const correctness
parent
75385d009b
commit
320823303c
|
|
@ -68,7 +68,7 @@ class Scenario {
|
|||
Pose3 pose(double t) const { return Pose3::Expmap(twist_ * t); }
|
||||
|
||||
/// Velocity in nav frame at time t
|
||||
Vector3 velocity(double t) {
|
||||
Vector3 velocity(double t) const {
|
||||
const Rot3 nRb = rotAtTime(t);
|
||||
return nRb * linearVelocityInBody();
|
||||
}
|
||||
|
|
|
|||
|
|
@ -33,9 +33,8 @@ class ScenarioRunner {
|
|||
ScenarioRunner(const Scenario& scenario) : scenario_(scenario) {}
|
||||
|
||||
/// Integrate measurements for T seconds into a PIM
|
||||
ImuFactor::PreintegratedMeasurements integrate(double T,
|
||||
Sampler* gyroSampler = 0,
|
||||
Sampler* accSampler = 0) {
|
||||
ImuFactor::PreintegratedMeasurements integrate(
|
||||
double T, Sampler* gyroSampler = 0, Sampler* accSampler = 0) const {
|
||||
// TODO(frank): allow non-zero
|
||||
const imuBias::ConstantBias zeroBias;
|
||||
const bool use2ndOrderIntegration = true;
|
||||
|
|
@ -60,7 +59,8 @@ class ScenarioRunner {
|
|||
}
|
||||
|
||||
/// Predict predict given a PIM
|
||||
PoseVelocityBias predict(const ImuFactor::PreintegratedMeasurements& pim) {
|
||||
PoseVelocityBias predict(
|
||||
const ImuFactor::PreintegratedMeasurements& pim) const {
|
||||
// TODO(frank): allow non-zero bias, omegaCoriolis
|
||||
const imuBias::ConstantBias zeroBias;
|
||||
const Pose3 pose_i = Pose3::identity();
|
||||
|
|
@ -72,7 +72,8 @@ class ScenarioRunner {
|
|||
}
|
||||
|
||||
/// Return pose covariance by re-arranging pim.preintMeasCov() appropriately
|
||||
Matrix6 poseCovariance(const ImuFactor::PreintegratedMeasurements& pim) {
|
||||
Matrix6 poseCovariance(
|
||||
const ImuFactor::PreintegratedMeasurements& pim) const {
|
||||
Matrix9 cov = pim.preintMeasCov(); // _ position rotation
|
||||
Matrix6 poseCov;
|
||||
poseCov << cov.block<3, 3>(6, 6), cov.block<3, 3>(6, 3), //
|
||||
|
|
@ -81,7 +82,7 @@ class ScenarioRunner {
|
|||
}
|
||||
|
||||
/// Compute a Monte Carlo estimate of the PIM pose covariance using N samples
|
||||
Matrix6 estimatePoseCovariance(double T, size_t N = 1000) {
|
||||
Matrix6 estimatePoseCovariance(double T, size_t N = 1000) const {
|
||||
// Get predict prediction from ground truth measurements
|
||||
Pose3 prediction = predict(integrate(T)).pose;
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue