correct jacobians
parent
561037f073
commit
33e16aa7d2
|
@ -79,22 +79,23 @@ Vector6 Pose3::Adjoint(const Vector6& xi_b, OptionalJacobian<6, 6> H_this,
|
|||
Rw = R_.rotate(w, H_this ? &Rw_H_R : nullptr, H_xib ? &Rw_H_w : nullptr);
|
||||
const Vector3 Rv =
|
||||
R_.rotate(v, H_this ? &Rv_H_R : nullptr, H_xib ? &Rv_H_v : nullptr);
|
||||
// Since we use the Point3 version of cross, the jacobian of pRw wrpt t
|
||||
// (pRw_H_t) needs special treatment as detailed below.
|
||||
const Vector3 pRw =
|
||||
cross(t_, Rw, boost::none, (H_this || H_xib) ? &pRw_H_Rw : nullptr);
|
||||
cross(t_, Rw, pRw_H_t, (H_this || H_xib) ? &pRw_H_Rw : nullptr);
|
||||
result.tail<3>() = pRw + Rv;
|
||||
|
||||
// Jacobians
|
||||
if (H_this) {
|
||||
// By applying the chain rule to the matrix-matrix product of [t]R, we can
|
||||
// compute a simplified derivative which is the same as Rw_H_R. Details:
|
||||
// https://github.com/borglab/gtsam/pull/885#discussion_r726591370
|
||||
pRw_H_t = Rw_H_R;
|
||||
|
||||
*H_this = (Matrix6() << Rw_H_R, /* */ Z_3x3, //
|
||||
/* */ pRw_H_Rw * Rw_H_R + Rv_H_R, pRw_H_t)
|
||||
.finished();
|
||||
/* This is the "full" calculation:
|
||||
Matrix36 R_H_this, t_H_this;
|
||||
rotation(R_H_this); // I_3x3, Z_3x3
|
||||
translation(t_H_this); // Z_3x3, R
|
||||
(*H_this) *= (Matrix6() << R_H_this, t_H_this).finished();
|
||||
*/
|
||||
// But we can simplify those calculations since it's mostly I and Z:
|
||||
H_this->bottomRightCorner<3, 3>() *= R_.matrix();
|
||||
}
|
||||
if (H_xib) {
|
||||
*H_xib = (Matrix6() << Rw_H_w, /* */ Z_3x3, //
|
||||
|
@ -130,9 +131,11 @@ Vector6 Pose3::AdjointTranspose(const Vector6& x, OptionalJacobian<6, 6> H_this,
|
|||
|
||||
// Jacobians
|
||||
if (H_this) {
|
||||
*H_this = (Matrix6() << Rw_H_R - Rtv_H_R, Rv_H_R, // -Rtv_H_tv * tv_H_t
|
||||
*H_this = (Matrix6() << Rw_H_R - Rtv_H_R, -Rtv_H_tv * tv_H_t,
|
||||
/* */ Rv_H_R, /* */ Z_3x3)
|
||||
.finished();
|
||||
// See Adjoint(xi) jacobian calculation for why we multiply by R
|
||||
H_this->topRightCorner<3, 3>() *= R_.matrix();
|
||||
}
|
||||
if (H_x) {
|
||||
*H_x = (Matrix6() << Rw_H_w, -Rtv_H_tv * tv_H_v, //
|
||||
|
|
Loading…
Reference in New Issue