Merged in feature/eigen-3.2.8 (pull request #230)

Eigen 3.2.8
release/4.3a0
Chris Beall 2016-02-16 22:47:37 -05:00
commit 31a3c8222a
52 changed files with 631 additions and 241 deletions

View File

@ -1,4 +1,4 @@
repo: 8a21fd850624c931e448cbcfb38168cb2717c790
node: b30b87236a1b1552af32ac34075ee5696a9b5a33
node: 07105f7124f9aef00a68c85e0fc606e65d3d6c15
branch: 3.2
tag: 3.2.7
tag: 3.2.8

View File

@ -30,3 +30,4 @@ ffa86ffb557094721ca71dcea6aed2651b9fd610 3.2.0
10219c95fe653d4962aa9db4946f6fbea96dd740 3.2.4
bdd17ee3b1b3a166cd5ec36dcad4fc1f3faf774a 3.2.5
c58038c56923e0fd86de3ded18e03df442e66dfb 3.2.6
b30b87236a1b1552af32ac34075ee5696a9b5a33 3.2.7

View File

@ -1,6 +1,5 @@
project(Eigen)
cmake_minimum_required(VERSION 2.8.2)
cmake_minimum_required(VERSION 2.8.5)
# guard against in-source builds
@ -55,6 +54,7 @@ endif(EIGEN_HG_CHANGESET)
include(CheckCXXCompilerFlag)
include(GNUInstallDirs)
set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
@ -288,25 +288,26 @@ option(EIGEN_TEST_C++0x "Enables all C++0x features." OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
# the user modifiable install path for header files
set(EIGEN_INCLUDE_INSTALL_DIR ${EIGEN_INCLUDE_INSTALL_DIR} CACHE PATH "The directory where we install the header files (optional)")
# set the internal install path for header files which depends on wether the user modifiable
# EIGEN_INCLUDE_INSTALL_DIR has been set by the user or not.
if(EIGEN_INCLUDE_INSTALL_DIR)
set(INCLUDE_INSTALL_DIR
${EIGEN_INCLUDE_INSTALL_DIR}
CACHE INTERNAL
"The directory where we install the header files (internal)"
)
# Backward compatibility support for EIGEN_INCLUDE_INSTALL_DIR
if(EIGEN_INCLUDE_INSTALL_DIR AND NOT INCLUDE_INSTALL_DIR)
set(INCLUDE_INSTALL_DIR ${EIGEN_INCLUDE_INSTALL_DIR}
CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen header files are installed")
else()
set(INCLUDE_INSTALL_DIR
"include/eigen3"
CACHE INTERNAL
"The directory where we install the header files (internal)"
)
"${CMAKE_INSTALL_INCLUDEDIR}/eigen3"
CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen header files are installed"
)
endif()
set(CMAKEPACKAGE_INSTALL_DIR
"${CMAKE_INSTALL_LIBDIR}/cmake/eigen3"
CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen3Config.cmake is installed"
)
set(PKGCONFIG_INSTALL_DIR
"${CMAKE_INSTALL_DATADIR}/pkgconfig"
CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where eigen3.pc is installed"
)
# similar to set_target_properties but append the property instead of overwriting it
macro(ei_add_target_property target prop value)
@ -324,21 +325,9 @@ install(FILES
)
if(EIGEN_BUILD_PKGCONFIG)
SET(path_separator ":")
STRING(REPLACE ${path_separator} ";" pkg_config_libdir_search "$ENV{PKG_CONFIG_LIBDIR}")
message(STATUS "searching for 'pkgconfig' directory in PKG_CONFIG_LIBDIR ( $ENV{PKG_CONFIG_LIBDIR} ), ${CMAKE_INSTALL_PREFIX}/share, and ${CMAKE_INSTALL_PREFIX}/lib")
FIND_PATH(pkg_config_libdir pkgconfig ${pkg_config_libdir_search} ${CMAKE_INSTALL_PREFIX}/share ${CMAKE_INSTALL_PREFIX}/lib ${pkg_config_libdir_search})
if(pkg_config_libdir)
SET(pkg_config_install_dir ${pkg_config_libdir})
message(STATUS "found ${pkg_config_libdir}/pkgconfig" )
else(pkg_config_libdir)
SET(pkg_config_install_dir ${CMAKE_INSTALL_PREFIX}/share)
message(STATUS "pkgconfig not found; installing in ${pkg_config_install_dir}" )
endif(pkg_config_libdir)
configure_file(eigen3.pc.in eigen3.pc)
configure_file(eigen3.pc.in eigen3.pc @ONLY)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/eigen3.pc
DESTINATION ${pkg_config_install_dir}/pkgconfig
DESTINATION ${PKGCONFIG_INSTALL_DIR}
)
endif(EIGEN_BUILD_PKGCONFIG)
@ -401,12 +390,15 @@ if(cmake_generator_tolower MATCHES "makefile")
message(STATUS "--------------+--------------------------------------------------------------")
message(STATUS "Command | Description")
message(STATUS "--------------+--------------------------------------------------------------")
message(STATUS "make install | Install to ${CMAKE_INSTALL_PREFIX}. To change that:")
message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourpath")
message(STATUS " | Eigen headers will then be installed to:")
message(STATUS " | ${CMAKE_INSTALL_PREFIX}/${INCLUDE_INSTALL_DIR}")
message(STATUS " | To install Eigen headers to a separate location, do:")
message(STATUS " | cmake . -DEIGEN_INCLUDE_INSTALL_DIR=yourpath")
message(STATUS "make install | Install Eigen. Headers will be installed to:")
message(STATUS " | <CMAKE_INSTALL_PREFIX>/<INCLUDE_INSTALL_DIR>")
message(STATUS " | Using the following values:")
message(STATUS " | CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}")
message(STATUS " | INCLUDE_INSTALL_DIR: ${INCLUDE_INSTALL_DIR}")
message(STATUS " | Change the install location of Eigen headers using:")
message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourprefix")
message(STATUS " | Or:")
message(STATUS " | cmake . -DINCLUDE_INSTALL_DIR=yourdir")
message(STATUS "make doc | Generate the API documentation, requires Doxygen & LaTeX")
message(STATUS "make check | Build and run the unit-tests. Read this page:")
message(STATUS " | http://eigen.tuxfamily.org/index.php?title=Tests")

View File

@ -12,7 +12,7 @@ extern "C" {
/** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module
*
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the two following main factorization classes:
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).

View File

@ -10,7 +10,7 @@
/** \ingroup Support_modules
* \defgroup SPQRSupport_Module SuiteSparseQR module
*
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
*
* \code
* #include <Eigen/SPQRSupport>

View File

@ -12,7 +12,7 @@ extern "C" {
/** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module
*
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* It provides the following factorization class:
* - class UmfPackLU: a multifrontal sequential LU factorization.
*

View File

@ -38,7 +38,7 @@ struct traits<CwiseUnaryView<ViewOp, MatrixType> >
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
CoeffReadCost = EIGEN_ADD_COST(traits<_MatrixTypeNested>::CoeffReadCost, functor_traits<ViewOp>::Cost),
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values

View File

@ -40,7 +40,7 @@ static inline void check_DenseIndex_is_signed() {
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
: public internal::special_scalar_op_base<Derived, typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
DenseCoeffsBase<Derived> >
#else

View File

@ -425,15 +425,18 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
// make sure Dest is a compile-time vector type (bug 1166)
typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
MightCannotUseDest = (ActualDest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
@ -522,7 +525,7 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
actualLhs.rows(), actualLhs.cols(),
actualLhs.data(), actualLhs.outerStride(),
actualRhsPtr, 1,
dest.data(), dest.innerStride(),
dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
actualAlpha);
}
};

View File

@ -149,6 +149,10 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
checkSanity();
}
#ifdef EIGEN_MAPBASE_PLUGIN
#include EIGEN_MAPBASE_PLUGIN
#endif
protected:
void checkSanity() const

View File

@ -707,21 +707,21 @@ struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::
template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}

View File

@ -116,17 +116,17 @@ template<typename Lhs, typename Rhs, int Mode, int Index, int Size>
struct triangular_solver_unroller<Lhs,Rhs,Mode,Index,Size,false> {
enum {
IsLower = ((Mode&Lower)==Lower),
I = IsLower ? Index : Size - Index - 1,
S = IsLower ? 0 : I+1
RowIndex = IsLower ? Index : Size - Index - 1,
S = IsLower ? 0 : RowIndex+1
};
static void run(const Lhs& lhs, Rhs& rhs)
{
if (Index>0)
rhs.coeffRef(I) -= lhs.row(I).template segment<Index>(S).transpose()
rhs.coeffRef(RowIndex) -= lhs.row(RowIndex).template segment<Index>(S).transpose()
.cwiseProduct(rhs.template segment<Index>(S)).sum();
if(!(Mode & UnitDiag))
rhs.coeffRef(I) /= lhs.coeff(I,I);
rhs.coeffRef(RowIndex) /= lhs.coeff(RowIndex,RowIndex);
triangular_solver_unroller<Lhs,Rhs,Mode,Index+1,Size>::run(lhs,rhs);
}

View File

@ -76,14 +76,17 @@ template<typename Derived>
template<typename Visitor>
void DenseBase<Derived>::visit(Visitor& visitor) const
{
typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
typename Derived::Nested thisNested(derived());
enum { unroll = SizeAtCompileTime != Dynamic
&& CoeffReadCost != Dynamic
&& (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
&& SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
<= EIGEN_UNROLLING_LIMIT };
return internal::visitor_impl<Visitor, Derived,
return internal::visitor_impl<Visitor, ThisNested,
unroll ? int(SizeAtCompileTime) : Dynamic
>::run(derived(), visitor);
>::run(thisNested, visitor);
}
namespace internal {

View File

@ -235,63 +235,27 @@ template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { E
return _mm_loadu_ps(from);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from)); }
#else
// Fast unaligned loads. Note that here we cannot directly use intrinsics: this would
// require pointer casting to incompatible pointer types and leads to invalid code
// because of the strict aliasing rule. The "dummy" stuff are required to enforce
// a correct instruction dependency.
// TODO: do the same for MSVC (ICC is compatible)
// NOTE: with the code below, MSVC's compiler crashes!
#if defined(__GNUC__) && defined(__i386__)
// bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#elif defined(__clang__)
// bug 201: Segfaults in __mm_loadh_pd with clang 2.8
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#else
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 0
#endif
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_ps(from);
#else
__m128d res;
res = _mm_load_sd((const double*)(from)) ;
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
return _mm_castpd_ps(res);
#endif
}
#endif
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_pd(from);
#else
__m128d res;
res = _mm_load_sd(from) ;
res = _mm_loadh_pd(res,from+1);
return res;
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from));
#else
__m128d res;
res = _mm_load_sd((const double*)(from)) ;
res = _mm_loadh_pd(res, (const double*)(from+2)) ;
return _mm_castpd_si128(res);
#endif
return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{

View File

@ -140,8 +140,10 @@ static void run(Index rows, Index cols, Index depth,
// Release all the sub blocks B'_j of B' for the current thread,
// i.e., we simply decrement the number of users by 1
for(Index j=0; j<threads; ++j)
{
#pragma omp atomic
--(info[j].users);
info[j].users -= 1;
}
}
}
else
@ -390,13 +392,17 @@ class GeneralProduct<Lhs, Rhs, GemmProduct>
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
#if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG))
typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
#endif
}
template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
{
eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
if(m_lhs.cols()==0 || m_lhs.rows()==0 || m_rhs.cols()==0)
return;
typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);

View File

@ -115,8 +115,9 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
{
// TODO write a small kernel handling this (can be shared with trsv)
Index i = IsLower ? k2+k1+k : k2-k1-k-1;
Index s = IsLower ? k2+k1 : i+1;
Index rs = actualPanelWidth - k - 1; // remaining size
Index s = TriStorageOrder==RowMajor ? (IsLower ? k2+k1 : i+1)
: IsLower ? i+1 : i-rs;
Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
for (Index j=j2; j<j2+actual_cols; ++j)
@ -133,7 +134,6 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
}
else
{
Index s = IsLower ? i+1 : i-rs;
Scalar b = (other(i,j) *= a);
Scalar* r = &other(s,j);
const Scalar* l = &tri(s,i);

View File

@ -13,23 +13,292 @@
#define EIGEN_WORLD_VERSION 3
#define EIGEN_MAJOR_VERSION 2
#define EIGEN_MINOR_VERSION 7
#define EIGEN_MINOR_VERSION 8
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
EIGEN_MINOR_VERSION>=z))))
// Compiler identification, EIGEN_COMP_*
/// \internal EIGEN_COMP_GNUC set to 1 for all compilers compatible with GCC
#ifdef __GNUC__
#define EIGEN_COMP_GNUC 1
#else
#define EIGEN_COMP_GNUC 0
#endif
/// \internal EIGEN_COMP_CLANG set to 1 if the compiler is clang (alias for __clang__)
#if defined(__clang__)
#define EIGEN_COMP_CLANG 1
#else
#define EIGEN_COMP_CLANG 0
#endif
/// \internal EIGEN_COMP_LLVM set to 1 if the compiler backend is llvm
#if defined(__llvm__)
#define EIGEN_COMP_LLVM 1
#else
#define EIGEN_COMP_LLVM 0
#endif
/// \internal EIGEN_COMP_ICC set to __INTEL_COMPILER if the compiler is Intel compiler, 0 otherwise
#if defined(__INTEL_COMPILER)
#define EIGEN_COMP_ICC __INTEL_COMPILER
#else
#define EIGEN_COMP_ICC 0
#endif
/// \internal EIGEN_COMP_MINGW set to 1 if the compiler is mingw
#if defined(__MINGW32__)
#define EIGEN_COMP_MINGW 1
#else
#define EIGEN_COMP_MINGW 0
#endif
/// \internal EIGEN_COMP_SUNCC set to 1 if the compiler is Solaris Studio
#if defined(__SUNPRO_CC)
#define EIGEN_COMP_SUNCC 1
#else
#define EIGEN_COMP_SUNCC 0
#endif
/// \internal EIGEN_COMP_MSVC set to _MSC_VER if the compiler is Microsoft Visual C++, 0 otherwise.
#if defined(_MSC_VER)
#define EIGEN_COMP_MSVC _MSC_VER
#else
#define EIGEN_COMP_MSVC 0
#endif
/// \internal EIGEN_COMP_MSVC_STRICT set to 1 if the compiler is really Microsoft Visual C++ and not ,e.g., ICC
#if EIGEN_COMP_MSVC && !(EIGEN_COMP_ICC)
#define EIGEN_COMP_MSVC_STRICT _MSC_VER
#else
#define EIGEN_COMP_MSVC_STRICT 0
#endif
/// \internal EIGEN_COMP_IBM set to 1 if the compiler is IBM XL C++
#if defined(__IBMCPP__) || defined(__xlc__)
#define EIGEN_COMP_IBM 1
#else
#define EIGEN_COMP_IBM 0
#endif
/// \internal EIGEN_COMP_PGI set to 1 if the compiler is Portland Group Compiler
#if defined(__PGI)
#define EIGEN_COMP_PGI 1
#else
#define EIGEN_COMP_PGI 0
#endif
/// \internal EIGEN_COMP_ARM set to 1 if the compiler is ARM Compiler
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
#define EIGEN_COMP_ARM 1
#else
#define EIGEN_COMP_ARM 0
#endif
/// \internal EIGEN_GNUC_STRICT set to 1 if the compiler is really GCC and not a compatible compiler (e.g., ICC, clang, mingw, etc.)
#if EIGEN_COMP_GNUC && !(EIGEN_COMP_CLANG || EIGEN_COMP_ICC || EIGEN_COMP_MINGW || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM )
#define EIGEN_COMP_GNUC_STRICT 1
#else
#define EIGEN_COMP_GNUC_STRICT 0
#endif
#if EIGEN_COMP_GNUC
#define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x)
#define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
#define EIGEN_GNUC_AT(x,y) ( __GNUC__==x && __GNUC_MINOR__==y )
#else
#define EIGEN_GNUC_AT_LEAST(x,y) 0
#define EIGEN_GNUC_AT_MOST(x,y) 0
#define EIGEN_GNUC_AT(x,y) 0
#endif
#ifdef __GNUC__
#define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
// FIXME: could probably be removed as we do not support gcc 3.x anymore
#if EIGEN_COMP_GNUC && (__GNUC__ <= 3)
#define EIGEN_GCC3_OR_OLDER 1
#else
#define EIGEN_GNUC_AT_MOST(x,y) 0
#define EIGEN_GCC3_OR_OLDER 0
#endif
// Architecture identification, EIGEN_ARCH_*
#if defined(__x86_64__) || defined(_M_X64) || defined(__amd64)
#define EIGEN_ARCH_x86_64 1
#else
#define EIGEN_ARCH_x86_64 0
#endif
#if defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__i386)
#define EIGEN_ARCH_i386 1
#else
#define EIGEN_ARCH_i386 0
#endif
#if EIGEN_ARCH_x86_64 || EIGEN_ARCH_i386
#define EIGEN_ARCH_i386_OR_x86_64 1
#else
#define EIGEN_ARCH_i386_OR_x86_64 0
#endif
/// \internal EIGEN_ARCH_ARM set to 1 if the architecture is ARM
#if defined(__arm__)
#define EIGEN_ARCH_ARM 1
#else
#define EIGEN_ARCH_ARM 0
#endif
/// \internal EIGEN_ARCH_ARM64 set to 1 if the architecture is ARM64
#if defined(__aarch64__)
#define EIGEN_ARCH_ARM64 1
#else
#define EIGEN_ARCH_ARM64 0
#endif
#if EIGEN_ARCH_ARM || EIGEN_ARCH_ARM64
#define EIGEN_ARCH_ARM_OR_ARM64 1
#else
#define EIGEN_ARCH_ARM_OR_ARM64 0
#endif
/// \internal EIGEN_ARCH_MIPS set to 1 if the architecture is MIPS
#if defined(__mips__) || defined(__mips)
#define EIGEN_ARCH_MIPS 1
#else
#define EIGEN_ARCH_MIPS 0
#endif
/// \internal EIGEN_ARCH_SPARC set to 1 if the architecture is SPARC
#if defined(__sparc__) || defined(__sparc)
#define EIGEN_ARCH_SPARC 1
#else
#define EIGEN_ARCH_SPARC 0
#endif
/// \internal EIGEN_ARCH_IA64 set to 1 if the architecture is Intel Itanium
#if defined(__ia64__)
#define EIGEN_ARCH_IA64 1
#else
#define EIGEN_ARCH_IA64 0
#endif
/// \internal EIGEN_ARCH_PPC set to 1 if the architecture is PowerPC
#if defined(__powerpc__) || defined(__ppc__) || defined(_M_PPC)
#define EIGEN_ARCH_PPC 1
#else
#define EIGEN_ARCH_PPC 0
#endif
// Operating system identification, EIGEN_OS_*
/// \internal EIGEN_OS_UNIX set to 1 if the OS is a unix variant
#if defined(__unix__) || defined(__unix)
#define EIGEN_OS_UNIX 1
#else
#define EIGEN_OS_UNIX 0
#endif
/// \internal EIGEN_OS_LINUX set to 1 if the OS is based on Linux kernel
#if defined(__linux__)
#define EIGEN_OS_LINUX 1
#else
#define EIGEN_OS_LINUX 0
#endif
/// \internal EIGEN_OS_ANDROID set to 1 if the OS is Android
// note: ANDROID is defined when using ndk_build, __ANDROID__ is defined when using a standalone toolchain.
#if defined(__ANDROID__) || defined(ANDROID)
#define EIGEN_OS_ANDROID 1
#else
#define EIGEN_OS_ANDROID 0
#endif
/// \internal EIGEN_OS_GNULINUX set to 1 if the OS is GNU Linux and not Linux-based OS (e.g., not android)
#if defined(__gnu_linux__) && !(EIGEN_OS_ANDROID)
#define EIGEN_OS_GNULINUX 1
#else
#define EIGEN_OS_GNULINUX 0
#endif
/// \internal EIGEN_OS_BSD set to 1 if the OS is a BSD variant
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) || defined(__DragonFly__)
#define EIGEN_OS_BSD 1
#else
#define EIGEN_OS_BSD 0
#endif
/// \internal EIGEN_OS_MAC set to 1 if the OS is MacOS
#if defined(__APPLE__)
#define EIGEN_OS_MAC 1
#else
#define EIGEN_OS_MAC 0
#endif
/// \internal EIGEN_OS_QNX set to 1 if the OS is QNX
#if defined(__QNX__)
#define EIGEN_OS_QNX 1
#else
#define EIGEN_OS_QNX 0
#endif
/// \internal EIGEN_OS_WIN set to 1 if the OS is Windows based
#if defined(_WIN32)
#define EIGEN_OS_WIN 1
#else
#define EIGEN_OS_WIN 0
#endif
/// \internal EIGEN_OS_WIN64 set to 1 if the OS is Windows 64bits
#if defined(_WIN64)
#define EIGEN_OS_WIN64 1
#else
#define EIGEN_OS_WIN64 0
#endif
/// \internal EIGEN_OS_WINCE set to 1 if the OS is Windows CE
#if defined(_WIN32_WCE)
#define EIGEN_OS_WINCE 1
#else
#define EIGEN_OS_WINCE 0
#endif
/// \internal EIGEN_OS_CYGWIN set to 1 if the OS is Windows/Cygwin
#if defined(__CYGWIN__)
#define EIGEN_OS_CYGWIN 1
#else
#define EIGEN_OS_CYGWIN 0
#endif
/// \internal EIGEN_OS_WIN_STRICT set to 1 if the OS is really Windows and not some variants
#if EIGEN_OS_WIN && !( EIGEN_OS_WINCE || EIGEN_OS_CYGWIN )
#define EIGEN_OS_WIN_STRICT 1
#else
#define EIGEN_OS_WIN_STRICT 0
#endif
/// \internal EIGEN_OS_SUN set to 1 if the OS is SUN
#if (defined(sun) || defined(__sun)) && !(defined(__SVR4) || defined(__svr4__))
#define EIGEN_OS_SUN 1
#else
#define EIGEN_OS_SUN 0
#endif
/// \internal EIGEN_OS_SOLARIS set to 1 if the OS is Solaris
#if (defined(sun) || defined(__sun)) && (defined(__SVR4) || defined(__svr4__))
#define EIGEN_OS_SOLARIS 1
#else
#define EIGEN_OS_SOLARIS 0
#endif
#if EIGEN_GNUC_AT_MOST(4,3) && !defined(__clang__)
// see bug 89
#define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0
@ -37,12 +306,6 @@
#define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1
#endif
#if defined(__GNUC__) && (__GNUC__ <= 3)
#define EIGEN_GCC3_OR_OLDER 1
#else
#define EIGEN_GCC3_OR_OLDER 0
#endif
// 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable
// 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always
// enable alignment, but it can be a cause of problems on some platforms, so we just disable it in
@ -104,7 +367,7 @@
// Do we support r-value references?
#if (__has_feature(cxx_rvalue_references) || \
defined(__GXX_EXPERIMENTAL_CXX0X__) || \
(defined(__cplusplus) && __cplusplus >= 201103L) || \
(defined(_MSC_VER) && _MSC_VER >= 1600))
#define EIGEN_HAVE_RVALUE_REFERENCES
#endif

View File

@ -26,7 +26,7 @@
#ifndef EIGEN_NO_STATIC_ASSERT
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && (_MSC_VER >= 1600))
#if __has_feature(cxx_static_assert) || (defined(__cplusplus) && __cplusplus >= 201103L) || (EIGEN_COMP_MSVC >= 1600)
// if native static_assert is enabled, let's use it
#define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG);

View File

@ -45,7 +45,6 @@ ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
{ \
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
typedef MatrixType::Scalar Scalar; \
typedef MatrixType::RealScalar RealScalar; \
typedef std::complex<RealScalar> ComplexScalar; \
\

View File

@ -44,10 +44,6 @@ template<> inline \
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
{ \
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
typedef MatrixType::Scalar Scalar; \
typedef MatrixType::RealScalar RealScalar; \
\
eigen_assert(matrix.cols() == matrix.rows()); \
\
lapack_int n = matrix.cols(), sdim, info; \

View File

@ -83,10 +83,17 @@ public:
template<typename Derived>
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
/** \returns the value of the rotation angle in radian */
Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the stored angle in radian */
Scalar& angle() { return m_angle; }
/** \returns the rotation axis */
const Vector3& axis() const { return m_axis; }
/** \returns a read-write reference to the stored rotation axis.
*
* \warning The rotation axis must remain a \b unit vector.
*/
Vector3& axis() { return m_axis; }
/** Concatenates two rotations */

View File

@ -129,7 +129,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
bool isApprox(const ParametrizedLine& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
protected:

View File

@ -102,15 +102,15 @@ template<int Mode> struct transform_make_affine;
*
* However, unlike a plain matrix, the Transform class provides many features
* simplifying both its assembly and usage. In particular, it can be composed
* with any other transformations (Transform,Translation,RotationBase,Matrix)
* with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
* and can be directly used to transform implicit homogeneous vectors. All these
* operations are handled via the operator*. For the composition of transformations,
* its principle consists to first convert the right/left hand sides of the product
* to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
* Of course, internally, operator* tries to perform the minimal number of operations
* according to the nature of each terms. Likewise, when applying the transform
* to non homogeneous vectors, the latters are automatically promoted to homogeneous
* one before doing the matrix product. The convertions to homogeneous representations
* to points, the latters are automatically promoted to homogeneous vectors
* before doing the matrix product. The conventions to homogeneous representations
* are performed as follow:
*
* \b Translation t (Dim)x(1):
@ -124,7 +124,7 @@ template<int Mode> struct transform_make_affine;
* R & 0\\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*
*<!--
* \b Linear \b Matrix L (Dim)x(Dim):
* \f$ \left( \begin{array}{cc}
* L & 0\\
@ -136,14 +136,20 @@ template<int Mode> struct transform_make_affine;
* A\\
* 0\,...\,0\,1
* \end{array} \right) \f$
*-->
* \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
* \f$ \left( \begin{array}{cc}
* S & 0\\
* 0\,...\,0 & 1
* \end{array} \right) \f$
*
* \b Column \b vector v (Dim)x(1):
* \b Column \b point v (Dim)x(1):
* \f$ \left( \begin{array}{c}
* v\\
* 1
* \end{array} \right) \f$
*
* \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
* \b Set \b of \b column \b points V1...Vn (Dim)x(n):
* \f$ \left( \begin{array}{ccc}
* v_1 & ... & v_n\\
* 1 & ... & 1
@ -384,26 +390,39 @@ public:
/** \returns a writable expression of the translation vector of the transformation */
inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
*
* The right hand side \a other might be either:
* \li a vector of size Dim,
* The right-hand-side \a other can be either:
* \li an homogeneous vector of size Dim+1,
* \li a set of vectors of size Dim x Dynamic,
* \li a set of homogeneous vectors of size Dim+1 x Dynamic,
* \li a linear transformation matrix of size Dim x Dim,
* \li an affine transformation matrix of size Dim x Dim+1,
* \li a set of homogeneous vectors of size Dim+1 x N,
* \li a transformation matrix of size Dim+1 x Dim+1.
*
* Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
* \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
* \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
*
* In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
*
* If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
* or do your own cooking.
*
* Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
* \code
* Affine3f A;
* Vector3f v1, v2;
* v2 = A.linear() * v1;
* \endcode
*
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
EIGEN_STRONG_INLINE const typename OtherDerived::PlainObject
operator * (const EigenBase<OtherDerived> &other) const
{ return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
/** \returns the product expression of a transformation matrix \a a times a transform \a b
*
* The left hand side \a other might be either:
* The left hand side \a other can be either:
* \li a linear transformation matrix of size Dim x Dim,
* \li an affine transformation matrix of size Dim x Dim+1,
* \li a general transformation matrix of size Dim+1 x Dim+1.

View File

@ -162,7 +162,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};

View File

@ -139,6 +139,8 @@ struct traits<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> >
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, int _UpLo, typename _Preconditioner>

View File

@ -688,7 +688,7 @@ struct solve_retval<FullPivLU<_MatrixType>, Rhs>
*/
const Index rows = dec().rows(), cols = dec().cols(),
nonzero_pivots = dec().nonzeroPivots();
nonzero_pivots = dec().rank();
eigen_assert(rhs().rows() == rows);
const Index smalldim = (std::min)(rows, cols);

View File

@ -8,7 +8,7 @@
NOTE: this routine has been adapted from the CSparse library:
Copyright (c) 2006, Timothy A. Davis.
http://www.cise.ufl.edu/research/sparse/CSparse
http://www.suitesparse.com
CSparse is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public

View File

@ -41,12 +41,8 @@
//
// The colamd/symamd library is available at
//
// http://www.cise.ufl.edu/research/sparse/colamd/
// http://www.suitesparse.com
// This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.h
// file. It is required by the colamd.c, colamdmex.c, and symamdmex.c
// files, and by any C code that calls the routines whose prototypes are
// listed below, or that uses the colamd/symamd definitions listed below.
#ifndef EIGEN_COLAMD_H
#define EIGEN_COLAMD_H
@ -102,9 +98,6 @@ namespace internal {
/* === Definitions ========================================================== */
/* ========================================================================== */
#define COLAMD_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define COLAMD_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ONES_COMPLEMENT(r) (-(r)-1)
/* -------------------------------------------------------------------------- */
@ -516,7 +509,7 @@ static Index init_rows_cols /* returns true if OK, or false otherwise */
Col [col].start = p [col] ;
Col [col].length = p [col+1] - p [col] ;
if (Col [col].length < 0)
if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200
{
/* column pointers must be non-decreasing */
stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
@ -739,8 +732,8 @@ static void init_scoring
/* === Extract knobs ==================================================== */
dense_row_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
dense_col_count = COLAMD_MAX (0, COLAMD_MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
dense_row_count = std::max<Index>(0, (std::min)(Index(knobs [COLAMD_DENSE_ROW] * n_col), n_col)) ;
dense_col_count = std::max<Index>(0, (std::min)(Index(knobs [COLAMD_DENSE_COL] * n_row), n_row)) ;
COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
max_deg = 0 ;
n_col2 = n_col ;
@ -804,7 +797,7 @@ static void init_scoring
else
{
/* keep track of max degree of remaining rows */
max_deg = COLAMD_MAX (max_deg, deg) ;
max_deg = (std::max)(max_deg, deg) ;
}
}
COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
@ -842,7 +835,7 @@ static void init_scoring
/* add row's external degree */
score += Row [row].shared1.degree - 1 ;
/* guard against integer overflow */
score = COLAMD_MIN (score, n_col) ;
score = (std::min)(score, n_col) ;
}
/* determine pruned column length */
col_length = (Index) (new_cp - &A [Col [c].start]) ;
@ -914,7 +907,7 @@ static void init_scoring
head [score] = c ;
/* see if this score is less than current min */
min_score = COLAMD_MIN (min_score, score) ;
min_score = (std::min)(min_score, score) ;
}
@ -1040,7 +1033,7 @@ static Index find_ordering /* return the number of garbage collections */
/* === Garbage_collection, if necessary ============================= */
needed_memory = COLAMD_MIN (pivot_col_score, n_col - k) ;
needed_memory = (std::min)(pivot_col_score, n_col - k) ;
if (pfree + needed_memory >= Alen)
{
pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
@ -1099,7 +1092,7 @@ static Index find_ordering /* return the number of garbage collections */
/* clear tag on pivot column */
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
max_deg = COLAMD_MAX (max_deg, pivot_row_degree) ;
max_deg = (std::max)(max_deg, pivot_row_degree) ;
/* === Kill all rows used to construct pivot row ==================== */
@ -1273,7 +1266,7 @@ static Index find_ordering /* return the number of garbage collections */
/* add set difference */
cur_score += row_mark - tag_mark ;
/* integer overflow... */
cur_score = COLAMD_MIN (cur_score, n_col) ;
cur_score = (std::min)(cur_score, n_col) ;
}
/* recompute the column's length */
@ -1386,7 +1379,7 @@ static Index find_ordering /* return the number of garbage collections */
cur_score -= Col [col].shared1.thickness ;
/* make sure score is less or equal than the max score */
cur_score = COLAMD_MIN (cur_score, max_score) ;
cur_score = (std::min)(cur_score, max_score) ;
COLAMD_ASSERT (cur_score >= 0) ;
/* store updated score */
@ -1409,7 +1402,7 @@ static Index find_ordering /* return the number of garbage collections */
head [cur_score] = col ;
/* see if this score is less than current min */
min_score = COLAMD_MIN (min_score, cur_score) ;
min_score = (std::min)(min_score, cur_score) ;
}

View File

@ -49,7 +49,6 @@ ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynami
{ \
using std::abs; \
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
typedef MatrixType::Scalar Scalar; \
typedef MatrixType::RealScalar RealScalar; \
Index rows = matrix.rows();\
Index cols = matrix.cols();\

View File

@ -816,7 +816,7 @@ void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, u
if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
if(m_cols!=m_cols) m_scaledMatrix.resize(rows,cols);
if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols);
}
template<typename MatrixType, int QRPreconditioner>

View File

@ -45,8 +45,8 @@ JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPiv
JacobiSVD<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>, ColPivHouseholderQRPreconditioner>::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic>& matrix, unsigned int computationOptions) \
{ \
typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
typedef MatrixType::Scalar Scalar; \
typedef MatrixType::RealScalar RealScalar; \
/*typedef MatrixType::Scalar Scalar;*/ \
/*typedef MatrixType::RealScalar RealScalar;*/ \
allocate(matrix.rows(), matrix.cols(), computationOptions); \
\
/*const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();*/ \

View File

@ -364,10 +364,11 @@ public:
protected:
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
typename SparseMatrixType::Nested m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
//----------
@ -528,7 +529,8 @@ public:
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
private:
Index nonZeros() const;
};
} // end namespace Eigen

View File

@ -55,10 +55,9 @@ class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Sparse>
EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
CwiseBinaryOpImpl()
{
typedef typename internal::traits<Lhs>::StorageKind LhsStorageKind;
typedef typename internal::traits<Rhs>::StorageKind RhsStorageKind;
EIGEN_STATIC_ASSERT((
(!internal::is_same<LhsStorageKind,RhsStorageKind>::value)
(!internal::is_same<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::value)
|| ((Lhs::Flags&RowMajorBit) == (Rhs::Flags&RowMajorBit))),
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH);
}

View File

@ -35,9 +35,9 @@ class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
SparseView(const MatrixType& mat, const Scalar& m_reference = Scalar(0),
typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) :
m_matrix(mat), m_reference(m_reference), m_epsilon(m_epsilon) {}
explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0),
const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision())
: m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {}
class InnerIterator;

View File

@ -13,32 +13,24 @@
#include "details.h"
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
#define EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(...) template class std::deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> >;
#else
#define EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(...)
#endif
/**
* This section contains a convenience MACRO which allows an easy specialization of
* std::deque such that for data types with alignment issues the correct allocator
* is used automatically.
*/
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) \
EIGEN_EXPLICIT_STL_DEQUE_INSTANTIATION(__VA_ARGS__) \
namespace std \
{ \
template<typename _Ay> \
class deque<__VA_ARGS__, _Ay> \
template<> \
class deque<__VA_ARGS__, std::allocator<__VA_ARGS__> > \
: public deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \
{ \
typedef deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > deque_base; \
public: \
typedef __VA_ARGS__ value_type; \
typedef typename deque_base::allocator_type allocator_type; \
typedef typename deque_base::size_type size_type; \
typedef typename deque_base::iterator iterator; \
typedef deque_base::allocator_type allocator_type; \
typedef deque_base::size_type size_type; \
typedef deque_base::iterator iterator; \
explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \
template<typename InputIterator> \
deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : deque_base(first, last, a) {} \

View File

@ -12,32 +12,24 @@
#include "details.h"
// Define the explicit instantiation (e.g. necessary for the Intel compiler)
#if defined(__INTEL_COMPILER) || defined(__GNUC__)
#define EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(...) template class std::list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> >;
#else
#define EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(...)
#endif
/**
* This section contains a convenience MACRO which allows an easy specialization of
* std::list such that for data types with alignment issues the correct allocator
* is used automatically.
*/
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) \
EIGEN_EXPLICIT_STL_LIST_INSTANTIATION(__VA_ARGS__) \
namespace std \
{ \
template<typename _Ay> \
class list<__VA_ARGS__, _Ay> \
template<> \
class list<__VA_ARGS__, std::allocator<__VA_ARGS__> > \
: public list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \
{ \
typedef list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > list_base; \
public: \
typedef __VA_ARGS__ value_type; \
typedef typename list_base::allocator_type allocator_type; \
typedef typename list_base::size_type size_type; \
typedef typename list_base::iterator iterator; \
typedef list_base::allocator_type allocator_type; \
typedef list_base::size_type size_type; \
typedef list_base::iterator iterator; \
explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \
template<typename InputIterator> \
list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : list_base(first, last, a) {} \

View File

@ -89,6 +89,7 @@ add_dependencies(doc-unsupported-prerequisites unsupported_snippets unsupported_
add_custom_target(doc ALL
COMMAND doxygen
COMMAND doxygen Doxyfile-unsupported
COMMAND ${CMAKE_COMMAND} -E copy ${Eigen_BINARY_DIR}/doc/html/group__TopicUnalignedArrayAssert.html ${Eigen_BINARY_DIR}/doc/html/TopicUnalignedArrayAssert.html
COMMAND ${CMAKE_COMMAND} -E rename html eigen-doc
COMMAND ${CMAKE_COMMAND} -E remove eigen-doc/eigen-doc.tgz
COMMAND ${CMAKE_COMMAND} -E tar cfz eigen-doc.tgz eigen-doc

View File

@ -121,6 +121,8 @@ namespace Eigen {
\ingroup Sparse_chapter */
/** \addtogroup TopicSparseSystems
\ingroup Sparse_chapter */
/** \addtogroup MatrixfreeSolverExample
\ingroup Sparse_chapter */
/** \addtogroup Sparse_Reference
\ingroup Sparse_chapter */

View File

@ -91,6 +91,7 @@ following macros are supported; none of them are defined by default.
- \b EIGEN_MATRIX_PLUGIN - filename of plugin for extending the Matrix class.
- \b EIGEN_MATRIXBASE_PLUGIN - filename of plugin for extending the MatrixBase class.
- \b EIGEN_PLAINOBJECTBASE_PLUGIN - filename of plugin for extending the PlainObjectBase class.
- \b EIGEN_MAPBASE_PLUGIN - filename of plugin for extending the MapBase class.
- \b EIGEN_QUATERNIONBASE_PLUGIN - filename of plugin for extending the QuaternionBase class.
- \b EIGEN_SPARSEMATRIX_PLUGIN - filename of plugin for extending the SparseMatrix class.
- \b EIGEN_SPARSEMATRIXBASE_PLUGIN - filename of plugin for extending the SparseMatrixBase class.

View File

@ -35,17 +35,17 @@ They are summarized in the following table:
<td>Requires the <a href="http://pastix.gforge.inria.fr">PaStiX</a> package, \b CeCILL-C </td>
<td>optimized for tough problems and symmetric patterns</td></tr>
<tr><td>CholmodSupernodalLLT</td><td>\link CholmodSupport_Module CholmodSupport \endlink</td><td>Direct LLt factorization</td><td>SPD</td><td>Fill-in reducing, Leverage fast dense algebra</td>
<td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
<td>Requires the <a href="http://www.suitesparse.com">SuiteSparse</a> package, \b GPL </td>
<td></td></tr>
<tr><td>UmfPackLU</td><td>\link UmfPackSupport_Module UmfPackSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
<td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
<td>Requires the <a href="http://www.suitesparse.com">SuiteSparse</a> package, \b GPL </td>
<td></td></tr>
<tr><td>SuperLU</td><td>\link SuperLUSupport_Module SuperLUSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
<td>Requires the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library, (BSD-like)</td>
<td></td></tr>
<tr><td>SPQR</td><td>\link SPQRSupport_Module SPQRSupport \endlink </td> <td> QR factorization </td>
<td> Any, rectangular</td><td>fill-in reducing, multithreaded, fast dense algebra</td>
<td> requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td><td>recommended for linear least-squares problems, has a rank-revealing feature</tr>
<td> requires the <a href="http://www.suitesparse.com">SuiteSparse</a> package, \b GPL </td><td>recommended for linear least-squares problems, has a rank-revealing feature</tr>
</table>
Here \c SPD means symmetric positive definite.

View File

@ -21,7 +21,7 @@ i.e either row major or column major. The default is column major. Most arithmet
<td> Resize/Reserve</td>
<td>
\code
sm1.resize(m,n); //Change sm1 to a m x n matrix.
sm1.resize(m,n); // Change sm1 to a m x n matrix.
sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
\endcode
</td>
@ -151,10 +151,10 @@ It is easy to perform arithmetic operations on sparse matrices provided that the
<td> Permutation </td>
<td>
\code
perm.indices(); // Reference to the vector of indices
perm.indices(); // Reference to the vector of indices
sm1.twistedBy(perm); // Permute rows and columns
sm2 = sm1 * perm; //Permute the columns
sm2 = perm * sm1; // Permute the columns
sm2 = sm1 * perm; // Permute the columns
sm2 = perm * sm1; // Permute the columns
\endcode
</td>
<td>
@ -181,9 +181,9 @@ sm2 = perm * sm1; // Permute the columns
\section sparseotherops Other supported operations
<table class="manual">
<tr><th>Operations</th> <th> Code </th> <th> Notes</th> </tr>
<tr><th style="min-width:initial"> Code </th> <th> Notes</th> </tr>
<tr><td colspan="2">Sub-matrices</td></tr>
<tr>
<td>Sub-matrices</td>
<td>
\code
sm1.block(startRow, startCol, rows, cols);
@ -193,25 +193,31 @@ sm2 = perm * sm1; // Permute the columns
sm1.bottomLeftCorner( rows, cols);
sm1.bottomRightCorner( rows, cols);
\endcode
</td> <td> </td>
</td><td>
Contrary to dense matrices, here <strong>all these methods are read-only</strong>.\n
See \ref TutorialSparse_SubMatrices and below for read-write sub-matrices.
</td>
</tr>
<tr>
<td> Range </td>
<tr class="alt"><td colspan="2"> Range </td></tr>
<tr class="alt">
<td>
\code
sm1.innerVector(outer);
sm1.innerVectors(start, size);
sm1.leftCols(size);
sm2.rightCols(size);
sm1.middleRows(start, numRows);
sm1.middleCols(start, numCols);
sm1.col(j);
sm1.innerVector(outer); // RW
sm1.innerVectors(start, size); // RW
sm1.leftCols(size); // RW
sm2.rightCols(size); // RO because sm2 is row-major
sm1.middleRows(start, numRows); // RO becasue sm1 is column-major
sm1.middleCols(start, numCols); // RW
sm1.col(j); // RW
\endcode
</td>
<td>A inner vector is either a row (for row-major) or a column (for column-major). As stated earlier, the evaluation can be done in a matrix with different storage order </td>
<td>
A inner vector is either a row (for row-major) or a column (for column-major).\n
As stated earlier, for a read-write sub-matrix (RW), the evaluation can be done in a matrix with different storage order.
</td>
</tr>
<tr><td colspan="2"> Triangular and selfadjoint views</td></tr>
<tr>
<td> Triangular and selfadjoint views</td>
<td>
\code
sm2 = sm1.triangularview<Lower>();
@ -222,26 +228,30 @@ sm2 = perm * sm1; // Permute the columns
\code
\endcode </td>
</tr>
<tr>
<td>Triangular solve </td>
<tr class="alt"><td colspan="2">Triangular solve </td></tr>
<tr class="alt">
<td>
\code
dv2 = sm1.triangularView<Upper>().solve(dv1);
dv2 = sm1.topLeftCorner(size, size).triangularView<Lower>().solve(dv1);
dv2 = sm1.topLeftCorner(size, size)
.triangularView<Lower>().solve(dv1);
\endcode
</td>
<td> For general sparse solve, Use any suitable module described at \ref TopicSparseSystems </td>
</tr>
<tr><td colspan="2"> Low-level API</td></tr>
<tr>
<td> Low-level API</td>
<td>
\code
sm1.valuePtr(); // Pointer to the values
sm1.innerIndextr(); // Pointer to the indices.
sm1.outerIndexPtr(); //Pointer to the beginning of each inner vector
sm1.valuePtr(); // Pointer to the values
sm1.innerIndextr(); // Pointer to the indices.
sm1.outerIndexPtr(); // Pointer to the beginning of each inner vector
\endcode
</td>
<td> If the matrix is not in compressed form, makeCompressed() should be called before. Note that these functions are mostly provided for interoperability purposes with external libraries. A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section</td>
<td>
If the matrix is not in compressed form, makeCompressed() should be called before.\n
Note that these functions are mostly provided for interoperability purposes with external libraries.\n
A better access to the values of the matrix is done by using the InnerIterator class as described in \link TutorialSparse the Tutorial Sparse \endlink section</td>
</tr>
</table>
*/

View File

@ -241,11 +241,11 @@ In the following \em sm denotes a sparse matrix, \em sv a sparse vector, \em dm
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
\endcode
However, a strong restriction is that the storage orders must match. For instance, in the following example:
However, <strong>a strong restriction is that the storage orders must match</strong>. For instance, in the following example:
\code
sm4 = sm1 + sm2 + sm3;
\endcode
sm1, sm2, and sm3 must all be row-major or all column major.
sm1, sm2, and sm3 must all be row-major or all column-major.
On the other hand, there is no restriction on the target matrix sm4.
For instance, this means that for computing \f$ A^T + A \f$, the matrix \f$ A^T \f$ must be evaluated into a temporary matrix of compatible storage order:
\code
@ -307,6 +307,26 @@ sm2 = sm1.transpose() * P;
\endcode
\subsection TutorialSparse_SubMatrices Block operations
Regarding read-access, sparse matrices expose the same API than for dense matrices to access to sub-matrices such as blocks, columns, and rows. See \ref TutorialBlockOperations for a detailed introduction.
However, for performance reasons, writing to a sub-sparse-matrix is much more limited, and currently only contiguous sets of columns (resp. rows) of a column-major (resp. row-major) SparseMatrix are writable. Moreover, this information has to be known at compile-time, leaving out methods such as <tt>block(...)</tt> and <tt>corner*(...)</tt>. The available API for write-access to a SparseMatrix are summarized below:
\code
SparseMatrix<double,ColMajor> sm1;
sm1.col(j) = ...;
sm1.leftCols(ncols) = ...;
sm1.middleCols(j,ncols) = ...;
sm1.rightCols(ncols) = ...;
SparseMatrix<double,RowMajor> sm2;
sm2.row(i) = ...;
sm2.topRows(nrows) = ...;
sm2.middleRows(i,nrows) = ...;
sm2.bottomRows(nrows) = ...;
\endcode
In addition, sparse matrices expose the SparseMatrixBase::innerVector() and SparseMatrixBase::innerVectors() methods, which are aliases to the col/middleCols methods for a column-major storage, and to the row/middleRows methods for a row-major storage.
\subsection TutorialSparse_TriangularSelfadjoint Triangular and selfadjoint views
Just as with dense matrices, the triangularView() function can be used to address a triangular part of the matrix, and perform triangular solves with a dense right hand side:

View File

@ -7,8 +7,8 @@ Hello! You are seeing this webpage because your program terminated on an asserti
my_program: path/to/eigen/Eigen/src/Core/DenseStorage.h:44:
Eigen::internal::matrix_array<T, Size, MatrixOptions, Align>::internal::matrix_array()
[with T = double, int Size = 2, int MatrixOptions = 2, bool Align = true]:
Assertion `(reinterpret_cast<size_t>(array) & 0xf) == 0 && "this assertion
is explained here: http://eigen.tuxfamily.org/dox/UnalignedArrayAssert.html
Assertion `(reinterpret_cast<size_t>(array) & (sizemask)) == 0 && "this assertion
is explained here: http://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
**** READ THIS WEB PAGE !!! ****"' failed.
</pre>
@ -46,9 +46,9 @@ then you need to read this separate page: \ref TopicStructHavingEigenMembers "St
Note that here, Eigen::Vector2d is only used as an example, more generally the issue arises for all \ref TopicFixedSizeVectorizable "fixed-size vectorizable Eigen types".
\section c2 Cause 2: STL Containers
\section c2 Cause 2: STL Containers or manual memory allocation
If you use STL Containers such as std::vector, std::map, ..., with Eigen objects, or with classes containing Eigen objects, like this,
If you use STL Containers such as std::vector, std::map, ..., with %Eigen objects, or with classes containing %Eigen objects, like this,
\code
std::vector<Eigen::Matrix2f> my_vector;
@ -60,6 +60,8 @@ then you need to read this separate page: \ref TopicStlContainers "Using STL Con
Note that here, Eigen::Matrix2f is only used as an example, more generally the issue arises for all \ref TopicFixedSizeVectorizable "fixed-size vectorizable Eigen types" and \ref TopicStructHavingEigenMembers "structures having such Eigen objects as member".
The same issue will be exhibited by any classes/functions by-passing operator new to allocate memory, that is, by performing custom memory allocation followed by calls to the placement new operator. This is for instance typically the case of \c std::make_shared or \c std::allocate_shared for which is the solution is to use an \ref aligned_allocator "aligned allocator" as detailed in the \ref TopicStlContainers "solution for STL containers".
\section c3 Cause 3: Passing Eigen objects by value
If some function in your code is getting an Eigen object passed by value, like this,
@ -107,7 +109,10 @@ Two possibilities:
128-bit alignment code and thus preserves ABI compatibility, but completely disables vectorization.</li>
</ul>
For more information, see <a href="http://eigen.tuxfamily.org/index.php?title=FAQ#I_disabled_vectorization.2C_but_I.27m_still_getting_annoyed_about_alignment_issues.21">this FAQ</a>.
If you want to know why defining EIGEN_DONT_VECTORIZE does not by itself disable 128-bit alignment and the assertion, here's the explanation:
It doesn't disable the assertion, because otherwise code that runs fine without vectorization would suddenly crash when enabling vectorization.
It doesn't disable 128bit alignment, because that would mean that vectorized and non-vectorized code are not mutually ABI-compatible. This ABI compatibility is very important, even for people who develop only an in-house application, as for instance one may want to have in the same application a vectorized path and a non-vectorized path.
*/

View File

@ -1,6 +1,9 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
Name: Eigen3
Description: A C++ template library for linear algebra: vectors, matrices, and related algorithms
Requires:
Version: ${EIGEN_VERSION_NUMBER}
Version: @EIGEN_VERSION_NUMBER@
Libs:
Cflags: -I${INCLUDE_INSTALL_DIR}
Cflags: -I${prefix}/@INCLUDE_INSTALL_DIR@

View File

@ -202,7 +202,9 @@ ei_add_test(geo_alignedbox)
ei_add_test(stdvector)
ei_add_test(stdvector_overload)
ei_add_test(stdlist)
ei_add_test(stdlist_overload)
ei_add_test(stddeque)
ei_add_test(stddeque_overload)
ei_add_test(resize)
ei_add_test(sparse_vector)
ei_add_test(sparse_basic)

View File

@ -87,6 +87,32 @@ template<typename T> void check_dynaligned()
delete obj;
}
template<typename T> void check_custom_new_delete()
{
{
T* t = new T;
delete t;
}
{
std::size_t N = internal::random<std::size_t>(1,10);
T* t = new T[N];
delete[] t;
}
#ifdef EIGEN_ALIGN
{
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t, sizeof(T));
}
{
T* t = static_cast<T *>((T::operator new)(sizeof(T)));
(T::operator delete)(t);
}
#endif
}
void test_dynalloc()
{
// low level dynamic memory allocation
@ -94,7 +120,9 @@ void test_dynalloc()
CALL_SUBTEST(check_aligned_malloc());
CALL_SUBTEST(check_aligned_new());
CALL_SUBTEST(check_aligned_stack_alloc());
// check static allocation, who knows ?
#if EIGEN_ALIGN_STATICALLY
for (int i=0; i<g_repeat*100; ++i)
{
CALL_SUBTEST(check_dynaligned<Vector4f>() );
@ -102,10 +130,13 @@ void test_dynalloc()
CALL_SUBTEST(check_dynaligned<Matrix4f>() );
CALL_SUBTEST(check_dynaligned<Vector4d>() );
CALL_SUBTEST(check_dynaligned<Vector4i>() );
CALL_SUBTEST( check_custom_new_delete<Vector4f>() );
CALL_SUBTEST( check_custom_new_delete<Vector2f>() );
CALL_SUBTEST( check_custom_new_delete<Matrix4f>() );
CALL_SUBTEST( check_custom_new_delete<MatrixXi>() );
}
// check static allocation, who knows ?
#if EIGEN_ALIGN_STATICALLY
{
MyStruct foo0; VERIFY(size_t(foo0.avec.data())%ALIGNMENT==0);
MyClassA fooA; VERIFY(size_t(fooA.avec.data())%ALIGNMENT==0);

View File

@ -136,9 +136,27 @@ template<typename MatrixType> void product(const MatrixType& m)
VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval());
// vector at runtime (see bug 1166)
{
RowSquareMatrixType ref(square);
ColSquareMatrixType ref2(square2);
ref = res = square;
VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose()));
VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square, (ref.row(0) = m1.col(0).transpose() * square));
ref2 = res2 = square2;
VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(), (ref2.row(0) = m1.row(0) * square2.transpose()));
VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2, (ref2.row(0) = m1.row(0) * square2));
VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2, (ref2.row(0) = m1.row(0) * square2));
}
// inner product
Scalar x = square2.row(c) * square2.col(c2);
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
{
Scalar x = square2.row(c) * square2.col(c2);
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
}
// outer product
VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
@ -146,5 +164,18 @@ template<typename MatrixType> void product(const MatrixType& m)
VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
// Aliasing
{
ColVectorType x(cols); x.setRandom();
ColVectorType z(x);
ColVectorType y(cols); y.setZero();
ColSquareMatrixType A(cols,cols); A.setRandom();
// CwiseBinaryOp
VERIFY_IS_APPROX(x = y + A*x, A*z);
x = z;
// CwiseUnaryOp
VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z);
}
}

View File

@ -9,6 +9,27 @@
#include "product.h"
template<typename T>
void test_aliasing()
{
int rows = internal::random<int>(1,12);
int cols = internal::random<int>(1,12);
typedef Matrix<T,Dynamic,Dynamic> MatrixType;
typedef Matrix<T,Dynamic,1> VectorType;
VectorType x(cols); x.setRandom();
VectorType z(x);
VectorType y(rows); y.setZero();
MatrixType A(rows,cols); A.setRandom();
// CwiseBinaryOp
VERIFY_IS_APPROX(x = y + A*x, A*z);
x = z;
// CwiseUnaryOp
VERIFY_IS_APPROX(x = T(1.)*(A*x), A*z);
x = z;
VERIFY_IS_APPROX(x = y+(-(A*x)), -A*z);
x = z;
}
void test_product_large()
{
for(int i = 0; i < g_repeat; i++) {
@ -17,6 +38,8 @@ void test_product_large()
CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_1( test_aliasing<float>() );
}
#if defined EIGEN_TEST_PART_6

View File

@ -58,10 +58,19 @@ template<typename MatrixType> void product_notemporary(const MatrixType& m)
r1 = internal::random<Index>(8,rows-r0);
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).transpose(), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0);
VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()), 1);
VERIFY_EVALUATION_COUNT( m3 = m3 + s1 * (m1 * m2.transpose()), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0);
VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()), 1);
VERIFY_EVALUATION_COUNT( m3 = m3 + (m1 * m2.adjoint()).transpose(), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = m3 + m1 * m2.transpose(), 1); // 0 in 3.3
VERIFY_EVALUATION_COUNT( m3.noalias() += m3 + m1 * m2.transpose(), 1); // 0 in 3.3
VERIFY_EVALUATION_COUNT( m3.noalias() -= m3 + m1 * m2.transpose(), 1); // 0 in 3.3
VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0);
VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1);
VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0);

View File

@ -34,6 +34,18 @@ inline void on_temporary_creation(int) {
// test Ref.h
// Deal with i387 extended precision
#if EIGEN_ARCH_i386 && !(EIGEN_ARCH_x86_64)
#if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(4,4)
#pragma GCC optimize ("-ffloat-store")
#else
#undef VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(X,Y) VERIFY_IS_APPROX(X,Y)
#endif
#endif
template<typename MatrixType> void ref_matrix(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
@ -71,7 +83,6 @@ template<typename MatrixType> void ref_matrix(const MatrixType& m)
rm2 = m2.block(i,j,brows,bcols);
VERIFY_IS_EQUAL(m1, m2);
ConstRefDynMat rm3 = m1.block(i,j,brows,bcols);
m1.block(i,j,brows,bcols) *= 2;
m2.block(i,j,brows,bcols) *= 2;

View File

@ -55,6 +55,11 @@ template<typename MatrixType> void matrixVisitor(const MatrixType& p)
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.minCoeff());
VERIFY_IS_APPROX(maxc, m.maxCoeff());
eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow,&maxcol);
VERIFY(maxrow == eigen_maxrow);
VERIFY(maxcol == eigen_maxcol);
}
template<typename VectorType> void vectorVisitor(const VectorType& w)

View File

@ -177,7 +177,7 @@ template<typename _Scalar> class AlignedVector3
}
template<typename Derived>
inline bool isApprox(const MatrixBase<Derived>& other, RealScalar eps=NumTraits<Scalar>::dummy_precision()) const
inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
{
return m_coeffs.template head<3>().isApprox(other,eps);
}