Merge branch 'fix/matlab_examples_wrapper' into develop
commit
3363edf77c
3
gtsam.h
3
gtsam.h
|
@ -1730,6 +1730,7 @@ class Values {
|
|||
void insert(size_t j, const gtsam::Cal3DS2& t);
|
||||
void insert(size_t j, const gtsam::Cal3Bundler& t);
|
||||
void insert(size_t j, const gtsam::EssentialMatrix& t);
|
||||
void insert(size_t j, const gtsam::SimpleCamera& t);
|
||||
void insert(size_t j, const gtsam::imuBias::ConstantBias& t);
|
||||
void insert(size_t j, Vector t);
|
||||
void insert(size_t j, Matrix t);
|
||||
|
@ -2149,7 +2150,7 @@ class NonlinearISAM {
|
|||
#include <gtsam/geometry/StereoPoint2.h>
|
||||
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
template<T = { gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
|
||||
template<T = {Vector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
|
||||
virtual class PriorFactor : gtsam::NoiseModelFactor {
|
||||
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
|
||||
T prior() const;
|
||||
|
|
|
@ -33,7 +33,7 @@ GPSskip = 10; % Skip this many GPS measurements each time
|
|||
|
||||
%% Get initial conditions for the estimated trajectory
|
||||
currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
|
||||
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
|
||||
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
|
||||
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
sigma_init_x = noiseModel.Isotropic.Precisions([ 0.0; 0.0; 0.0; 1; 1; 1 ]);
|
||||
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
|
||||
|
@ -72,7 +72,7 @@ for measurementIndex = firstGPSPose:length(GPS_data)
|
|||
newValues.insert(currentVelKey, currentVelocityGlobal);
|
||||
newValues.insert(currentBiasKey, currentBias);
|
||||
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
|
||||
newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
newFactors.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
|
||||
else
|
||||
t_previous = GPS_data(measurementIndex-1, 1).Time;
|
||||
|
|
|
@ -40,7 +40,7 @@ end
|
|||
|
||||
%% Create initial estimate
|
||||
initial = Values;
|
||||
trueE = EssentialMatrix(aRb,Sphere2(aTb));
|
||||
trueE = EssentialMatrix(aRb,Unit3(aTb));
|
||||
initialE = trueE.retract([0.1, -0.1, 0.1, 0.1, -0.1]');
|
||||
initial.insert(1, initialE);
|
||||
|
||||
|
@ -52,5 +52,5 @@ result = optimizer.optimize();
|
|||
|
||||
%% Print result (as essentialMatrix) and error
|
||||
error = graph.error(result)
|
||||
E = result.at(1)
|
||||
E = result.atEssentialMatrix(1)
|
||||
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
% test wrapping of Values
|
||||
import gtsam.*;
|
||||
|
||||
values = Values;
|
||||
|
||||
key = 5;
|
||||
priorPose3 = Pose3;
|
||||
model = noiseModel.Unit.Create(6);
|
||||
factor = PriorFactorPose3(key, priorPose3, model);
|
||||
values.insert(key, priorPose3);
|
||||
EXPECT('error', factor.error(values) == 0);
|
||||
|
||||
key = 3;
|
||||
priorVector = [0,0,0]';
|
||||
model = noiseModel.Unit.Create(3);
|
||||
factor = PriorFactorVector(key, priorVector, model);
|
||||
values.insert(key, priorVector);
|
||||
EXPECT('error', factor.error(values) == 0);
|
|
@ -1,5 +1,8 @@
|
|||
% Test runner script - runs each test
|
||||
|
||||
% display 'Starting: testPriorFactor'
|
||||
% testPriorFactor
|
||||
|
||||
display 'Starting: testValues'
|
||||
testValues
|
||||
|
||||
|
|
|
@ -57,7 +57,7 @@ isamParams.setFactorization('QR');
|
|||
isam = ISAM2(isamParams);
|
||||
|
||||
%% Get initial conditions for the estimated trajectory
|
||||
currentVelocityGlobal = LieVector([10;0;0]); % (This is slightly wrong!)
|
||||
currentVelocityGlobal = [10;0;0]; % (This is slightly wrong!) Zhaoyang: Fixed
|
||||
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
|
||||
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1.0);
|
||||
|
@ -101,7 +101,7 @@ axis equal;
|
|||
|
||||
for i=1:size(trajectory)-1
|
||||
xKey = symbol('x',i);
|
||||
pose = trajectory.at(xKey); % GT pose
|
||||
pose = trajectory.atPose3(xKey); % GT pose
|
||||
pose_t = pose.translation(); % GT pose-translation
|
||||
|
||||
if exist('h_cursor','var')
|
||||
|
@ -165,13 +165,13 @@ for i=1:size(trajectory)-1
|
|||
if i > 1
|
||||
|
||||
xKey_prev = symbol('x',i-1);
|
||||
pose_prev = trajectory.at(xKey_prev);
|
||||
pose_prev = trajectory.atPose3(xKey_prev);
|
||||
|
||||
step = pose_prev.between(pose);
|
||||
|
||||
% insert estimate for current pose with some normal noise on
|
||||
% translation
|
||||
initial.insert(xKey,result.at(xKey_prev).compose(step.retract([0; 0; 0; normrnd(0,0.2,3,1)])));
|
||||
initial.insert(xKey,result.atPose3(xKey_prev).compose(step.retract([0; 0; 0; normrnd(0,0.2,3,1)])));
|
||||
|
||||
% visual measurements
|
||||
if measurements.size > 0 && use_camera
|
||||
|
@ -181,12 +181,12 @@ for i=1:size(trajectory)-1
|
|||
zKey = measurementKeys.at(zz);
|
||||
lKey = symbol('l',symbolIndex(zKey));
|
||||
|
||||
fg.add(TransformCalProjectionFactorCal3_S2(measurements.at(zKey), ...
|
||||
fg.add(TransformCalProjectionFactorCal3_S2(measurements.atPoint2(zKey), ...
|
||||
z_cov, xKey, transformKey, lKey, calibrationKey, false, true));
|
||||
|
||||
% only add landmark to values if doesn't exist yet
|
||||
if ~result.exists(lKey)
|
||||
noisy_landmark = landmarks.at(lKey).compose(Point3(normrnd(0,landmark_noise,3,1)));
|
||||
noisy_landmark = landmarks.atPoint3(lKey).compose(Point3(normrnd(0,landmark_noise,3,1)));
|
||||
initial.insert(lKey, noisy_landmark);
|
||||
|
||||
% and add a prior since its position is known
|
||||
|
|
|
@ -7,7 +7,7 @@ disp('Example of application of ISAM2 for visual-inertial navigation on the KITT
|
|||
%% Read metadata and compute relative sensor pose transforms
|
||||
% IMU metadata
|
||||
disp('-- Reading sensor metadata')
|
||||
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
|
||||
IMU_metadata = importdata(findExampleDataFile('KittiEquivBiasedImu_metadata.txt'));
|
||||
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
|
||||
IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
|
||||
IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
|
||||
|
@ -16,14 +16,14 @@ if ~IMUinBody.equals(Pose3, 1e-5)
|
|||
end
|
||||
|
||||
% VO metadata
|
||||
VO_metadata = importdata('KittiRelativePose_metadata.txt');
|
||||
VO_metadata = importdata(findExampleDataFile('KittiRelativePose_metadata.txt'));
|
||||
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
|
||||
VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
|
||||
VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
|
||||
VOinIMU = IMUinBody.inverse().compose(VOinBody);
|
||||
|
||||
% GPS metadata
|
||||
GPS_metadata = importdata('KittiGps_metadata.txt');
|
||||
GPS_metadata = importdata(findExampleDataFile('KittiGps_metadata.txt'));
|
||||
GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
|
||||
GPSinBody = Pose3.Expmap([GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
|
||||
GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]);
|
||||
|
@ -32,7 +32,7 @@ GPSinIMU = IMUinBody.inverse().compose(GPSinBody);
|
|||
%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
|
||||
disp('-- Reading sensor data from file')
|
||||
% IMU data
|
||||
IMU_data = importdata('KittiEquivBiasedImu.txt');
|
||||
IMU_data = importdata(findExampleDataFile('KittiEquivBiasedImu.txt'));
|
||||
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
|
||||
imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
|
||||
[IMU_data.acc_omega] = deal(imum{:});
|
||||
|
@ -40,7 +40,7 @@ imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_da
|
|||
clear imum
|
||||
|
||||
% VO data
|
||||
VO_data = importdata('KittiRelativePose.txt');
|
||||
VO_data = importdata(findExampleDataFile('KittiRelativePose.txt'));
|
||||
VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
|
||||
% Merge relative pose fields and convert to Pose3
|
||||
logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
|
||||
|
@ -71,7 +71,7 @@ clear logposes relposes
|
|||
%% Get initial conditions for the estimated trajectory
|
||||
% % % currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
|
||||
currentPoseGlobal = Pose3;
|
||||
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
|
||||
currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
|
||||
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
sigma_init_x = noiseModel.Isotropic.Sigma(6, 0.01);
|
||||
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
|
||||
|
@ -120,7 +120,7 @@ for measurementIndex = 1:length(timestamps)
|
|||
newValues.insert(currentVelKey, currentVelocityGlobal);
|
||||
newValues.insert(currentBiasKey, currentBias);
|
||||
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
|
||||
newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
newFactors.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
|
||||
else
|
||||
t_previous = timestamps(measurementIndex-1, 1);
|
||||
|
|
|
@ -82,8 +82,8 @@ for ind_pose = 2:7
|
|||
|
||||
key_prev = poseKey(ind_pose-1);
|
||||
key_curr = poseKey(ind_pose);
|
||||
prev_pose = smartValues.at(key_prev);
|
||||
curr_pose = smartValues.at(key_curr);
|
||||
prev_pose = smartValues.atPose2(key_prev);
|
||||
curr_pose = smartValues.atPose2(key_curr);
|
||||
GTDeltaPose = prev_pose.between(curr_pose);
|
||||
noisePose = Pose2([t_noise*rand; t_noise*rand; r_noise*rand]);
|
||||
NoisyDeltaPose = GTDeltaPose.compose(noisePose);
|
||||
|
|
|
@ -96,17 +96,17 @@ for i=1:20
|
|||
|
||||
if i > 1
|
||||
if i < 11
|
||||
initial.insert(i,result.at(i-1).compose(move_forward));
|
||||
initial.insert(i,result.atPose3(i-1).compose(move_forward));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_forward, covariance));
|
||||
else
|
||||
initial.insert(i,result.at(i-1).compose(move_circle));
|
||||
initial.insert(i,result.atPose3(i-1).compose(move_circle));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_circle, covariance));
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
% generate some camera measurements
|
||||
cam_pose = initial.at(i).compose(actual_transform);
|
||||
cam_pose = initial.atPose3(i).compose(actual_transform);
|
||||
% gtsam.plotPose3(cam_pose);
|
||||
cam = SimpleCamera(cam_pose,K);
|
||||
i
|
||||
|
@ -137,10 +137,10 @@ for i=1:20
|
|||
hold on;
|
||||
|
||||
%% plot results
|
||||
result_camera_transform = result.at(transformKey);
|
||||
result_camera_transform = result.atPose3(transformKey);
|
||||
for j=1:i
|
||||
gtsam.plotPose3(result.at(j),[],0.5);
|
||||
gtsam.plotPose3(result.at(j).compose(result_camera_transform),[],0.5);
|
||||
gtsam.plotPose3(result.atPose3(j),[],0.5);
|
||||
gtsam.plotPose3(result.atPose3(j).compose(result_camera_transform),[],0.5);
|
||||
end
|
||||
|
||||
xlabel('x (m)');
|
||||
|
@ -153,12 +153,12 @@ for i=1:20
|
|||
% axis equal
|
||||
|
||||
for l=101:100+nrPoints
|
||||
plotPoint3(result.at(l),'g');
|
||||
plotPoint3(result.atPoint3(l),'g');
|
||||
end
|
||||
|
||||
ty = result.at(transformKey).translation().y();
|
||||
fx = result.at(calibrationKey).fx();
|
||||
fy = result.at(calibrationKey).fy();
|
||||
ty = result.atPose3(transformKey).translation().y();
|
||||
fx = result.atCal3_S2(calibrationKey).fx();
|
||||
fy = result.atCal3_S2(calibrationKey).fy();
|
||||
text(1,5,5,sprintf('Y-Transform(0.0): %0.2f',ty));
|
||||
text(1,5,3,sprintf('fx(900): %.0f',fx));
|
||||
text(1,5,1,sprintf('fy(900): %.0f',fy));
|
||||
|
@ -180,10 +180,10 @@ end
|
|||
fprintf('Cheirality Exception count: %d\n', cheirality_exception_count);
|
||||
|
||||
disp('Transform after optimization');
|
||||
result.at(transformKey)
|
||||
result.atPose3(transformKey)
|
||||
|
||||
disp('Calibration after optimization');
|
||||
result.at(calibrationKey)
|
||||
result.atCal3_S2(calibrationKey)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -89,7 +89,7 @@ isam = ISAM2(isamParams);
|
|||
currentIMUPoseGlobal = Pose3();
|
||||
|
||||
%% Get initial conditions for the estimated trajectory
|
||||
currentVelocityGlobal = LieVector([1;0;0]); % the vehicle is stationary at the beginning
|
||||
currentVelocityGlobal = [1;0;0]; % the vehicle is stationary at the beginning
|
||||
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
|
||||
|
||||
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1.0);
|
||||
|
@ -127,7 +127,7 @@ for i=1:steps
|
|||
fg.add(PriorFactorCal3_S2(calibrationKey,K_corrupt,K_cov));
|
||||
|
||||
% velocity and bias evolution
|
||||
fg.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
fg.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
|
||||
fg.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
|
||||
|
||||
result = initial;
|
||||
|
|
|
@ -61,17 +61,17 @@ cheirality_exception_count = 0;
|
|||
for i=1:20
|
||||
if i > 1
|
||||
if i < 11
|
||||
initial.insert(i,initial.at(i-1).compose(move_forward));
|
||||
initial.insert(i,initial.atPose3(i-1).compose(move_forward));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_forward, covariance));
|
||||
else
|
||||
initial.insert(i,initial.at(i-1).compose(move_circle));
|
||||
initial.insert(i,initial.atPose3(i-1).compose(move_circle));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_circle, covariance));
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
% generate some camera measurements
|
||||
cam_pose = initial.at(i).compose(actual_transform);
|
||||
cam_pose = initial.atPose3(i).compose(actual_transform);
|
||||
gtsam.plotPose3(cam_pose);
|
||||
cam = SimpleCamera(cam_pose,K);
|
||||
i
|
||||
|
@ -93,14 +93,14 @@ fprintf('Cheirality Exception count: %d\n', cheirality_exception_count);
|
|||
|
||||
%% camera plotting
|
||||
for i=1:20
|
||||
gtsam.plotPose3(initial.at(i).compose(camera_transform));
|
||||
gtsam.plotPose3(initial.atPose3(i).compose(camera_transform));
|
||||
end
|
||||
|
||||
xlabel('x (m)');
|
||||
ylabel('y (m)');
|
||||
|
||||
disp('Transform before optimization');
|
||||
initial.at(1000)
|
||||
initial.atPose3(1000)
|
||||
|
||||
params = LevenbergMarquardtParams;
|
||||
params.setAbsoluteErrorTol(1e-15);
|
||||
|
@ -112,7 +112,7 @@ optimizer = LevenbergMarquardtOptimizer(fg, initial, params);
|
|||
result = optimizer.optimizeSafely();
|
||||
|
||||
disp('Transform after optimization');
|
||||
result.at(1000)
|
||||
result.atPose3(1000) % results is empty here. optimizer doesn't generate result?
|
||||
|
||||
axis([0 25 0 25 0 10]);
|
||||
axis equal
|
||||
|
|
|
@ -86,17 +86,17 @@ for i=1:20
|
|||
|
||||
if i > 1
|
||||
if i < 11
|
||||
initial.insert(i,result.at(i-1).compose(move_forward));
|
||||
initial.insert(i,result.atPose3(i-1).compose(move_forward));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_forward, covariance));
|
||||
else
|
||||
initial.insert(i,result.at(i-1).compose(move_circle));
|
||||
initial.insert(i,result.atPose3(i-1).compose(move_circle));
|
||||
fg.add(BetweenFactorPose3(i-1,i, move_circle, covariance));
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
% generate some camera measurements
|
||||
cam_pose = initial.at(i).compose(actual_transform);
|
||||
cam_pose = initial.atPose3(i).compose(actual_transform);
|
||||
% gtsam.plotPose3(cam_pose);
|
||||
cam = SimpleCamera(cam_pose,K);
|
||||
i
|
||||
|
@ -127,10 +127,10 @@ for i=1:20
|
|||
hold on;
|
||||
|
||||
%% plot results
|
||||
result_camera_transform = result.at(1000);
|
||||
result_camera_transform = result.atPose3(1000);
|
||||
for j=1:i
|
||||
gtsam.plotPose3(result.at(j));
|
||||
gtsam.plotPose3(result.at(j).compose(result_camera_transform),[],0.5);
|
||||
gtsam.plotPose3(result.atPose3(j));
|
||||
gtsam.plotPose3(result.atPose3(j).compose(result_camera_transform),[],0.5);
|
||||
end
|
||||
|
||||
xlabel('x (m)');
|
||||
|
@ -143,10 +143,10 @@ for i=1:20
|
|||
% axis equal
|
||||
|
||||
for l=101:100+nrPoints
|
||||
plotPoint3(result.at(l),'g');
|
||||
plotPoint3(result.atPoint3(l),'g');
|
||||
end
|
||||
|
||||
ty = result.at(1000).translation().y();
|
||||
ty = result.atPose3(1000).translation().y();
|
||||
text(5,5,5,sprintf('Y-Transform: %0.2g',ty));
|
||||
|
||||
if(write_video)
|
||||
|
@ -168,7 +168,7 @@ fprintf('Cheirality Exception count: %d\n', cheirality_exception_count);
|
|||
|
||||
|
||||
disp('Transform after optimization');
|
||||
result.at(1000)
|
||||
result.atPose3(1000)
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ z = zeros(1,nrMeasurements);
|
|||
for i = 0:measurement_keys.size-1
|
||||
key = measurement_keys.at(i);
|
||||
key_index = gtsam.symbolIndex(key);
|
||||
p = landmarks.at(gtsam.symbol('l',key_index));
|
||||
p = landmarks.atPoint3(gtsam.symbol('l',key_index));
|
||||
|
||||
x(i+1) = p.x;
|
||||
y(i+1) = p.y;
|
||||
|
|
|
@ -8,7 +8,7 @@ function [ measurements ] = project_landmarks( pose, landmarks, K )
|
|||
measurements = Values;
|
||||
|
||||
for i=1:size(landmarks)-1
|
||||
z = camera.project(landmarks.at(symbol('l',i)));
|
||||
z = camera.project(landmarks.atPoint3(symbol('l',i)));
|
||||
|
||||
% check bounding box
|
||||
if z.x < 0 || z.x > 1280
|
||||
|
|
|
@ -48,12 +48,12 @@ optimizer = LevenbergMarquardtOptimizer(graph, initial, params);
|
|||
result = optimizer.optimize();
|
||||
|
||||
% Check result
|
||||
CHECK('error',result.at(100).equals(b1,1e-5))
|
||||
CHECK('error',result.at(10).equals(origin,1e-5))
|
||||
CHECK('error',result.at(1).equals(Point2(0,1),1e-5))
|
||||
CHECK('error',result.at(2).equals(Point2(0,1),1e-5))
|
||||
CHECK('error',result.at(20).equals(origin,1e-5))
|
||||
CHECK('error',result.at(200).equals(b2,1e-5))
|
||||
CHECK('error',result.atPose2(100).equals(b1,1e-5))
|
||||
CHECK('error',result.atPose2(10).equals(origin,1e-5))
|
||||
CHECK('error',result.atPoint2(1).equals(Point2(0,1),1e-5))
|
||||
CHECK('error',result.atPoint2(2).equals(Point2(0,1),1e-5))
|
||||
CHECK('error',result.atPose2(20).equals(origin,1e-5))
|
||||
CHECK('error',result.atPose2(200).equals(b2,1e-5))
|
||||
|
||||
% Check error
|
||||
CHECK('error',abs(graph.error(result))<1e-9)
|
||||
|
|
|
@ -78,11 +78,11 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
|
|||
string cppType = type.qualifiedName("::");
|
||||
string matlabUniqueType = type.qualifiedName();
|
||||
|
||||
if (is_ptr)
|
||||
if (is_ptr && type.category != Qualified::EIGEN)
|
||||
// A pointer: emit an "unwrap_shared_ptr" call which returns a pointer
|
||||
file.oss << "boost::shared_ptr<" << cppType << "> " << name
|
||||
<< " = unwrap_shared_ptr< ";
|
||||
else if (is_ref)
|
||||
else if (is_ref && type.category != Qualified::EIGEN)
|
||||
// A reference: emit an "unwrap_shared_ptr" call and de-reference the pointer
|
||||
file.oss << cppType << "& " << name << " = *unwrap_shared_ptr< ";
|
||||
else
|
||||
|
@ -94,7 +94,7 @@ void Argument::matlab_unwrap(FileWriter& file, const string& matlabName) const {
|
|||
file.oss << cppType << " " << name << " = unwrap< ";
|
||||
|
||||
file.oss << cppType << " >(" << matlabName;
|
||||
if (is_ptr || is_ref)
|
||||
if( (is_ptr || is_ref) && type.category != Qualified::EIGEN)
|
||||
file.oss << ", \"ptr_" << matlabUniqueType << "\"";
|
||||
file.oss << ");" << endl;
|
||||
}
|
||||
|
|
|
@ -425,3 +425,20 @@ boost::shared_ptr<Class> unwrap_shared_ptr(const mxArray* obj, const string& pro
|
|||
boost::shared_ptr<Class>* spp = *reinterpret_cast<boost::shared_ptr<Class>**> (mxGetData(mxh));
|
||||
return *spp;
|
||||
}
|
||||
|
||||
//// throw an error if unwrap_shared_ptr is attempted for an Eigen Vector
|
||||
//template <>
|
||||
//Vector unwrap_shared_ptr<Vector>(const mxArray* obj, const string& propertyName) {
|
||||
// bool unwrap_shared_ptr_Vector_attempted = false;
|
||||
// BOOST_STATIC_ASSERT(unwrap_shared_ptr_Vector_attempted, "Vector cannot be unwrapped as a shared pointer");
|
||||
// return Vector();
|
||||
//}
|
||||
|
||||
//// throw an error if unwrap_shared_ptr is attempted for an Eigen Matrix
|
||||
//template <>
|
||||
//Matrix unwrap_shared_ptr<Matrix>(const mxArray* obj, const string& propertyName) {
|
||||
// bool unwrap_shared_ptr_Matrix_attempted = false;
|
||||
// BOOST_STATIC_ASSERT(unwrap_shared_ptr_Matrix_attempted, "Matrix cannot be unwrapped as a shared pointer");
|
||||
// return Matrix();
|
||||
//}
|
||||
|
||||
|
|
|
@ -679,7 +679,7 @@ void MyTemplatePoint2_templatedMethod_55(int nargout, mxArray *out[], int nargin
|
|||
typedef boost::shared_ptr<MyTemplatePoint2> Shared;
|
||||
checkArguments("templatedMethodMatrix",nargout,nargin-1,1);
|
||||
Shared obj = unwrap_shared_ptr<MyTemplatePoint2>(in[0], "ptr_MyTemplatePoint2");
|
||||
Matrix& t = *unwrap_shared_ptr< Matrix >(in[1], "ptr_Matrix");
|
||||
Matrix& t = unwrap< Matrix >(in[1]);
|
||||
out[0] = wrap< Matrix >(obj->templatedMethod<Matrix>(t));
|
||||
}
|
||||
|
||||
|
|
|
@ -160,6 +160,85 @@ TEST( Class, Grammar ) {
|
|||
EXPECT_LONGS_EQUAL(ReturnType::EIGEN, rv4.type1.category);
|
||||
}
|
||||
|
||||
|
||||
//******************************************************************************
|
||||
TEST( Class, TemplateSubstition ) {
|
||||
|
||||
using classic::space_p;
|
||||
|
||||
// Create type grammar that will place result in cls
|
||||
Class cls;
|
||||
Template t;
|
||||
ClassGrammar g(cls, t);
|
||||
|
||||
string markup(
|
||||
string("template<T = {void, double, Matrix, Point3}> class Point2 { \n")
|
||||
+ string(" T myMethod(const T& t) const; \n")
|
||||
+ string("};"));
|
||||
|
||||
EXPECT(parse(markup.c_str(), g, space_p).full);
|
||||
|
||||
// Method 2
|
||||
Method m2 = cls.method("myMethod");
|
||||
EXPECT(assert_equal("myMethod", m2.name()));
|
||||
EXPECT(m2.isConst());
|
||||
LONGS_EQUAL(1, m2.nrOverloads());
|
||||
|
||||
ReturnValue rv2 = m2.returnValue(0);
|
||||
EXPECT(!rv2.isPair);
|
||||
EXPECT(!rv2.type1.isPtr);
|
||||
EXPECT(assert_equal("T", rv2.type1.name()));
|
||||
EXPECT_LONGS_EQUAL(ReturnType::CLASS, rv2.type1.category);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, t.nrValues());
|
||||
EXPECT(t.argName()=="T");
|
||||
EXPECT(t[0]==Qualified("void",Qualified::VOID));
|
||||
EXPECT(t[1]==Qualified("double",Qualified::BASIS));
|
||||
EXPECT(t[2]==Qualified("Matrix",Qualified::EIGEN));
|
||||
EXPECT(t[3]==Qualified("Point3",Qualified::CLASS));
|
||||
|
||||
vector<Class> classes = cls.expandTemplate(t.argName(),
|
||||
t.argValues());
|
||||
|
||||
// check the number of new classes is four
|
||||
EXPECT_LONGS_EQUAL(4, classes.size());
|
||||
|
||||
// check return types
|
||||
EXPECT(classes[0].method("myMethod").returnValue(0).type1 == Qualified("void",Qualified::VOID));
|
||||
EXPECT(classes[1].method("myMethod").returnValue(0).type1 == Qualified("double",Qualified::BASIS));
|
||||
EXPECT(classes[2].method("myMethod").returnValue(0).type1 == Qualified("Matrix",Qualified::EIGEN));
|
||||
EXPECT(classes[3].method("myMethod").returnValue(0).type1 == Qualified("Point3",Qualified::CLASS));
|
||||
|
||||
// check the argument types
|
||||
EXPECT(classes[0].method("myMethod").argumentList(0)[0].type == Qualified("void",Qualified::VOID));
|
||||
EXPECT(classes[1].method("myMethod").argumentList(0)[0].type == Qualified("double",Qualified::BASIS));
|
||||
EXPECT(classes[2].method("myMethod").argumentList(0)[0].type == Qualified("Matrix",Qualified::EIGEN));
|
||||
EXPECT(classes[3].method("myMethod").argumentList(0)[0].type == Qualified("Point3",Qualified::CLASS));
|
||||
|
||||
}
|
||||
|
||||
TEST(Class, Template) {
|
||||
|
||||
|
||||
using classic::space_p;
|
||||
|
||||
// Create type grammar that will place result in cls
|
||||
Class cls;
|
||||
Template t;
|
||||
ClassGrammar g(cls, t);
|
||||
|
||||
string markup(
|
||||
string("template<T = {Vector, Matrix}>"
|
||||
" virtual class PriorFactor : gtsam::NoiseModelFactor {"
|
||||
" PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel); "
|
||||
" T prior() const; "
|
||||
" void serialize() const; "
|
||||
"};" ));
|
||||
|
||||
EXPECT(parse(markup.c_str(), g, space_p).full);
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue