0, 0.0);
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/100.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
// LieVector v2(3, 0.5, 0.0, 0.0);
// imuBias::ConstantBias bias(Vector3(0.001, 0.002, 0.008), Vector3(0.002, 0.004, 0.012));
//
// // Pre-integrator
// imuBias::ConstantBias biasHat(Vector3(0, 0, 0.10), Vector3(0, 0, 0.10));
// Vector3 gravity; gravity << 0, 0, 9.81;
// Vector3 omegaCoriolis; omegaCoriolis << 0.0001, 0, 0.01;
// ImuFactor::PreintegratedMeasurements pre_int_data(biasHat, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity());
//
// // Pre-integrate Measurements
// Vector3 measuredAcc(0.1, 0.0, 0.0);
// Vector3 measuredOmega(M_PI/100.0, 0.0, 0.0);
// double deltaT = 0.5;
// for(size_t i = 0; i < 50; ++i) {
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// }
//
// // Create factor
// noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.preintegratedMeasurementsCovariance());
// ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
//
// Values values;
// values.insert(X(1), x1);
// values.insert(X(2), x2);
// values.insert(V(1), v1);
// values.insert(V(2), v2);
// values.insert(B(1), bias);
//
// Ordering ordering;
// ordering.push_back(X(1));
// ordering.push_back(V(1));
// ordering.push_back(X(2));
// ordering.push_back(V(2));
// ordering.push_back(B(1));
//
// GaussianFactorGraph graph;
// gttic_(LinearizeTiming);
// for(size_t i = 0; i < 100000; ++i) {
// GaussianFactor::shared_ptr g = factor.linearize(values, ordering);
// graph.push_back(g);
// }
// gttoc_(LinearizeTiming);
// tictoc_finishedIteration_();
// std::cout << "Linear Error: " << graph.error(values.zeroVectors(ordering)) << std::endl;
// tictoc_print_();
//}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
{
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
LieVector v1(3, 0.5, 0.0, 0.0);
Pose3 x2(Rot3::Expmap(Vector3(0, 0, M_PI/4.0 + M_PI/10.0)), Point3(5.5, 1.0, -50.0));
LieVector v2(3, 0.5, 0.0, 0.0);
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10.0+0.3;
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector() + Vector3(0.2,0.0,0.0);
double deltaT = 1.0;
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.10,0.10)), Point3(1,0,0));
// ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
// Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measuredOmega);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(9, 0.15, 0.15, 0.15, 1.5, 1.5, 1.5, 0.5, 0.5, 0.5));
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
// Expected Jacobians
Matrix H1e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, _1, v1, x2, v2, bias), x1);
Matrix H2e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, _1, x2, v2, bias), v1);
Matrix H3e = numericalDerivative11<Pose3>(
boost::bind(&callEvaluateError, factor, x1, v1, _1, v2, bias), x2);
Matrix H4e = numericalDerivative11<LieVector>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, _1, bias), v2);
Matrix H5e = numericalDerivative11<imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, _1, v1, x2, v2, bias), x1);
Matrix RH3e = numericalDerivative11<Rot3,Pose3>(
boost::bind(&evaluateRotationError, factor, x1, v1, _1, v2, bias), x2);
Matrix RH5e = numericalDerivative11<Rot3,imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, v1, x2, v2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
EXPECT(assert_equal(H4e, H4a));
EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */