New lookup classes

release/4.3a0
Frank Dellaert 2022-01-21 13:08:16 -05:00
parent ec39197cc3
commit 34a3b022d9
2 changed files with 291 additions and 0 deletions

View File

@ -0,0 +1,153 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteLookupTable.cpp
* @date Feb 14, 2011
* @author Duy-Nguyen Ta
* @author Frank Dellaert
*/
#include <gtsam/discrete/DiscreteLookupDAG.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <string>
#include <utility>
using std::pair;
using std::vector;
namespace gtsam {
// Instantiate base class
template class GTSAM_EXPORT
Conditional<DecisionTreeFactor, DiscreteLookupTable>;
/* ************************************************************************** */
// TODO(dellaert): copy/paste from DiscreteConditional.cpp :-(
void DiscreteLookupTable::print(const std::string& s,
const KeyFormatter& formatter) const {
using std::cout;
using std::endl;
cout << s << " g( ";
for (const_iterator it = beginFrontals(); it != endFrontals(); ++it) {
cout << formatter(*it) << " ";
}
if (nrParents()) {
cout << "; ";
for (const_iterator it = beginParents(); it != endParents(); ++it) {
cout << formatter(*it) << " ";
}
}
cout << "):\n";
ADT::print("", formatter);
cout << endl;
}
/* ************************************************************************* */
// TODO(dellaert): copy/paste from DiscreteConditional.cpp :-(
vector<DiscreteValues> DiscreteLookupTable::frontalAssignments() const {
vector<pair<Key, size_t>> pairs;
for (Key key : frontals()) pairs.emplace_back(key, cardinalities_.at(key));
vector<pair<Key, size_t>> rpairs(pairs.rbegin(), pairs.rend());
return DiscreteValues::CartesianProduct(rpairs);
}
/* ************************************************************************** */
// TODO(dellaert): copy/paste from DiscreteConditional.cpp :-(
static DiscreteLookupTable::ADT Choose(const DiscreteLookupTable& conditional,
const DiscreteValues& given,
bool forceComplete = true) {
// Get the big decision tree with all the levels, and then go down the
// branches based on the value of the parent variables.
DiscreteLookupTable::ADT adt(conditional);
size_t value;
for (Key j : conditional.parents()) {
try {
value = given.at(j);
adt = adt.choose(j, value); // ADT keeps getting smaller.
} catch (std::out_of_range&) {
if (forceComplete) {
given.print("parentsValues: ");
throw std::runtime_error(
"DiscreteLookupTable::Choose: parent value missing");
}
}
}
return adt;
}
/* ************************************************************************** */
void DiscreteLookupTable::argmaxInPlace(DiscreteValues* values) const {
ADT pFS = Choose(*this, *values); // P(F|S=parentsValues)
// Initialize
DiscreteValues mpe;
double maxP = 0;
// Get all Possible Configurations
const auto allPosbValues = frontalAssignments();
// Find the maximum
for (const auto& frontalVals : allPosbValues) {
double pValueS = pFS(frontalVals); // P(F=value|S=parentsValues)
// Update maximum solution if better
if (pValueS > maxP) {
maxP = pValueS;
mpe = frontalVals;
}
}
// set values (inPlace) to maximum
for (Key j : frontals()) {
(*values)[j] = mpe[j];
}
}
/* ************************************************************************** */
size_t DiscreteLookupTable::argmax(const DiscreteValues& parentsValues) const {
ADT pFS = Choose(*this, parentsValues); // P(F|S=parentsValues)
// Then, find the max over all remaining
// TODO(Duy): only works for one key now, seems horribly slow this way
size_t mpe = 0;
DiscreteValues frontals;
double maxP = 0;
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
for (size_t value = 0; value < cardinality(j); value++) {
frontals[j] = value;
double pValueS = pFS(frontals); // P(F=value|S=parentsValues)
// Update MPE solution if better
if (pValueS > maxP) {
maxP = pValueS;
mpe = value;
}
}
return mpe;
}
/* ************************************************************************** */
DiscreteValues DiscreteLookupDAG::argmax() const {
DiscreteValues result;
return argmax(result);
}
DiscreteValues DiscreteLookupDAG::argmax(DiscreteValues result) const {
// Argmax each node in turn in topological sort order (parents first).
for (auto lookupTable : boost::adaptors::reverse(*this))
lookupTable->argmaxInPlace(&result);
return result;
}
/* ************************************************************************** */
} // namespace gtsam

View File

@ -0,0 +1,138 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteLookupDAG.h
* @date JAnuary, 2022
* @author Frank dellaert
*/
#pragma once
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h>
#include <boost/shared_ptr.hpp>
#include <vector>
namespace gtsam {
/**
* @brief DiscreteLookupTable table for max-product
*/
class DiscreteLookupTable
: public DecisionTreeFactor,
public Conditional<DecisionTreeFactor, DiscreteLookupTable> {
public:
using This = DiscreteLookupTable;
using shared_ptr = boost::shared_ptr<This>;
using BaseConditional = Conditional<DecisionTreeFactor, This>;
/**
* @brief Construct a new Discrete Lookup Table object
*
* @param nFrontals number of frontal variables
* @param keys a orted list of gtsam::Keys
* @param potentials the algebraic decision tree with lookup values
*/
DiscreteLookupTable(size_t nFrontals, const DiscreteKeys& keys,
const ADT& potentials)
: DecisionTreeFactor(keys, potentials), BaseConditional(nFrontals) {}
/// GTSAM-style print
void print(
const std::string& s = "Discrete Lookup Table: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/**
* @brief return assignment for single frontal variable that maximizes value.
* @param parentsValues Known assignments for the parents.
* @return maximizing assignment for the frontal variable.
*/
size_t argmax(const DiscreteValues& parentsValues) const;
/**
* @brief Calculate assignment for frontal variables that maximizes value.
* @param (in/out) parentsValues Known assignments for the parents.
*/
void argmaxInPlace(DiscreteValues* parentsValues) const;
/// Return all assignments for frontal variables.
std::vector<DiscreteValues> frontalAssignments() const;
};
/** A DAG made from lookup tables, as defined above. */
class GTSAM_EXPORT DiscreteLookupDAG : public BayesNet<DiscreteLookupTable> {
public:
using Base = BayesNet<DiscreteLookupTable>;
using This = DiscreteLookupDAG;
using shared_ptr = boost::shared_ptr<This>;
/// @name Standard Constructors
/// @{
/// Construct empty DAG.
DiscreteLookupDAG() {}
/// Destructor
virtual ~DiscreteLookupDAG() {}
/// @}
/// @name Testable
/// @{
/** Check equality */
bool equals(const This& bn, double tol = 1e-9) const;
/// @}
/// @name Standard Interface
/// @{
/**
* @brief argmax by back-substitution.
*
* Assumes the DAG is reverse topologically sorted, i.e. last
* conditional will be optimized first. If the DAG resulted from
* eliminating a factor graph, this is true for the elimination ordering.
*
* @return optimal assignment for all variables.
*/
DiscreteValues argmax() const;
/**
* @brief argmax by back-substitution, given certain variables.
*
* Assumes the DAG is reverse topologically sorted *and* that the
* DAG does not contain any conditionals for the given variables.
*
* @return given assignment extended w. optimal assignment for all variables.
*/
DiscreteValues argmax(DiscreteValues given) const;
/// @}
private:
/** Serialization function */
friend class boost::serialization::access;
template <class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
}
};
// traits
template <>
struct traits<DiscreteLookupDAG> : public Testable<DiscreteLookupDAG> {};
} // namespace gtsam