Merge branch 'feature/cameraTemplateForAllSmartFactors' into feature/sphericalCamera
# Conflicts: # gtsam/slam/SmartProjectionFactorP.h # gtsam/slam/tests/smartFactorScenarios.h # gtsam/slam/tests/testSmartProjectionRigFactor.cpp # gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h # gtsam_unstable/slam/tests/testSmartProjectionPoseFactorRollingShutter.cpprelease/4.3a0
commit
2f57a1a307
|
@ -9,20 +9,21 @@
|
|||
|
||||
namespace gtsam {
|
||||
/**
|
||||
* JacobianFactor for Schur complement that uses the "Nullspace Trick" by Mourikis
|
||||
* JacobianFactor for Schur complement that uses the "Nullspace Trick" by
|
||||
* Mourikis et al.
|
||||
*
|
||||
* This trick is equivalent to the Schur complement, but can be faster.
|
||||
* In essence, the linear factor |E*dp + F*dX - b|, where p is point and X are poses,
|
||||
* is multiplied by Enull, a matrix that spans the left nullspace of E, i.e.,
|
||||
* The mx3 matrix is analyzed with SVD as E = [Erange Enull]*S*V (mxm * mx3 * 3x3)
|
||||
* where Enull is an m x (m-3) matrix
|
||||
* Then Enull'*E*dp = 0, and
|
||||
* In essence, the linear factor |E*dp + F*dX - b|, where p is point and X are
|
||||
* poses, is multiplied by Enull, a matrix that spans the left nullspace of E,
|
||||
* i.e., The mx3 matrix is analyzed with SVD as E = [Erange Enull]*S*V (mxm *
|
||||
* mx3 * 3x3) where Enull is an m x (m-3) matrix Then Enull'*E*dp = 0, and
|
||||
* |Enull'*E*dp + Enull'*F*dX - Enull'*b| == |Enull'*F*dX - Enull'*b|
|
||||
* Normally F is m x 6*numKeys, and Enull'*F yields an (m-3) x 6*numKeys matrix.
|
||||
*
|
||||
* The code below assumes that F is block diagonal and is given as a vector of ZDim*D blocks.
|
||||
* Example: m = 4 (2 measurements), Enull = 4*1, F = 4*12 (for D=6)
|
||||
* Then Enull'*F = 1*4 * 4*12 = 1*12, but each 1*6 piece can be computed as a 1x2 * 2x6 mult
|
||||
* The code below assumes that F is block diagonal and is given as a vector of
|
||||
* ZDim*D blocks. Example: m = 4 (2 measurements), Enull = 4*1, F = 4*12 (for
|
||||
* D=6) Then Enull'*F = 1*4 * 4*12 = 1*12, but each 1*6 piece can be computed as
|
||||
* a 1x2 * 2x6 multiplication.
|
||||
*/
|
||||
template<size_t D, size_t ZDim>
|
||||
class JacobianFactorSVD: public RegularJacobianFactor<D> {
|
||||
|
@ -37,10 +38,10 @@ public:
|
|||
JacobianFactorSVD() {
|
||||
}
|
||||
|
||||
/// Empty constructor with keys
|
||||
JacobianFactorSVD(const KeyVector& keys, //
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
Base() {
|
||||
/// Empty constructor with keys.
|
||||
JacobianFactorSVD(const KeyVector& keys,
|
||||
const SharedDiagonal& model = SharedDiagonal())
|
||||
: Base() {
|
||||
Matrix zeroMatrix = Matrix::Zero(0, D);
|
||||
Vector zeroVector = Vector::Zero(0);
|
||||
std::vector<KeyMatrix> QF;
|
||||
|
@ -51,18 +52,21 @@ public:
|
|||
}
|
||||
|
||||
/**
|
||||
* @brief Constructor
|
||||
* Takes the CameraSet derivatives (as ZDim*D blocks of block-diagonal F)
|
||||
* and a reduced point derivative, Enull
|
||||
* and creates a reduced-rank Jacobian factor on the CameraSet
|
||||
* @brief Construct a new JacobianFactorSVD object, createing a reduced-rank
|
||||
* Jacobian factor on the CameraSet.
|
||||
*
|
||||
* @Fblocks:
|
||||
* @param keys keys associated with F blocks.
|
||||
* @param Fblocks CameraSet derivatives, ZDim*D blocks of block-diagonal F
|
||||
* @param Enull a reduced point derivative
|
||||
* @param b right-hand side
|
||||
* @param model noise model
|
||||
*/
|
||||
JacobianFactorSVD(const KeyVector& keys,
|
||||
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& Fblocks, const Matrix& Enull,
|
||||
const Vector& b, //
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
Base() {
|
||||
JacobianFactorSVD(
|
||||
const KeyVector& keys,
|
||||
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& Fblocks,
|
||||
const Matrix& Enull, const Vector& b,
|
||||
const SharedDiagonal& model = SharedDiagonal())
|
||||
: Base() {
|
||||
size_t numKeys = Enull.rows() / ZDim;
|
||||
size_t m2 = ZDim * numKeys - 3; // TODO: is this not just Enull.rows()?
|
||||
// PLAIN nullptr SPACE TRICK
|
||||
|
@ -74,9 +78,8 @@ public:
|
|||
QF.reserve(numKeys);
|
||||
for (size_t k = 0; k < Fblocks.size(); ++k) {
|
||||
Key key = keys[k];
|
||||
QF.push_back(
|
||||
KeyMatrix(key,
|
||||
(Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]));
|
||||
QF.emplace_back(
|
||||
key, (Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]);
|
||||
}
|
||||
JacobianFactor::fillTerms(QF, Enull.transpose() * b, model);
|
||||
}
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @file ProjectionFactor.h
|
||||
* @brief Basic bearing factor from 2D measurement
|
||||
* @brief Reprojection of a LANDMARK to a 2D point.
|
||||
* @author Chris Beall
|
||||
* @author Richard Roberts
|
||||
* @author Frank Dellaert
|
||||
|
@ -22,17 +22,21 @@
|
|||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
|
||||
* i.e. the main building block for visual SLAM.
|
||||
* Non-linear factor for a constraint derived from a 2D measurement.
|
||||
* The calibration is known here.
|
||||
* The main building block for visual SLAM.
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
|
||||
template <class POSE = Pose3, class LANDMARK = Point3,
|
||||
class CALIBRATION = Cal3_S2>
|
||||
class GenericProjectionFactor: public NoiseModelFactor2<POSE, LANDMARK> {
|
||||
protected:
|
||||
|
||||
|
@ -57,9 +61,9 @@ namespace gtsam {
|
|||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// Default constructor
|
||||
GenericProjectionFactor() :
|
||||
measured_(0, 0), throwCheirality_(false), verboseCheirality_(false) {
|
||||
}
|
||||
GenericProjectionFactor() :
|
||||
measured_(0, 0), throwCheirality_(false), verboseCheirality_(false) {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
# SLAM Factors
|
||||
|
||||
## GenericProjectionFactor (defined in ProjectionFactor.h)
|
||||
|
||||
Non-linear factor that minimizes the re-projection error with respect to a 2D measurement.
|
||||
The calibration is assumed known and passed in the constructor.
|
||||
The main building block for visual SLAM.
|
||||
|
||||
Templated on
|
||||
- `POSE`, default `Pose3`
|
||||
- `LANDMARK`, default `Point3`
|
||||
- `CALIBRATION`, default `Cal3_S2`
|
||||
|
||||
## SmartFactors
|
||||
|
||||
These are "structure-less" factors, i.e., rather than introducing a new variable for an observed 3D point or landmark, a single factor is created that provides a multi-view constraint on several poses and/or cameras.
|
||||
While one typically adds multiple GenericProjectionFactors (one for each observation of a landmark), a SmartFactor collects all measurements for a landmark, i.e., the factor graph contains 1 smart factor per landmark.
|
||||
|
||||
### SmartFactorBase
|
||||
|
||||
This is the base class for smart factors, templated on a `CAMERA` type.
|
||||
It has no internal point, but it saves the measurements, keeps a noise model, and an optional sensor pose.
|
||||
|
||||
### SmartProjectionFactor
|
||||
|
||||
Also templated on `CAMERA`. Triangulates a 3D point and keeps an estimate of it around.
|
||||
This factor operates with monocular cameras, and is used to optimize the camera pose
|
||||
*and* calibration for each camera, and requires variables of type `CAMERA` in values.
|
||||
|
||||
If the calibration is fixed use `SmartProjectionPoseFactor` instead!
|
||||
|
||||
|
||||
### SmartProjectionPoseFactor
|
||||
|
||||
Derives from `SmartProjectionFactor` but is templated on a `CALIBRATION` type, setting `CAMERA = PinholePose<CALIBRATION>`.
|
||||
This factor assumes that the camera calibration is fixed and the same for all cameras involved in this factor.
|
||||
The factor only constrains poses.
|
||||
|
||||
If the calibration should be optimized, as well, use `SmartProjectionFactor` instead!
|
||||
|
||||
### SmartProjectionRigFactor
|
||||
|
||||
Same as `SmartProjectionPoseFactor`, except:
|
||||
- it is templated on `CAMERA`, i.e., it allows cameras beyond pinhole;
|
||||
- it allows measurements from multiple cameras, each camera with fixed but potentially different intrinsics and extrinsics;
|
||||
- it allows multiple observations from the same pose/key, again, to model a multi-camera system.
|
||||
|
||||
## Linearized Smart Factors
|
||||
|
||||
The factors below are less likely to be relevant to the user, but result from using the non-linear smart factors above.
|
||||
|
||||
|
||||
### RegularImplicitSchurFactor
|
||||
|
||||
A specialization of a GaussianFactor to structure-less SFM, which is very fast in a conjugate gradient (CG) solver.
|
||||
It is produced by calling `createRegularImplicitSchurFactor` in `SmartFactorBase` or `SmartProjectionFactor`.
|
||||
|
||||
### JacobianFactorQ
|
||||
|
||||
A RegularJacobianFactor that uses some badly documented reduction on the Jacobians.
|
||||
|
||||
### JacobianFactorQR
|
||||
|
||||
A RegularJacobianFactor that eliminates a point using sequential elimination.
|
||||
|
||||
### JacobianFactorQR
|
||||
|
||||
A RegularJacobianFactor that uses the "Nullspace Trick" by Mourikis et al. See the documentation in the file, which *is* well documented.
|
|
@ -1,6 +1,6 @@
|
|||
/**
|
||||
* @file RegularImplicitSchurFactor.h
|
||||
* @brief A new type of linear factor (GaussianFactor), which is subclass of GaussianFactor
|
||||
* @brief A subclass of GaussianFactor specialized to structureless SFM.
|
||||
* @author Frank Dellaert
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
@ -20,6 +20,20 @@ namespace gtsam {
|
|||
|
||||
/**
|
||||
* RegularImplicitSchurFactor
|
||||
*
|
||||
* A specialization of a GaussianFactor to structure-less SFM, which is very
|
||||
* fast in a conjugate gradient (CG) solver. Specifically, as measured in
|
||||
* timeSchurFactors.cpp, it stays very fast for an increasing number of cameras.
|
||||
* The magic is in multiplyHessianAdd, which does the Hessian-vector multiply at
|
||||
* the core of CG, and implements
|
||||
* y += F'*alpha*(I - E*P*E')*F*x
|
||||
* where
|
||||
* - F is the 2mx6m Jacobian of the m 2D measurements wrpt m 6DOF poses
|
||||
* - E is the 2mx3 Jacabian of the m 2D measurements wrpt a 3D point
|
||||
* - P is the covariance on the point
|
||||
* The equation above implicitly executes the Schur complement by removing the
|
||||
* information E*P*E' from the Hessian. It is also very fast as we do not use
|
||||
* the full 6m*6m F matrix, but rather only it's m 6x6 diagonal blocks.
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class RegularImplicitSchurFactor: public GaussianFactor {
|
||||
|
@ -38,9 +52,10 @@ protected:
|
|||
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
|
||||
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; ///< type of an F block
|
||||
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
|
||||
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera Hessian
|
||||
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks;
|
||||
|
||||
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks_; ///< All ZDim*D F blocks (one for each camera)
|
||||
FBlocks FBlocks_; ///< All ZDim*D F blocks (one for each camera)
|
||||
const Matrix PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
|
||||
const Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
|
||||
const Vector b_; ///< 2m-dimensional RHS vector
|
||||
|
@ -52,17 +67,25 @@ public:
|
|||
}
|
||||
|
||||
/// Construct from blocks of F, E, inv(E'*E), and RHS vector b
|
||||
RegularImplicitSchurFactor(const KeyVector& keys,
|
||||
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks, const Matrix& E, const Matrix& P,
|
||||
const Vector& b) :
|
||||
GaussianFactor(keys), FBlocks_(FBlocks), PointCovariance_(P), E_(E), b_(b) {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Construct a new RegularImplicitSchurFactor object.
|
||||
*
|
||||
* @param keys keys corresponding to cameras
|
||||
* @param Fs All ZDim*D F blocks (one for each camera)
|
||||
* @param E Jacobian of measurements wrpt point.
|
||||
* @param P point covariance matrix
|
||||
* @param b RHS vector
|
||||
*/
|
||||
RegularImplicitSchurFactor(const KeyVector& keys, const FBlocks& Fs,
|
||||
const Matrix& E, const Matrix& P, const Vector& b)
|
||||
: GaussianFactor(keys), FBlocks_(Fs), PointCovariance_(P), E_(E), b_(b) {}
|
||||
|
||||
/// Destructor
|
||||
~RegularImplicitSchurFactor() override {
|
||||
}
|
||||
|
||||
std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& FBlocks() const {
|
||||
const FBlocks& Fs() const {
|
||||
return FBlocks_;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,12 +37,14 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Base class for smart factors
|
||||
* @brief Base class for smart factors.
|
||||
* This base class has no internal point, but it has a measurement, noise model
|
||||
* and an optional sensor pose.
|
||||
* This class mainly computes the derivatives and returns them as a variety of factors.
|
||||
* The methods take a Cameras argument, which should behave like PinholeCamera, and
|
||||
* the value of a point, which is kept in the base class.
|
||||
* This class mainly computes the derivatives and returns them as a variety of
|
||||
* factors. The methods take a CameraSet<CAMERA> argument and the value of a
|
||||
* point, which is kept in the derived class.
|
||||
*
|
||||
* @tparam CAMERA should behave like a PinholeCamera.
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class SmartFactorBase: public NonlinearFactor {
|
||||
|
@ -64,19 +66,20 @@ protected:
|
|||
/**
|
||||
* As of Feb 22, 2015, the noise model is the same for all measurements and
|
||||
* is isotropic. This allows for moving most calculations of Schur complement
|
||||
* etc to be moved to CameraSet very easily, and also agrees pragmatically
|
||||
* etc. to be easily moved to CameraSet, and also agrees pragmatically
|
||||
* with what is normally done.
|
||||
*/
|
||||
SharedIsotropic noiseModel_;
|
||||
|
||||
/**
|
||||
* 2D measurement and noise model for each of the m views
|
||||
* We keep a copy of measurements for I/O and computing the error.
|
||||
* Measurements for each of the m views.
|
||||
* We keep a copy of the measurements for I/O and computing the error.
|
||||
* The order is kept the same as the keys that we use to create the factor.
|
||||
*/
|
||||
ZVector measured_;
|
||||
|
||||
boost::optional<Pose3> body_P_sensor_; ///< Pose of the camera in the body frame
|
||||
boost::optional<Pose3>
|
||||
body_P_sensor_; ///< Pose of the camera in the body frame
|
||||
|
||||
// Cache for Fblocks, to avoid a malloc ever time we re-linearize
|
||||
mutable FBlocks Fs;
|
||||
|
@ -84,16 +87,16 @@ protected:
|
|||
public:
|
||||
GTSAM_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
/// shorthand for a smart pointer to a factor.
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// We use the new CameraSte data structure to refer to a set of cameras
|
||||
/// The CameraSet data structure is used to refer to a set of cameras.
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
|
||||
/// Default Constructor, for serialization
|
||||
/// Default Constructor, for serialization.
|
||||
SmartFactorBase() {}
|
||||
|
||||
/// Constructor
|
||||
/// Construct with given noise model and optional arguments.
|
||||
SmartFactorBase(const SharedNoiseModel& sharedNoiseModel,
|
||||
boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
size_t expectedNumberCameras = 10)
|
||||
|
@ -111,12 +114,12 @@ protected:
|
|||
noiseModel_ = sharedIsotropic;
|
||||
}
|
||||
|
||||
/// Virtual destructor, subclasses from NonlinearFactor
|
||||
/// Virtual destructor, subclasses from NonlinearFactor.
|
||||
~SmartFactorBase() override {
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a new measurement and pose/camera key
|
||||
* Add a new measurement and pose/camera key.
|
||||
* @param measured is the 2m dimensional projection of a single landmark
|
||||
* @param key is the index corresponding to the camera observing the landmark
|
||||
*/
|
||||
|
@ -129,9 +132,7 @@ protected:
|
|||
this->keys_.push_back(key);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a bunch of measurements, together with the camera keys
|
||||
*/
|
||||
/// Add a bunch of measurements, together with the camera keys.
|
||||
void add(const ZVector& measurements, const KeyVector& cameraKeys) {
|
||||
assert(measurements.size() == cameraKeys.size());
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
|
@ -140,8 +141,8 @@ protected:
|
|||
}
|
||||
|
||||
/**
|
||||
* Adds an entire SfM_track (collection of cameras observing a single point).
|
||||
* The noise is assumed to be the same for all measurements
|
||||
* Add an entire SfM_track (collection of cameras observing a single point).
|
||||
* The noise is assumed to be the same for all measurements.
|
||||
*/
|
||||
template<class SFM_TRACK>
|
||||
void add(const SFM_TRACK& trackToAdd) {
|
||||
|
@ -151,17 +152,13 @@ protected:
|
|||
}
|
||||
}
|
||||
|
||||
/// get the dimension (number of rows!) of the factor
|
||||
size_t dim() const override {
|
||||
return ZDim * this->measured_.size();
|
||||
}
|
||||
/// Return the dimension (number of rows!) of the factor.
|
||||
size_t dim() const override { return ZDim * this->measured_.size(); }
|
||||
|
||||
/** return the measurements */
|
||||
const ZVector& measured() const {
|
||||
return measured_;
|
||||
}
|
||||
/// Return the 2D measurements (ZDim, in general).
|
||||
const ZVector& measured() const { return measured_; }
|
||||
|
||||
/// Collect all cameras: important that in key order
|
||||
/// Collect all cameras: important that in key order.
|
||||
virtual Cameras cameras(const Values& values) const {
|
||||
Cameras cameras;
|
||||
for(const Key& k: this->keys_)
|
||||
|
@ -188,25 +185,30 @@ protected:
|
|||
|
||||
/// equals
|
||||
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
|
||||
const This *e = dynamic_cast<const This*>(&p);
|
||||
|
||||
bool areMeasurementsEqual = true;
|
||||
for (size_t i = 0; i < measured_.size(); i++) {
|
||||
if (traits<Z>::Equals(this->measured_.at(i), e->measured_.at(i), tol) == false)
|
||||
areMeasurementsEqual = false;
|
||||
break;
|
||||
if (const This* e = dynamic_cast<const This*>(&p)) {
|
||||
// Check that all measurements are the same.
|
||||
for (size_t i = 0; i < measured_.size(); i++) {
|
||||
if (!traits<Z>::Equals(this->measured_.at(i), e->measured_.at(i), tol))
|
||||
return false;
|
||||
}
|
||||
// If so, check base class.
|
||||
return Base::equals(p, tol);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return e && Base::equals(p, tol) && areMeasurementsEqual;
|
||||
}
|
||||
|
||||
/// Compute reprojection errors [h(x)-z] = [cameras.project(p)-z] and
|
||||
/// derivatives
|
||||
/// derivatives. This is the error before the noise model is applied.
|
||||
template <class POINT>
|
||||
Vector unwhitenedError(
|
||||
const Cameras& cameras, const POINT& point,
|
||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
|
||||
boost::optional<Matrix&> E = boost::none) const {
|
||||
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
|
||||
// Reproject, with optional derivatives.
|
||||
Vector error = cameras.reprojectionError(point, measured_, Fs, E);
|
||||
|
||||
// Apply chain rule if body_P_sensor_ is given.
|
||||
if (body_P_sensor_ && Fs) {
|
||||
const Pose3 sensor_P_body = body_P_sensor_->inverse();
|
||||
constexpr int camera_dim = traits<CAMERA>::dimension;
|
||||
|
@ -224,52 +226,60 @@ protected:
|
|||
Fs->at(i) = Fs->at(i) * J;
|
||||
}
|
||||
}
|
||||
correctForMissingMeasurements(cameras, ue, Fs, E);
|
||||
return ue;
|
||||
|
||||
// Correct the Jacobians in case some measurements are missing.
|
||||
correctForMissingMeasurements(cameras, error, Fs, E);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
/**
|
||||
* This corrects the Jacobians for the case in which some pixel measurement is missing (nan)
|
||||
* In practice, this does not do anything in the monocular case, but it is implemented in the stereo version
|
||||
* This corrects the Jacobians for the case in which some 2D measurement is
|
||||
* missing (nan). In practice, this does not do anything in the monocular
|
||||
* case, but it is implemented in the stereo version.
|
||||
*/
|
||||
virtual void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||
boost::optional<Matrix&> E = boost::none) const {}
|
||||
virtual void correctForMissingMeasurements(
|
||||
const Cameras& cameras, Vector& ue,
|
||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||
boost::optional<Matrix&> E = boost::none) const {}
|
||||
|
||||
/**
|
||||
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
|
||||
* Noise model applied
|
||||
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) -
|
||||
* z], with the noise model applied.
|
||||
*/
|
||||
template<class POINT>
|
||||
Vector whitenedError(const Cameras& cameras, const POINT& point) const {
|
||||
Vector e = cameras.reprojectionError(point, measured_);
|
||||
Vector error = cameras.reprojectionError(point, measured_);
|
||||
if (noiseModel_)
|
||||
noiseModel_->whitenInPlace(e);
|
||||
return e;
|
||||
noiseModel_->whitenInPlace(error);
|
||||
return error;
|
||||
}
|
||||
|
||||
/** Calculate the error of the factor.
|
||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
||||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
* Will be used in "error(Values)" function required by NonlinearFactor base class
|
||||
/**
|
||||
* Calculate the error of the factor.
|
||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of
|
||||
* Gaussian. In this class, we take the raw prediction error \f$ h(x)-z \f$,
|
||||
* ask the noise model to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and
|
||||
* then multiply by 0.5. Will be used in "error(Values)" function required by
|
||||
* NonlinearFactor base class
|
||||
*/
|
||||
template<class POINT>
|
||||
double totalReprojectionError(const Cameras& cameras,
|
||||
const POINT& point) const {
|
||||
Vector e = whitenedError(cameras, point);
|
||||
return 0.5 * e.dot(e);
|
||||
Vector error = whitenedError(cameras, point);
|
||||
return 0.5 * error.dot(error);
|
||||
}
|
||||
|
||||
/// Computes Point Covariance P from E
|
||||
static Matrix PointCov(Matrix& E) {
|
||||
/// Computes Point Covariance P from the "point Jacobian" E.
|
||||
static Matrix PointCov(const Matrix& E) {
|
||||
return (E.transpose() * E).inverse();
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute F, E, and b (called below in both vanilla and SVD versions), where
|
||||
* F is a vector of derivatives wrpt the cameras, and E the stacked derivatives
|
||||
* with respect to the point. The value of cameras/point are passed as parameters.
|
||||
* TODO: Kill this obsolete method
|
||||
* Compute F, E, and b (called below in both vanilla and SVD versions), where
|
||||
* F is a vector of derivatives wrpt the cameras, and E the stacked
|
||||
* derivatives with respect to the point. The value of cameras/point are
|
||||
* passed as parameters.
|
||||
*/
|
||||
template<class POINT>
|
||||
void computeJacobians(FBlocks& Fs, Matrix& E, Vector& b,
|
||||
|
@ -281,7 +291,11 @@ protected:
|
|||
b = -unwhitenedError(cameras, point, Fs, E);
|
||||
}
|
||||
|
||||
/// SVD version
|
||||
/**
|
||||
* SVD version that produces smaller Jacobian matrices by doing an SVD
|
||||
* decomposition on E, and returning the left nulkl-space of E.
|
||||
* See JacobianFactorSVD for more documentation.
|
||||
* */
|
||||
template<class POINT>
|
||||
void computeJacobiansSVD(FBlocks& Fs, Matrix& Enull,
|
||||
Vector& b, const Cameras& cameras, const POINT& point) const {
|
||||
|
@ -291,14 +305,14 @@ protected:
|
|||
|
||||
static const int N = FixedDimension<POINT>::value; // 2 (Unit3) or 3 (Point3)
|
||||
|
||||
// Do SVD on A
|
||||
// Do SVD on A.
|
||||
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
|
||||
Vector s = svd.singularValues();
|
||||
size_t m = this->keys_.size();
|
||||
Enull = svd.matrixU().block(0, N, ZDim * m, ZDim * m - N); // last ZDim*m-N columns
|
||||
}
|
||||
|
||||
/// Linearize to a Hessianfactor
|
||||
/// Linearize to a Hessianfactor.
|
||||
// TODO(dellaert): Not used/tested anywhere and not properly whitened.
|
||||
boost::shared_ptr<RegularHessianFactor<Dim> > createHessianFactor(
|
||||
const Cameras& cameras, const Point3& point, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
|
@ -351,9 +365,7 @@ protected:
|
|||
P, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return Jacobians as JacobianFactorQ
|
||||
*/
|
||||
/// Return Jacobians as JacobianFactorQ.
|
||||
boost::shared_ptr<JacobianFactorQ<Dim, ZDim> > createJacobianQFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
|
@ -368,8 +380,8 @@ protected:
|
|||
}
|
||||
|
||||
/**
|
||||
* Return Jacobians as JacobianFactorSVD
|
||||
* TODO lambda is currently ignored
|
||||
* Return Jacobians as JacobianFactorSVD.
|
||||
* TODO(dellaert): lambda is currently ignored
|
||||
*/
|
||||
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0) const {
|
||||
|
@ -393,6 +405,7 @@ protected:
|
|||
F.block<ZDim, Dim>(ZDim * i, Dim * i) = Fs.at(i);
|
||||
}
|
||||
|
||||
// Return sensor pose.
|
||||
Pose3 body_P_sensor() const{
|
||||
if(body_P_sensor_)
|
||||
return *body_P_sensor_;
|
||||
|
|
|
@ -61,10 +61,11 @@ protected:
|
|||
/// @name Caching triangulation
|
||||
/// @{
|
||||
mutable TriangulationResult result_; ///< result from triangulateSafe
|
||||
mutable std::vector<Pose3, Eigen::aligned_allocator<Pose3> > cameraPosesTriangulation_; ///< current triangulation poses
|
||||
mutable std::vector<Pose3, Eigen::aligned_allocator<Pose3> >
|
||||
cameraPosesTriangulation_; ///< current triangulation poses
|
||||
/// @}
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
@ -117,21 +118,31 @@ public:
|
|||
&& Base::equals(p, tol);
|
||||
}
|
||||
|
||||
/// Check if the new linearization point is the same as the one used for previous triangulation
|
||||
/**
|
||||
* @brief Check if the new linearization point is the same as the one used for
|
||||
* previous triangulation.
|
||||
*
|
||||
* @param cameras
|
||||
* @return true if we need to re-triangulate.
|
||||
*/
|
||||
bool decideIfTriangulate(const Cameras& cameras) const {
|
||||
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
|
||||
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
|
||||
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
|
||||
// Several calls to linearize will be done from the same linearization
|
||||
// point, hence it is not needed to re-triangulate. Note that this is not
|
||||
// yet "selecting linearization", that will come later, and we only check if
|
||||
// the current linearization is the "same" (up to tolerance) w.r.t. the last
|
||||
// time we triangulated the point.
|
||||
|
||||
size_t m = cameras.size();
|
||||
|
||||
bool retriangulate = false;
|
||||
|
||||
// if we do not have a previous linearization point or the new linearization point includes more poses
|
||||
// Definitely true if we do not have a previous linearization point or the
|
||||
// new linearization point includes more poses.
|
||||
if (cameraPosesTriangulation_.empty()
|
||||
|| cameras.size() != cameraPosesTriangulation_.size())
|
||||
retriangulate = true;
|
||||
|
||||
// Otherwise, check poses against cache.
|
||||
if (!retriangulate) {
|
||||
for (size_t i = 0; i < cameras.size(); i++) {
|
||||
if (!cameras[i].pose().equals(cameraPosesTriangulation_[i],
|
||||
|
@ -142,7 +153,8 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
if (retriangulate) { // we store the current poses used for triangulation
|
||||
// Store the current poses used for triangulation if we will re-triangulate.
|
||||
if (retriangulate) {
|
||||
cameraPosesTriangulation_.clear();
|
||||
cameraPosesTriangulation_.reserve(m);
|
||||
for (size_t i = 0; i < m; i++)
|
||||
|
@ -150,10 +162,15 @@ public:
|
|||
cameraPosesTriangulation_.push_back(cameras[i].pose());
|
||||
}
|
||||
|
||||
return retriangulate; // if we arrive to this point all poses are the same and we don't need re-triangulation
|
||||
return retriangulate;
|
||||
}
|
||||
|
||||
/// triangulateSafe
|
||||
/**
|
||||
* @brief Call gtsam::triangulateSafe iff we need to re-triangulate.
|
||||
*
|
||||
* @param cameras
|
||||
* @return TriangulationResult
|
||||
*/
|
||||
TriangulationResult triangulateSafe(const Cameras& cameras) const {
|
||||
|
||||
size_t m = cameras.size();
|
||||
|
@ -167,17 +184,21 @@ public:
|
|||
return result_;
|
||||
}
|
||||
|
||||
/// triangulate
|
||||
/**
|
||||
* @brief Possibly re-triangulate before calculating Jacobians.
|
||||
*
|
||||
* @param cameras
|
||||
* @return true if we could safely triangulate
|
||||
*/
|
||||
bool triangulateForLinearize(const Cameras& cameras) const {
|
||||
triangulateSafe(cameras); // imperative, might reset result_
|
||||
return bool(result_);
|
||||
}
|
||||
|
||||
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
/// Create a Hessianfactor that is an approximation of error(p).
|
||||
boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
|
||||
const Cameras& cameras, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
const Cameras& cameras, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
size_t numKeys = this->keys_.size();
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
|
@ -185,39 +206,38 @@ public:
|
|||
std::vector<Vector> gs(numKeys);
|
||||
|
||||
if (this->measured_.size() != cameras.size())
|
||||
throw std::runtime_error("SmartProjectionHessianFactor: this->measured_"
|
||||
".size() inconsistent with input");
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionHessianFactor: this->measured_"
|
||||
".size() inconsistent with input");
|
||||
|
||||
triangulateSafe(cameras);
|
||||
|
||||
if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
|
||||
// failed: return"empty" Hessian
|
||||
for(Matrix& m: Gs)
|
||||
m = Matrix::Zero(Base::Dim, Base::Dim);
|
||||
for(Vector& v: gs)
|
||||
v = Vector::Zero(Base::Dim);
|
||||
for (Matrix& m : Gs) m = Matrix::Zero(Base::Dim, Base::Dim);
|
||||
for (Vector& v : gs) v = Vector::Zero(Base::Dim);
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
|
||||
Gs, gs, 0.0);
|
||||
Gs, gs, 0.0);
|
||||
}
|
||||
|
||||
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
||||
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> > Fblocks;
|
||||
typename Base::FBlocks Fs;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
|
||||
computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
|
||||
|
||||
// Whiten using noise model
|
||||
Base::whitenJacobians(Fblocks, E, b);
|
||||
Base::whitenJacobians(Fs, E, b);
|
||||
|
||||
// build augmented hessian
|
||||
SymmetricBlockMatrix augmentedHessian = //
|
||||
Cameras::SchurComplement(Fblocks, E, b, lambda, diagonalDamping);
|
||||
SymmetricBlockMatrix augmentedHessian = //
|
||||
Cameras::SchurComplement(Fs, E, b, lambda, diagonalDamping);
|
||||
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
|
||||
augmentedHessian);
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(
|
||||
this->keys_, augmentedHessian);
|
||||
}
|
||||
|
||||
// create factor
|
||||
// Create RegularImplicitSchurFactor factor.
|
||||
boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > createRegularImplicitSchurFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
|
@ -227,7 +247,7 @@ public:
|
|||
return boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> >();
|
||||
}
|
||||
|
||||
/// create factor
|
||||
/// Create JacobianFactorQ factor.
|
||||
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
|
@ -237,13 +257,13 @@ public:
|
|||
return boost::make_shared<JacobianFactorQ<Base::Dim, 2> >(this->keys_);
|
||||
}
|
||||
|
||||
/// Create a factor, takes values
|
||||
/// Create JacobianFactorQ factor, takes values.
|
||||
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
|
||||
const Values& values, double lambda) const {
|
||||
return createJacobianQFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
/// different (faster) way to compute Jacobian factor
|
||||
/// Different (faster) way to compute a JacobianFactorSVD factor.
|
||||
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
|
@ -253,19 +273,19 @@ public:
|
|||
return boost::make_shared<JacobianFactorSVD<Base::Dim, 2> >(this->keys_);
|
||||
}
|
||||
|
||||
/// linearize to a Hessianfactor
|
||||
/// Linearize to a Hessianfactor.
|
||||
virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createHessianFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
/// linearize to an Implicit Schur factor
|
||||
/// Linearize to an Implicit Schur factor.
|
||||
virtual boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > linearizeToImplicit(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createRegularImplicitSchurFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
/// linearize to a JacobianfactorQ
|
||||
/// Linearize to a JacobianfactorQ.
|
||||
virtual boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > linearizeToJacobian(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createJacobianQFactor(this->cameras(values), lambda);
|
||||
|
@ -335,7 +355,7 @@ public:
|
|||
/// Assumes the point has been computed
|
||||
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
||||
void computeJacobiansWithTriangulatedPoint(
|
||||
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& E, Vector& b,
|
||||
typename Base::FBlocks& Fs, Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
|
||||
if (!result_) {
|
||||
|
@ -343,32 +363,32 @@ public:
|
|||
// TODO check flag whether we should do this
|
||||
Unit3 backProjected = cameras[0].backprojectPointAtInfinity(
|
||||
this->measured_.at(0));
|
||||
Base::computeJacobians(Fblocks, E, b, cameras, backProjected);
|
||||
Base::computeJacobians(Fs, E, b, cameras, backProjected);
|
||||
} else {
|
||||
// valid result: just return Base version
|
||||
Base::computeJacobians(Fblocks, E, b, cameras, *result_);
|
||||
Base::computeJacobians(Fs, E, b, cameras, *result_);
|
||||
}
|
||||
}
|
||||
|
||||
/// Version that takes values, and creates the point
|
||||
bool triangulateAndComputeJacobians(
|
||||
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& E, Vector& b,
|
||||
typename Base::FBlocks& Fs, Matrix& E, Vector& b,
|
||||
const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
|
||||
computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// takes values
|
||||
bool triangulateAndComputeJacobiansSVD(
|
||||
std::vector<typename Base::MatrixZD, Eigen::aligned_allocator<typename Base::MatrixZD> >& Fblocks, Matrix& Enull, Vector& b,
|
||||
typename Base::FBlocks& Fs, Matrix& Enull, Vector& b,
|
||||
const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, *result_);
|
||||
Base::computeJacobiansSVD(Fs, Enull, b, cameras, *result_);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
|
|
|
@ -1,360 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartProjectionFactorP.h
|
||||
* @brief Smart factor on poses, assuming camera calibration is fixed.
|
||||
* Same as SmartProjectionPoseFactor, except:
|
||||
* - it is templated on CAMERA (i.e., it allows cameras beyond pinhole)
|
||||
* - it admits a different calibration for each measurement (i.e., it can model a multi-camera system)
|
||||
* - it allows multiple observations from the same pose/key (again, to model a multi-camera system)
|
||||
* @author Luca Carlone
|
||||
* @author Chris Beall
|
||||
* @author Zsolt Kira
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
|
||||
* independent sets in factor graphs: a unifying perspective based on smart factors,
|
||||
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* This factor assumes that camera calibration is fixed (but each camera
|
||||
* measurement can have a different extrinsic and intrinsic calibration).
|
||||
* The factor only constrains poses (variable dimension is 6).
|
||||
* This factor requires that values contains the involved poses (Pose3).
|
||||
* If all measurements share the same calibration (i.e., are from the same camera), use SmartProjectionPoseFactor instead!
|
||||
* If the calibration should be optimized, as well, use SmartProjectionFactor instead!
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class SmartProjectionFactorP : public SmartProjectionFactor<CAMERA> {
|
||||
|
||||
private:
|
||||
typedef SmartProjectionFactor<CAMERA> Base;
|
||||
typedef SmartProjectionFactorP<CAMERA> This;
|
||||
typedef typename CAMERA::CalibrationType CALIBRATION;
|
||||
typedef typename CAMERA::Measurement MEASUREMENT;
|
||||
typedef typename CAMERA::MeasurementVector MEASUREMENTS;
|
||||
|
||||
static const int DimPose = 6; ///< Pose3 dimension
|
||||
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
||||
|
||||
protected:
|
||||
/// vector of keys (one for each observation) with potentially repeated keys
|
||||
KeyVector nonUniqueKeys_;
|
||||
|
||||
/// shared pointer to calibration object (one for each observation)
|
||||
std::vector<boost::shared_ptr<CALIBRATION> > K_all_;
|
||||
|
||||
/// Pose of the camera in the body frame (one for each observation)
|
||||
std::vector<Pose3> body_P_sensors_;
|
||||
|
||||
public:
|
||||
typedef CAMERA Camera;
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
typedef Eigen::Matrix<double, ZDim, DimPose> MatrixZD; // F blocks
|
||||
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// Default constructor, only for serialization
|
||||
SmartProjectionFactorP() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param sharedNoiseModel isotropic noise model for the 2D feature measurements
|
||||
* @param params parameters for the smart projection factors
|
||||
*/
|
||||
SmartProjectionFactorP(const SharedNoiseModel& sharedNoiseModel,
|
||||
const SmartProjectionParams& params =
|
||||
SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params) {
|
||||
// use only configuration that works with this factor
|
||||
Base::params_.degeneracyMode = gtsam::ZERO_ON_DEGENERACY;
|
||||
Base::params_.linearizationMode = gtsam::HESSIAN;
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
~SmartProjectionFactorP() override {
|
||||
}
|
||||
|
||||
/**
|
||||
* add a new measurement, corresponding to an observation from pose "poseKey" whose camera
|
||||
* has intrinsic calibration K and extrinsic calibration body_P_sensor.
|
||||
* @param measured 2-dimensional location of the projection of a
|
||||
* single landmark in a single view (the measurement)
|
||||
* @param poseKey key corresponding to the body pose of the camera taking the measurement
|
||||
* @param K (fixed) camera intrinsic calibration
|
||||
* @param body_P_sensor (fixed) camera extrinsic calibration
|
||||
*/
|
||||
void add(const MEASUREMENT& measured, const Key& poseKey,
|
||||
const boost::shared_ptr<CALIBRATION>& K, const Pose3 body_P_sensor =
|
||||
Pose3::identity()) {
|
||||
// store measurement and key
|
||||
this->measured_.push_back(measured);
|
||||
this->nonUniqueKeys_.push_back(poseKey);
|
||||
|
||||
// also store keys in the keys_ vector: these keys are assumed to be unique, so we avoid duplicates here
|
||||
if (std::find(this->keys_.begin(), this->keys_.end(), poseKey) == this->keys_.end())
|
||||
this->keys_.push_back(poseKey); // add only unique keys
|
||||
|
||||
// store fixed intrinsic calibration
|
||||
K_all_.push_back(K);
|
||||
// store fixed extrinsics of the camera
|
||||
body_P_sensors_.push_back(body_P_sensor);
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous "add" function in which we include multiple measurements
|
||||
* @param measurements vector of the 2m dimensional location of the projection
|
||||
* of a single landmark in the m views (the measurements)
|
||||
* @param poseKeys keys corresponding to the body poses of the cameras taking the measurements
|
||||
* @param Ks vector of (fixed) intrinsic calibration objects
|
||||
* @param body_P_sensors vector of (fixed) extrinsic calibration objects
|
||||
*/
|
||||
void add(const MEASUREMENTS& measurements, const KeyVector& poseKeys,
|
||||
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
|
||||
const std::vector<Pose3> body_P_sensors = std::vector<Pose3>()) {
|
||||
assert(poseKeys.size() == measurements.size());
|
||||
assert(poseKeys.size() == Ks.size());
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
if (poseKeys.size() == body_P_sensors.size()) {
|
||||
add(measurements[i], poseKeys[i], Ks[i], body_P_sensors[i]);
|
||||
} else {
|
||||
add(measurements[i], poseKeys[i], Ks[i]); // use default extrinsics
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// return the calibration object
|
||||
inline std::vector<boost::shared_ptr<CALIBRATION>> calibration() const {
|
||||
return K_all_;
|
||||
}
|
||||
|
||||
/// return the extrinsic camera calibration body_P_sensors
|
||||
const std::vector<Pose3> body_P_sensors() const {
|
||||
return body_P_sensors_;
|
||||
}
|
||||
|
||||
/// return (for each observation) the (possibly non unique) keys involved in the measurements
|
||||
const KeyVector nonUniqueKeys() const {
|
||||
return nonUniqueKeys_;
|
||||
}
|
||||
|
||||
/**
|
||||
* print
|
||||
* @param s optional string naming the factor
|
||||
* @param keyFormatter optional formatter useful for printing Symbols
|
||||
*/
|
||||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const override {
|
||||
std::cout << s << "SmartProjectionFactorP: \n ";
|
||||
for (size_t i = 0; i < K_all_.size(); i++) {
|
||||
std::cout << "-- Measurement nr " << i << std::endl;
|
||||
std::cout << "key: " << keyFormatter(nonUniqueKeys_[i]) << std::endl;
|
||||
body_P_sensors_[i].print("extrinsic calibration:\n");
|
||||
K_all_[i]->print("intrinsic calibration = ");
|
||||
}
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
|
||||
const This *e = dynamic_cast<const This*>(&p);
|
||||
double extrinsicCalibrationEqual = true;
|
||||
if (this->body_P_sensors_.size() == e->body_P_sensors().size()) {
|
||||
for (size_t i = 0; i < this->body_P_sensors_.size(); i++) {
|
||||
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])) {
|
||||
extrinsicCalibrationEqual = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
extrinsicCalibrationEqual = false;
|
||||
}
|
||||
|
||||
return e && Base::equals(p, tol) && K_all_ == e->calibration()
|
||||
&& nonUniqueKeys_ == e->nonUniqueKeys() && extrinsicCalibrationEqual;
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses corresponding
|
||||
* to keys involved in this factor
|
||||
* @return vector of cameras
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
typename Base::Cameras cameras;
|
||||
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
|
||||
const Pose3& body_P_cam_i = body_P_sensors_[i];
|
||||
const Pose3 world_P_sensor_i = values.at<Pose3>(nonUniqueKeys_[i])
|
||||
* body_P_cam_i;
|
||||
cameras.emplace_back(world_P_sensor_i, K_all_[i]);
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* error calculates the error of the factor.
|
||||
*/
|
||||
double error(const Values& values) const override {
|
||||
if (this->active(values)) {
|
||||
return this->totalReprojectionError(this->cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute jacobian F, E and error vector at a given linearization point
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Return arguments are the camera jacobians Fs (including the jacobian with
|
||||
* respect to both body poses we interpolate from), the point Jacobian E,
|
||||
* and the error vector b. Note that the jacobians are computed for a given point.
|
||||
*/
|
||||
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
if (!this->result_) {
|
||||
throw("computeJacobiansWithTriangulatedPoint");
|
||||
} else { // valid result: compute jacobians
|
||||
b = -cameras.reprojectionError(*this->result_, this->measured_, Fs, E);
|
||||
for (size_t i = 0; i < Fs.size(); i++) {
|
||||
const Pose3 sensor_P_body = body_P_sensors_[i].inverse();
|
||||
const Pose3 world_P_body = cameras[i].pose() * sensor_P_body;
|
||||
Eigen::Matrix<double, DimPose, DimPose> H;
|
||||
world_P_body.compose(body_P_sensors_[i], H);
|
||||
Fs.at(i) = Fs.at(i) * H;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
// we may have multiple observation sharing the same keys (e.g., 2 cameras measuring from the same body pose),
|
||||
// hence the number of unique keys may be smaller than nrMeasurements
|
||||
size_t nrUniqueKeys = this->keys_.size(); // note: by construction, keys_ only contains unique keys
|
||||
|
||||
Cameras cameras = this->cameras(values);
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector < Vector > gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() != this->cameras(values).size()) // 1 observation per camera
|
||||
throw std::runtime_error("SmartProjectionFactorP: "
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
this->triangulateSafe(cameras);
|
||||
|
||||
if (!this->result_) { // failed: return "empty/zero" Hessian
|
||||
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
|
||||
for (Matrix& m : Gs)
|
||||
m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs)
|
||||
v = Vector::Zero(DimPose);
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (this->keys_, Gs, gs, 0.0);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionFactorP: "
|
||||
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
|
||||
}
|
||||
}
|
||||
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
FBlocks Fs;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
this->computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
|
||||
|
||||
// Whiten using noise model
|
||||
this->noiseModel_->WhitenSystem(E, b);
|
||||
for (size_t i = 0; i < Fs.size(); i++){
|
||||
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
|
||||
}
|
||||
|
||||
Matrix3 P = Base::Cameras::PointCov(E, lambda, diagonalDamping);
|
||||
|
||||
// Build augmented Hessian (with last row/column being the information vector)
|
||||
// Note: we need to get the augumented hessian wrt the unique keys in key_
|
||||
SymmetricBlockMatrix augmentedHessianUniqueKeys =
|
||||
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 6, 6>(
|
||||
Fs, E, P, b, nonUniqueKeys_, this->keys_);
|
||||
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (this->keys_, augmentedHessianUniqueKeys);
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
||||
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
||||
* @return a Gaussian factor
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
||||
const Values& values, const double lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
switch (this->params_.linearizationMode) {
|
||||
case HESSIAN:
|
||||
return this->createHessianFactor(values, lambda);
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"SmartProjectioFactorP: unknown linearization mode");
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
|
||||
override {
|
||||
return this->linearizeDamped(values);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(K_all_);
|
||||
ar & BOOST_SERIALIZATION_NVP(nonUniqueKeys_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensors_);
|
||||
}
|
||||
|
||||
};
|
||||
// end of class declaration
|
||||
|
||||
/// traits
|
||||
template<class CAMERA>
|
||||
struct traits<SmartProjectionFactorP<CAMERA> > : public Testable<
|
||||
SmartProjectionFactorP<CAMERA> > {
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
|
@ -0,0 +1,393 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartProjectionRigFactor.h
|
||||
* @brief Smart factor on poses, assuming camera calibration is fixed.
|
||||
* Same as SmartProjectionPoseFactor, except:
|
||||
* - it is templated on CAMERA (i.e., it allows cameras beyond pinhole)
|
||||
* - it admits a different calibration for each measurement (i.e., it
|
||||
* can model a multi-camera rig system)
|
||||
* - it allows multiple observations from the same pose/key (again, to
|
||||
* model a multi-camera system)
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
*
|
||||
* @addtogroup SLAM
|
||||
*
|
||||
* If you are using the factor, please cite:
|
||||
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating
|
||||
* conditionally independent sets in factor graphs: a unifying perspective based
|
||||
* on smart factors, Int. Conf. on Robotics and Automation (ICRA), 2014.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This factor assumes that camera calibration is fixed (but each measurement
|
||||
* can be taken by a different camera in the rig, hence can have a different
|
||||
* extrinsic and intrinsic calibration). The factor only constrains poses
|
||||
* (variable dimension is 6 for each pose). This factor requires that values
|
||||
* contains the involved poses (Pose3). If all measurements share the same
|
||||
* calibration (i.e., are from the same camera), use SmartProjectionPoseFactor
|
||||
* instead! If the calibration should be optimized, as well, use
|
||||
* SmartProjectionFactor instead!
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template <class CAMERA>
|
||||
class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
||||
private:
|
||||
typedef SmartProjectionFactor<CAMERA> Base;
|
||||
typedef SmartProjectionRigFactor<CAMERA> This;
|
||||
typedef typename CAMERA::CalibrationType CALIBRATION;
|
||||
typedef typename CAMERA::Measurement MEASUREMENT;
|
||||
typedef typename CAMERA::MeasurementVector MEASUREMENTS;
|
||||
|
||||
static const int DimPose = 6; ///< Pose3 dimension
|
||||
static const int ZDim = 2; ///< Measurement dimension
|
||||
|
||||
protected:
|
||||
/// vector of keys (one for each observation) with potentially repeated keys
|
||||
KeyVector nonUniqueKeys_;
|
||||
|
||||
/// cameras in the rig (fixed poses wrt body + fixed intrinsics, for each
|
||||
/// camera)
|
||||
typename Base::Cameras cameraRig_;
|
||||
|
||||
/// vector of camera Ids (one for each observation, in the same order),
|
||||
/// identifying which camera took the measurement
|
||||
FastVector<size_t> cameraIds_;
|
||||
|
||||
public:
|
||||
typedef CAMERA Camera;
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// Default constructor, only for serialization
|
||||
SmartProjectionRigFactor() {}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param sharedNoiseModel isotropic noise model for the 2D feature
|
||||
* measurements
|
||||
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics) in
|
||||
* the camera rig
|
||||
* @param params parameters for the smart projection factors
|
||||
*/
|
||||
SmartProjectionRigFactor(
|
||||
const SharedNoiseModel& sharedNoiseModel, const Cameras& cameraRig,
|
||||
const SmartProjectionParams& params = SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
|
||||
// throw exception if configuration is not supported by this factor
|
||||
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
|
||||
if (Base::params_.linearizationMode != gtsam::HESSIAN)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"linearizationMode must be set to HESSIAN");
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param sharedNoiseModel isotropic noise model for the 2D feature
|
||||
* measurements
|
||||
* @param camera single camera (fixed poses wrt body and intrinsics)
|
||||
* @param params parameters for the smart projection factors
|
||||
*/
|
||||
SmartProjectionRigFactor(
|
||||
const SharedNoiseModel& sharedNoiseModel, const Camera& camera,
|
||||
const SmartProjectionParams& params = SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params) {
|
||||
// throw exception if configuration is not supported by this factor
|
||||
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
|
||||
if (Base::params_.linearizationMode != gtsam::HESSIAN)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"linearizationMode must be set to HESSIAN");
|
||||
cameraRig_.push_back(camera);
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
~SmartProjectionRigFactor() override {}
|
||||
|
||||
/**
|
||||
* add a new measurement, corresponding to an observation from pose "poseKey"
|
||||
* and taken from the camera in the rig identified by "cameraId"
|
||||
* @param measured 2-dimensional location of the projection of a
|
||||
* single landmark in a single view (the measurement)
|
||||
* @param poseKey key corresponding to the body pose of the camera taking the
|
||||
* measurement
|
||||
* @param cameraId ID of the camera in the rig taking the measurement (default
|
||||
* 0)
|
||||
*/
|
||||
void add(const MEASUREMENT& measured, const Key& poseKey,
|
||||
const size_t& cameraId = 0) {
|
||||
// store measurement and key
|
||||
this->measured_.push_back(measured);
|
||||
this->nonUniqueKeys_.push_back(poseKey);
|
||||
|
||||
// also store keys in the keys_ vector: these keys are assumed to be
|
||||
// unique, so we avoid duplicates here
|
||||
if (std::find(this->keys_.begin(), this->keys_.end(), poseKey) ==
|
||||
this->keys_.end())
|
||||
this->keys_.push_back(poseKey); // add only unique keys
|
||||
|
||||
// store id of the camera taking the measurement
|
||||
cameraIds_.push_back(cameraId);
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous "add" function in which we include multiple
|
||||
* measurements
|
||||
* @param measurements vector of the 2m dimensional location of the projection
|
||||
* of a single landmark in the m views (the measurements)
|
||||
* @param poseKeys keys corresponding to the body poses of the cameras taking
|
||||
* the measurements
|
||||
* @param cameraIds IDs of the cameras in the rig taking each measurement
|
||||
* (same order as the measurements)
|
||||
*/
|
||||
void add(const MEASUREMENTS& measurements, const KeyVector& poseKeys,
|
||||
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
|
||||
if (poseKeys.size() != measurements.size() ||
|
||||
(poseKeys.size() != cameraIds.size() && cameraIds.size() != 0)) {
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"trying to add inconsistent inputs");
|
||||
}
|
||||
if (cameraIds.size() == 0 && cameraRig_.size() > 1) {
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"camera rig includes multiple camera but add did not input "
|
||||
"cameraIds");
|
||||
}
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
add(measurements[i], poseKeys[i],
|
||||
cameraIds.size() == 0 ? 0 : cameraIds[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/// return (for each observation) the (possibly non unique) keys involved in
|
||||
/// the measurements
|
||||
const KeyVector& nonUniqueKeys() const { return nonUniqueKeys_; }
|
||||
|
||||
/// return the calibration object
|
||||
const Cameras& cameraRig() const { return cameraRig_; }
|
||||
|
||||
/// return the calibration object
|
||||
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
|
||||
|
||||
/**
|
||||
* print
|
||||
* @param s optional string naming the factor
|
||||
* @param keyFormatter optional formatter useful for printing Symbols
|
||||
*/
|
||||
void print(
|
||||
const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||
std::cout << s << "SmartProjectionRigFactor: \n ";
|
||||
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
|
||||
std::cout << "-- Measurement nr " << i << std::endl;
|
||||
std::cout << "key: " << keyFormatter(nonUniqueKeys_[i]) << std::endl;
|
||||
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
|
||||
cameraRig_[cameraIds_[i]].print("camera in rig:\n");
|
||||
}
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override {
|
||||
const This* e = dynamic_cast<const This*>(&p);
|
||||
return e && Base::equals(p, tol) && nonUniqueKeys_ == e->nonUniqueKeys() &&
|
||||
cameraRig_.equals(e->cameraRig()) &&
|
||||
std::equal(cameraIds_.begin(), cameraIds_.end(),
|
||||
e->cameraIds().begin());
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain body poses corresponding
|
||||
* to keys involved in this factor
|
||||
* @return vector of cameras
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
typename Base::Cameras cameras;
|
||||
cameras.reserve(nonUniqueKeys_.size()); // preallocate
|
||||
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
|
||||
const typename Base::Camera& camera_i = cameraRig_[cameraIds_[i]];
|
||||
const Pose3 world_P_sensor_i =
|
||||
values.at<Pose3>(nonUniqueKeys_[i]) // = world_P_body
|
||||
* camera_i.pose(); // = body_P_cam_i
|
||||
cameras.emplace_back(world_P_sensor_i,
|
||||
make_shared<typename CAMERA::CalibrationType>(
|
||||
camera_i.calibration()));
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* error calculates the error of the factor.
|
||||
*/
|
||||
double error(const Values& values) const override {
|
||||
if (this->active(values)) {
|
||||
return this->totalReprojectionError(this->cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute jacobian F, E and error vector at a given linearization point
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Return arguments are the camera jacobians Fs (including the
|
||||
* jacobian with respect to both body poses we interpolate from), the point
|
||||
* Jacobian E, and the error vector b. Note that the jacobians are computed
|
||||
* for a given point.
|
||||
*/
|
||||
void computeJacobiansWithTriangulatedPoint(typename Base::FBlocks& Fs,
|
||||
Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
if (!this->result_) {
|
||||
throw("computeJacobiansWithTriangulatedPoint");
|
||||
} else { // valid result: compute jacobians
|
||||
b = -cameras.reprojectionError(*this->result_, this->measured_, Fs, E);
|
||||
for (size_t i = 0; i < Fs.size(); i++) {
|
||||
const Pose3& body_P_sensor = cameraRig_[cameraIds_[i]].pose();
|
||||
const Pose3 world_P_body = cameras[i].pose() * body_P_sensor.inverse();
|
||||
Eigen::Matrix<double, DimPose, DimPose> H;
|
||||
world_P_body.compose(body_P_sensor, H);
|
||||
Fs.at(i) = Fs.at(i) * H;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
const Values& values, const double& lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
// we may have multiple observation sharing the same keys (e.g., 2 cameras
|
||||
// measuring from the same body pose), hence the number of unique keys may
|
||||
// be smaller than nrMeasurements
|
||||
size_t nrUniqueKeys =
|
||||
this->keys_
|
||||
.size(); // note: by construction, keys_ only contains unique keys
|
||||
|
||||
Cameras cameras = this->cameras(values);
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
std::vector<size_t> js;
|
||||
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector<Vector> gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() != cameras.size()) // 1 observation per camera
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
this->triangulateSafe(cameras);
|
||||
|
||||
if (!this->result_) { // failed: return "empty/zero" Hessian
|
||||
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
|
||||
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs) v = Vector::Zero(DimPose);
|
||||
return boost::make_shared<RegularHessianFactor<DimPose> >(this->keys_,
|
||||
Gs, gs, 0.0);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
|
||||
}
|
||||
}
|
||||
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
typename Base::FBlocks Fs;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
this->computeJacobiansWithTriangulatedPoint(Fs, E, b, cameras);
|
||||
|
||||
// Whiten using noise model
|
||||
this->noiseModel_->WhitenSystem(E, b);
|
||||
for (size_t i = 0; i < Fs.size(); i++) {
|
||||
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
|
||||
}
|
||||
|
||||
const Matrix3 P = Base::Cameras::PointCov(E, lambda, diagonalDamping);
|
||||
|
||||
// Build augmented Hessian (with last row/column being the information
|
||||
// vector) Note: we need to get the augumented hessian wrt the unique keys
|
||||
// in key_
|
||||
SymmetricBlockMatrix augmentedHessianUniqueKeys =
|
||||
Base::Cameras::template SchurComplementAndRearrangeBlocks<3, 6, 6>(
|
||||
Fs, E, P, b, nonUniqueKeys_, this->keys_);
|
||||
|
||||
return boost::make_shared<RegularHessianFactor<DimPose> >(
|
||||
this->keys_, augmentedHessianUniqueKeys);
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
|
||||
* LM)
|
||||
* @param values Values structure which must contain camera poses and
|
||||
* extrinsic pose for this factor
|
||||
* @return a Gaussian factor
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
||||
const Values& values, const double& lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different
|
||||
// linear factors
|
||||
switch (this->params_.linearizationMode) {
|
||||
case HESSIAN:
|
||||
return this->createHessianFactor(values, lambda);
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: unknown linearization mode");
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize
|
||||
boost::shared_ptr<GaussianFactor> linearize(
|
||||
const Values& values) const override {
|
||||
return this->linearizeDamped(values);
|
||||
}
|
||||
|
||||
private:
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar& BOOST_SERIALIZATION_NVP(nonUniqueKeys_);
|
||||
ar& BOOST_SERIALIZATION_NVP(cameraRig_);
|
||||
ar& BOOST_SERIALIZATION_NVP(cameraIds_);
|
||||
}
|
||||
};
|
||||
// end of class declaration
|
||||
|
||||
/// traits
|
||||
template <class CAMERA>
|
||||
struct traits<SmartProjectionRigFactor<CAMERA> >
|
||||
: public Testable<SmartProjectionRigFactor<CAMERA> > {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -18,12 +18,12 @@
|
|||
|
||||
#pragma once
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
#include <gtsam/slam/SmartProjectionFactorP.h>
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <gtsam/geometry/SphericalCamera.h>
|
||||
#include "../SmartProjectionRigFactor.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
@ -70,8 +70,9 @@ SmartProjectionParams params;
|
|||
// default Cal3_S2 poses
|
||||
namespace vanillaPose {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
typedef SmartProjectionFactorP<Camera> SmartFactorP;
|
||||
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
|
||||
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
|
||||
Camera level_camera(level_pose, sharedK);
|
||||
Camera level_camera_right(pose_right, sharedK);
|
||||
|
@ -84,8 +85,9 @@ Camera cam3(pose_above, sharedK);
|
|||
// default Cal3_S2 poses
|
||||
namespace vanillaPose2 {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
typedef SmartProjectionFactorP<Camera> SmartFactorP;
|
||||
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
|
||||
static Cal3_S2::shared_ptr sharedK2(new Cal3_S2(1500, 1200, 0, 640, 480));
|
||||
Camera level_camera(level_pose, sharedK2);
|
||||
Camera level_camera_right(pose_right, sharedK2);
|
||||
|
@ -98,6 +100,7 @@ Camera cam3(pose_above, sharedK2);
|
|||
// Cal3Bundler cameras
|
||||
namespace bundler {
|
||||
typedef PinholeCamera<Cal3Bundler> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionFactor<Camera> SmartFactor;
|
||||
static Cal3Bundler K(500, 1e-3, 1e-3, 0, 0);
|
||||
Camera level_camera(level_pose, K);
|
||||
|
@ -115,8 +118,9 @@ typedef GeneralSFMFactor<Camera, Point3> SFMFactor;
|
|||
// Cal3Bundler poses
|
||||
namespace bundlerPose {
|
||||
typedef PinholePose<Cal3Bundler> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionPoseFactor<Cal3Bundler> SmartFactor;
|
||||
typedef SmartProjectionFactorP<Camera> SmartFactorP;
|
||||
typedef SmartProjectionRigFactor<Camera> SmartRigFactor;
|
||||
static boost::shared_ptr<Cal3Bundler> sharedBundlerK(
|
||||
new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000));
|
||||
Camera level_camera(level_pose, sharedBundlerK);
|
||||
|
@ -130,7 +134,8 @@ Camera cam3(pose_above, sharedBundlerK);
|
|||
// sphericalCamera
|
||||
namespace sphericalCamera {
|
||||
typedef SphericalCamera Camera;
|
||||
typedef SmartProjectionFactorP<Camera> SmartFactorP;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionRigFactor<Camera> SmartFactorP;
|
||||
static EmptyCal::shared_ptr emptyK;
|
||||
Camera level_camera(level_pose);
|
||||
Camera level_camera_right(pose_right);
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,40 @@
|
|||
# SLAM Factors
|
||||
|
||||
## SmartFactors
|
||||
|
||||
These are "structure-less" factors, i.e., rather than introducing a new variable for an observed 3D point or landmark, a single factor is created that provides a multi-view constraint on several poses and/or cameras.
|
||||
|
||||
### SmartRangeFactor
|
||||
|
||||
An experiment in creating a structure-less 2D range-SLAM factor with range-only measurements.
|
||||
It uses a sophisticated `triangulate` logic based on circle intersections.
|
||||
|
||||
### SmartStereoProjectionFactor
|
||||
|
||||
Version of `SmartProjectionFactor` for stereo observations, specializes SmartFactorBase for `CAMERA == StereoCamera`.
|
||||
|
||||
TODO: a lot of commented out code and could move a lot to .cpp file.
|
||||
|
||||
### SmartStereoProjectionPoseFactor
|
||||
|
||||
Derives from `SmartStereoProjectionFactor` but adds an array of `Cal3_S2Stereo` calibration objects .
|
||||
|
||||
TODO: Again, as no template arguments, we could move a lot to .cpp file.
|
||||
|
||||
### SmartStereoProjectionFactorPP
|
||||
|
||||
Similar `SmartStereoProjectionPoseFactor` but *additionally* adds an array of body_P_cam poses. The dimensions seem to be hardcoded and the types defined in the SmartFactorBase have been re-defined.
|
||||
The body_P_cam poses are optimized here!
|
||||
|
||||
TODO: See above, same issues as `SmartStereoProjectionPoseFactor`.
|
||||
|
||||
### SmartProjectionPoseFactorRollingShutter
|
||||
|
||||
Is templated on a `CAMERA` type and derives from `SmartProjectionFactor`.
|
||||
|
||||
This factor optimizes two consecutive poses of a body assuming a rolling
|
||||
shutter model of the camera with given readout time. The factor requires that
|
||||
values contain (for each 2D observation) two consecutive camera poses from
|
||||
which the 2D observation pose can be interpolated.
|
||||
|
||||
TODO: the dimensions seem to be hardcoded and the types defined in the SmartFactorBase have been re-defined. Also, possibly a lot of copy/paste computation of things that (should) happen in base class.
|
|
@ -40,9 +40,9 @@ namespace gtsam {
|
|||
* which the pixel observation pose can be interpolated.
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAMERA> {
|
||||
|
||||
template <class CAMERA>
|
||||
class SmartProjectionPoseFactorRollingShutter
|
||||
: public SmartProjectionFactor<CAMERA> {
|
||||
private:
|
||||
typedef SmartProjectionFactor<CAMERA> Base;
|
||||
typedef SmartProjectionPoseFactorRollingShutter<CAMERA> This;
|
||||
|
@ -55,9 +55,6 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
||||
|
||||
protected:
|
||||
/// shared pointer to calibration object (one for each observation)
|
||||
std::vector<boost::shared_ptr<CALIBRATION>> K_all_;
|
||||
|
||||
/// The keys of the pose of the body (with respect to an external world
|
||||
/// frame): two consecutive poses for each observation
|
||||
std::vector<std::pair<Key, Key>> world_P_body_key_pairs_;
|
||||
|
@ -66,10 +63,17 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
/// pair of consecutive poses
|
||||
std::vector<double> alphas_;
|
||||
|
||||
/// Pose of the camera in the body frame
|
||||
std::vector<Pose3> body_P_sensors_;
|
||||
/// one or more cameras taking observations (fixed poses wrt body + fixed
|
||||
/// intrinsics)
|
||||
typename Base::Cameras cameraRig_;
|
||||
|
||||
/// vector of camera Ids (one for each observation, in the same order),
|
||||
/// identifying which camera took the measurement
|
||||
FastVector<size_t> cameraIds_;
|
||||
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
typedef CAMERA Camera;
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt block of 2 poses)
|
||||
|
@ -79,29 +83,57 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// Default constructor, only for serialization
|
||||
SmartProjectionPoseFactorRollingShutter() {
|
||||
SmartProjectionPoseFactorRollingShutter() {}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param Isotropic measurement noise
|
||||
* @param cameraRig set of cameras (fixed poses wrt body and intrinsics)
|
||||
* taking the measurements
|
||||
* @param params internal parameters of the smart factors
|
||||
*/
|
||||
SmartProjectionPoseFactorRollingShutter(
|
||||
const SharedNoiseModel& sharedNoiseModel, const Cameras& cameraRig,
|
||||
const SmartProjectionParams& params = SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params), cameraRig_(cameraRig) {
|
||||
// throw exception if configuration is not supported by this factor
|
||||
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
|
||||
if (Base::params_.linearizationMode != gtsam::HESSIAN)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"linearizationMode must be set to HESSIAN");
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param Isotropic measurement noise
|
||||
* @param camera single camera (fixed poses wrt body and intrinsics)
|
||||
* @param params internal parameters of the smart factors
|
||||
*/
|
||||
SmartProjectionPoseFactorRollingShutter(
|
||||
const SharedNoiseModel& sharedNoiseModel,
|
||||
const SharedNoiseModel& sharedNoiseModel, const Camera& camera,
|
||||
const SmartProjectionParams& params = SmartProjectionParams())
|
||||
: Base(sharedNoiseModel, params) {
|
||||
// use only configuration that works with this factor
|
||||
Base::params_.degeneracyMode = gtsam::ZERO_ON_DEGENERACY;
|
||||
Base::params_.linearizationMode = gtsam::HESSIAN;
|
||||
: Base(sharedNoiseModel, params) {
|
||||
// throw exception if configuration is not supported by this factor
|
||||
if (Base::params_.degeneracyMode != gtsam::ZERO_ON_DEGENERACY)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"degeneracyMode must be set to ZERO_ON_DEGENERACY");
|
||||
if (Base::params_.linearizationMode != gtsam::HESSIAN)
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionRigFactor: "
|
||||
"linearizationMode must be set to HESSIAN");
|
||||
cameraRig_.push_back(camera);
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
~SmartProjectionPoseFactorRollingShutter() override = default;
|
||||
|
||||
/**
|
||||
* add a new measurement, with 2 pose keys, interpolation factor, camera
|
||||
* (intrinsic and extrinsic) calibration, and observed pixel.
|
||||
* add a new measurement, with 2 pose keys, interpolation factor, and cameraId
|
||||
* @param measured 2-dimensional location of the projection of a single
|
||||
* landmark in a single view (the measurement), interpolated from the 2 poses
|
||||
* @param world_P_body_key1 key corresponding to the first body poses (time <=
|
||||
|
@ -110,13 +142,11 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
* >= time pixel is acquired)
|
||||
* @param alpha interpolation factor in [0,1], such that if alpha = 0 the
|
||||
* interpolated pose is the same as world_P_body_key1
|
||||
* @param K (fixed) camera intrinsic calibration
|
||||
* @param body_P_sensor (fixed) camera extrinsic calibration
|
||||
* @param cameraId ID of the camera taking the measurement (default 0)
|
||||
*/
|
||||
void add(const MEASUREMENT& measured, const Key& world_P_body_key1,
|
||||
const Key& world_P_body_key2, const double& alpha,
|
||||
const boost::shared_ptr<CALIBRATION>& K,
|
||||
const Pose3& body_P_sensor = Pose3::identity()) {
|
||||
const size_t& cameraId = 0) {
|
||||
// store measurements in base class
|
||||
this->measured_.push_back(measured);
|
||||
|
||||
|
@ -136,11 +166,8 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
// store interpolation factor
|
||||
alphas_.push_back(alpha);
|
||||
|
||||
// store fixed intrinsic calibration
|
||||
K_all_.push_back(K);
|
||||
|
||||
// store fixed extrinsics of the camera
|
||||
body_P_sensors_.push_back(body_P_sensor);
|
||||
// store id of the camera taking the measurement
|
||||
cameraIds_.push_back(cameraId);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -153,56 +180,36 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
* for the i0-th measurement can be interpolated
|
||||
* @param alphas vector of interpolation params (in [0,1]), one for each
|
||||
* measurement (in the same order)
|
||||
* @param Ks vector of (fixed) intrinsic calibration objects
|
||||
* @param body_P_sensors vector of (fixed) extrinsic calibration objects
|
||||
* @param cameraIds IDs of the cameras taking each measurement (same order as
|
||||
* the measurements)
|
||||
*/
|
||||
void add(const MEASUREMENTS& measurements,
|
||||
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
|
||||
const std::vector<double>& alphas,
|
||||
const std::vector<boost::shared_ptr<CALIBRATION>>& Ks,
|
||||
const std::vector<Pose3>& body_P_sensors) {
|
||||
assert(world_P_body_key_pairs.size() == measurements.size());
|
||||
assert(world_P_body_key_pairs.size() == alphas.size());
|
||||
assert(world_P_body_key_pairs.size() == Ks.size());
|
||||
const FastVector<size_t>& cameraIds = FastVector<size_t>()) {
|
||||
if (world_P_body_key_pairs.size() != measurements.size() ||
|
||||
world_P_body_key_pairs.size() != alphas.size() ||
|
||||
(world_P_body_key_pairs.size() != cameraIds.size() &&
|
||||
cameraIds.size() != 0)) { // cameraIds.size()=0 is default
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: "
|
||||
"trying to add inconsistent inputs");
|
||||
}
|
||||
if (cameraIds.size() == 0 && cameraRig_.size() > 1) {
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: "
|
||||
"camera rig includes multiple camera but add did not input "
|
||||
"cameraIds");
|
||||
}
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
add(measurements[i], world_P_body_key_pairs[i].first,
|
||||
world_P_body_key_pairs[i].second, alphas[i], Ks[i],
|
||||
body_P_sensors[i]);
|
||||
world_P_body_key_pairs[i].second, alphas[i],
|
||||
cameraIds.size() == 0 ? 0
|
||||
: cameraIds[i]); // use 0 as default if
|
||||
// cameraIds was not specified
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous "add" function in which we include multiple
|
||||
* measurements with the same (intrinsic and extrinsic) calibration
|
||||
* @param measurements vector of the 2m dimensional location of the projection
|
||||
* of a single landmark in the m views (the measurements)
|
||||
* @param world_P_body_key_pairs vector where the i-th element contains a pair
|
||||
* of keys corresponding to the pair of poses from which the observation pose
|
||||
* for the i0-th measurement can be interpolated
|
||||
* @param alphas vector of interpolation params (in [0,1]), one for each
|
||||
* measurement (in the same order)
|
||||
* @param K (fixed) camera intrinsic calibration (same for all measurements)
|
||||
* @param body_P_sensor (fixed) camera extrinsic calibration (same for all
|
||||
* measurements)
|
||||
*/
|
||||
void add(const MEASUREMENTS& measurements,
|
||||
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs,
|
||||
const std::vector<double>& alphas,
|
||||
const boost::shared_ptr<CALIBRATION>& K,
|
||||
const Pose3& body_P_sensor = Pose3::identity()) {
|
||||
assert(world_P_body_key_pairs.size() == measurements.size());
|
||||
assert(world_P_body_key_pairs.size() == alphas.size());
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
add(measurements[i], world_P_body_key_pairs[i].first,
|
||||
world_P_body_key_pairs[i].second, alphas[i], K, body_P_sensor);
|
||||
}
|
||||
}
|
||||
|
||||
/// return the calibration object
|
||||
const std::vector<boost::shared_ptr<CALIBRATION>>& calibration() const {
|
||||
return K_all_;
|
||||
}
|
||||
|
||||
/// return (for each observation) the keys of the pair of poses from which we
|
||||
/// interpolate
|
||||
const std::vector<std::pair<Key, Key>>& world_P_body_key_pairs() const {
|
||||
|
@ -212,8 +219,11 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
/// return the interpolation factors alphas
|
||||
const std::vector<double>& alphas() const { return alphas_; }
|
||||
|
||||
/// return the extrinsic camera calibration body_P_sensors
|
||||
const std::vector<Pose3>& body_P_sensors() const { return body_P_sensors_; }
|
||||
/// return the calibration object
|
||||
const Cameras& cameraRig() const { return cameraRig_; }
|
||||
|
||||
/// return the calibration object
|
||||
const FastVector<size_t>& cameraIds() const { return cameraIds_; }
|
||||
|
||||
/**
|
||||
* print
|
||||
|
@ -224,15 +234,15 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||
std::cout << s << "SmartProjectionPoseFactorRollingShutter: \n ";
|
||||
for (size_t i = 0; i < K_all_.size(); i++) {
|
||||
for (size_t i = 0; i < cameraIds_.size(); i++) {
|
||||
std::cout << "-- Measurement nr " << i << std::endl;
|
||||
std::cout << " pose1 key: "
|
||||
<< keyFormatter(world_P_body_key_pairs_[i].first) << std::endl;
|
||||
std::cout << " pose2 key: "
|
||||
<< keyFormatter(world_P_body_key_pairs_[i].second) << std::endl;
|
||||
std::cout << " alpha: " << alphas_[i] << std::endl;
|
||||
body_P_sensors_[i].print("extrinsic calibration:\n");
|
||||
K_all_[i]->print("intrinsic calibration = ");
|
||||
std::cout << "cameraId: " << cameraIds_[i] << std::endl;
|
||||
cameraRig_[cameraIds_[i]].print("camera in rig:\n");
|
||||
}
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
@ -260,57 +270,10 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
keyPairsEqual = false;
|
||||
}
|
||||
|
||||
double extrinsicCalibrationEqual = true;
|
||||
if (this->body_P_sensors_.size() == e->body_P_sensors().size()) {
|
||||
for (size_t i = 0; i < this->body_P_sensors_.size(); i++) {
|
||||
if (!body_P_sensors_[i].equals(e->body_P_sensors()[i])) {
|
||||
extrinsicCalibrationEqual = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
extrinsicCalibrationEqual = false;
|
||||
}
|
||||
|
||||
return e && Base::equals(p, tol) && K_all_ == e->calibration() &&
|
||||
alphas_ == e->alphas() && keyPairsEqual && extrinsicCalibrationEqual;
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Cameras
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
size_t numViews = this->measured_.size();
|
||||
assert(numViews == K_all_.size());
|
||||
assert(numViews == alphas_.size());
|
||||
assert(numViews == body_P_sensors_.size());
|
||||
assert(numViews == world_P_body_key_pairs_.size());
|
||||
|
||||
typename Base::Cameras cameras;
|
||||
for (size_t i = 0; i < numViews; i++) { // for each measurement
|
||||
const Pose3& w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
||||
const Pose3& w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
||||
double interpolationFactor = alphas_[i];
|
||||
const Pose3& w_P_body = interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
|
||||
const Pose3& body_P_cam = body_P_sensors_[i];
|
||||
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
|
||||
cameras.emplace_back(w_P_cam, K_all_[i]);
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* error calculates the error of the factor.
|
||||
*/
|
||||
double error(const Values& values) const override {
|
||||
if (this->active(values)) {
|
||||
return this->totalReprojectionError(this->cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
return e && Base::equals(p, tol) && alphas_ == e->alphas() &&
|
||||
keyPairsEqual && cameraRig_.equals(e->cameraRig()) &&
|
||||
std::equal(cameraIds_.begin(), cameraIds_.end(),
|
||||
e->cameraIds().begin());
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -345,9 +308,12 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
auto w_P_body =
|
||||
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
|
||||
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
|
||||
auto body_P_cam = body_P_sensors_[i];
|
||||
const typename Base::Camera& camera_i = cameraRig_[cameraIds_[i]];
|
||||
auto body_P_cam = camera_i.pose();
|
||||
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
||||
typename Base::Camera camera(w_P_cam, K_all_[i]);
|
||||
typename Base::Camera camera(
|
||||
w_P_cam, make_shared<typename CAMERA::CalibrationType>(
|
||||
camera_i.calibration()));
|
||||
|
||||
// get jacobians and error vector for current measurement
|
||||
Point2 reprojectionError_i = camera.reprojectionError(
|
||||
|
@ -371,7 +337,7 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0,
|
||||
const Values& values, const double& lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
// we may have multiple observation sharing the same keys (due to the
|
||||
// rolling shutter interpolation), hence the number of unique keys may be
|
||||
|
@ -380,19 +346,21 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
this->keys_
|
||||
.size(); // note: by construction, keys_ only contains unique keys
|
||||
|
||||
typename Base::Cameras cameras = this->cameras(values);
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector<Vector> gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() !=
|
||||
this->cameras(values).size()) // 1 observation per interpolated camera
|
||||
cameras.size()) // 1 observation per interpolated camera
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: "
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
this->triangulateSafe(this->cameras(values));
|
||||
this->triangulateSafe(cameras);
|
||||
|
||||
if (!this->result_) { // failed: return "empty/zero" Hessian
|
||||
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
|
||||
|
@ -439,12 +407,51 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
||||
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
||||
* error calculates the error of the factor.
|
||||
*/
|
||||
double error(const Values& values) const override {
|
||||
if (this->active(values)) {
|
||||
return this->totalReprojectionError(this->cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Cameras
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
typename Base::Cameras cameras;
|
||||
for (size_t i = 0; i < this->measured_.size();
|
||||
i++) { // for each measurement
|
||||
const Pose3& w_P_body1 =
|
||||
values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
||||
const Pose3& w_P_body2 =
|
||||
values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
||||
double interpolationFactor = alphas_[i];
|
||||
const Pose3& w_P_body =
|
||||
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor);
|
||||
const Pose3& body_P_cam = cameraRig_[cameraIds_[i]].pose();
|
||||
const Pose3& w_P_cam = w_P_body.compose(body_P_cam);
|
||||
cameras.emplace_back(w_P_cam,
|
||||
make_shared<typename CAMERA::CalibrationType>(
|
||||
cameraRig_[cameraIds_[i]].calibration()));
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for
|
||||
* LM)
|
||||
* @param values Values structure which must contain camera poses and
|
||||
* extrinsic pose for this factor
|
||||
* @return a Gaussian factor
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearizeDamped(
|
||||
const Values& values, const double lambda = 0.0) const {
|
||||
const Values& values, const double& lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different
|
||||
// linear factors
|
||||
switch (this->params_.linearizationMode) {
|
||||
|
@ -469,7 +476,6 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar& BOOST_SERIALIZATION_NVP(K_all_);
|
||||
}
|
||||
};
|
||||
// end of class declaration
|
||||
|
|
|
@ -447,23 +447,23 @@ public:
|
|||
}
|
||||
|
||||
/**
|
||||
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
|
||||
* This corrects the Jacobians and error vector for the case in which the
|
||||
* right 2D measurement in the monocular camera is missing (nan).
|
||||
*/
|
||||
void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
|
||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||
boost::optional<Matrix&> E = boost::none) const override
|
||||
{
|
||||
void correctForMissingMeasurements(
|
||||
const Cameras& cameras, Vector& ue,
|
||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
|
||||
boost::optional<Matrix&> E = boost::none) const override {
|
||||
// when using stereo cameras, some of the measurements might be missing:
|
||||
for(size_t i=0; i < cameras.size(); i++){
|
||||
for (size_t i = 0; i < cameras.size(); i++) {
|
||||
const StereoPoint2& z = measured_.at(i);
|
||||
if(std::isnan(z.uR())) // if the right pixel is invalid
|
||||
if (std::isnan(z.uR())) // if the right 2D measurement is invalid
|
||||
{
|
||||
if(Fs){ // delete influence of right point on jacobian Fs
|
||||
if (Fs) { // delete influence of right point on jacobian Fs
|
||||
MatrixZD& Fi = Fs->at(i);
|
||||
for(size_t ii=0; ii<Dim; ii++)
|
||||
Fi(1,ii) = 0.0;
|
||||
for (size_t ii = 0; ii < Dim; ii++) Fi(1, ii) = 0.0;
|
||||
}
|
||||
if(E) // delete influence of right point on jacobian E
|
||||
if (E) // delete influence of right point on jacobian E
|
||||
E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
|
||||
|
||||
// set the corresponding entry of vector ue to zero
|
||||
|
|
|
@ -33,9 +33,11 @@ namespace gtsam {
|
|||
*/
|
||||
|
||||
/**
|
||||
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
|
||||
* Each camera may have its own extrinsic calibration or the same calibration can be shared by multiple cameras.
|
||||
* This factor requires that values contain the involved poses and extrinsics (both are Pose3 variables).
|
||||
* This factor optimizes the pose of the body as well as the extrinsic camera
|
||||
* calibration (pose of camera wrt body). Each camera may have its own extrinsic
|
||||
* calibration or the same calibration can be shared by multiple cameras. This
|
||||
* factor requires that values contain the involved poses and extrinsics (both
|
||||
* are Pose3 variables).
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
||||
|
|
|
@ -16,18 +16,19 @@
|
|||
* @date July 2021
|
||||
*/
|
||||
|
||||
#include "gtsam/slam/tests/smartFactorScenarios.h"
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
#include <gtsam/slam/PoseTranslationPrior.h>
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
|
||||
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/serializationTestHelpers.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/PoseTranslationPrior.h>
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
#include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
|
||||
#include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
|
||||
|
||||
#include <boost/assign/std/map.hpp>
|
||||
#include <iostream>
|
||||
|
||||
#include "gtsam/slam/tests/smartFactorScenarios.h"
|
||||
#define DISABLE_TIMING
|
||||
|
||||
using namespace gtsam;
|
||||
|
@ -60,10 +61,13 @@ static double interp_factor1 = 0.3;
|
|||
static double interp_factor2 = 0.4;
|
||||
static double interp_factor3 = 0.5;
|
||||
|
||||
static size_t cameraId1 = 0;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// default Cal3_S2 poses with rolling shutter effect
|
||||
namespace vanillaPoseRS {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
|
||||
Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
|
||||
Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
|
||||
|
@ -71,6 +75,9 @@ Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
|
|||
Camera cam1(interp_pose1, sharedK);
|
||||
Camera cam2(interp_pose2, sharedK);
|
||||
Camera cam3(interp_pose3, sharedK);
|
||||
SmartProjectionParams params(
|
||||
gtsam::HESSIAN,
|
||||
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
|
||||
} // namespace vanillaPoseRS
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
|
@ -79,26 +86,29 @@ typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
using namespace vanillaPoseRS;
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
|
||||
SmartProjectionParams params;
|
||||
using namespace vanillaPoseRS;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactorRS factor1(model, params);
|
||||
SmartFactorRS factor1(model, Camera(Pose3::identity(), sharedK), params);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, add) {
|
||||
using namespace vanillaPose;
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
factor1->add(measurement1, x1, x2, interp_factor, sharedK, body_P_sensor);
|
||||
using namespace vanillaPoseRS;
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
|
||||
using namespace vanillaPose;
|
||||
using namespace vanillaPoseRS;
|
||||
|
||||
// create fake measurements
|
||||
Point2Vector measurements;
|
||||
|
@ -111,68 +121,88 @@ TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
|
|||
key_pairs.push_back(std::make_pair(x2, x3));
|
||||
key_pairs.push_back(std::make_pair(x3, x4));
|
||||
|
||||
std::vector<boost::shared_ptr<Cal3_S2>> intrinsicCalibrations;
|
||||
intrinsicCalibrations.push_back(sharedK);
|
||||
intrinsicCalibrations.push_back(sharedK);
|
||||
intrinsicCalibrations.push_back(sharedK);
|
||||
|
||||
std::vector<Pose3> extrinsicCalibrations;
|
||||
extrinsicCalibrations.push_back(body_P_sensor);
|
||||
extrinsicCalibrations.push_back(body_P_sensor);
|
||||
extrinsicCalibrations.push_back(body_P_sensor);
|
||||
|
||||
std::vector<double> interp_factors;
|
||||
interp_factors.push_back(interp_factor1);
|
||||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
FastVector<size_t> cameraIds{0, 0, 0};
|
||||
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back(Camera(body_P_sensor, sharedK));
|
||||
|
||||
// create by adding a batch of measurements with a bunch of calibrations
|
||||
SmartFactorRS::shared_ptr factor2(new SmartFactorRS(model));
|
||||
factor2->add(measurements, key_pairs, interp_factors, intrinsicCalibrations,
|
||||
extrinsicCalibrations);
|
||||
SmartFactorRS::shared_ptr factor2(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor2->add(measurements, key_pairs, interp_factors, cameraIds);
|
||||
|
||||
// create by adding a batch of measurements with a single calibrations
|
||||
SmartFactorRS::shared_ptr factor3(new SmartFactorRS(model));
|
||||
factor3->add(measurements, key_pairs, interp_factors, sharedK, body_P_sensor);
|
||||
SmartFactorRS::shared_ptr factor3(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor3->add(measurements, key_pairs, interp_factors, cameraIds);
|
||||
|
||||
{ // create equal factors and show equal returns true
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
|
||||
factor1->add(measurement2, x2, x3, interp_factor2, sharedK, body_P_sensor);
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
|
||||
factor1->add(measurement2, x2, x3, interp_factor2, cameraId1);
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
|
||||
|
||||
EXPECT(factor1->equals(*factor2));
|
||||
EXPECT(factor1->equals(*factor3));
|
||||
}
|
||||
{ // create equal factors and show equal returns true (use default cameraId)
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1);
|
||||
factor1->add(measurement2, x2, x3, interp_factor2);
|
||||
factor1->add(measurement3, x3, x4, interp_factor3);
|
||||
|
||||
EXPECT(factor1->equals(*factor2));
|
||||
EXPECT(factor1->equals(*factor3));
|
||||
}
|
||||
{ // create equal factors and show equal returns true (use default cameraId)
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor1->add(measurements, key_pairs, interp_factors);
|
||||
|
||||
EXPECT(factor1->equals(*factor2));
|
||||
EXPECT(factor1->equals(*factor3));
|
||||
}
|
||||
{ // create slightly different factors (different keys) and show equal
|
||||
// returns false
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
|
||||
factor1->add(measurement2, x2, x2, interp_factor2, sharedK,
|
||||
body_P_sensor); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
|
||||
// returns false (use default cameraIds)
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
|
||||
factor1->add(measurement2, x2, x2, interp_factor2,
|
||||
cameraId1); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
|
||||
|
||||
EXPECT(!factor1->equals(*factor2));
|
||||
EXPECT(!factor1->equals(*factor3));
|
||||
}
|
||||
{ // create slightly different factors (different extrinsics) and show equal
|
||||
// returns false
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
|
||||
factor1->add(measurement2, x2, x3, interp_factor2, sharedK,
|
||||
body_P_sensor * body_P_sensor); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
|
||||
Cameras cameraRig2;
|
||||
cameraRig2.push_back(Camera(body_P_sensor * body_P_sensor, sharedK));
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig2, params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
|
||||
factor1->add(measurement2, x2, x3, interp_factor2,
|
||||
cameraId1); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
|
||||
|
||||
EXPECT(!factor1->equals(*factor2));
|
||||
EXPECT(!factor1->equals(*factor3));
|
||||
}
|
||||
{ // create slightly different factors (different interp factors) and show
|
||||
// equal returns false
|
||||
SmartFactorRS::shared_ptr factor1(new SmartFactorRS(model));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, sharedK, body_P_sensor);
|
||||
factor1->add(measurement2, x2, x3, interp_factor1, sharedK,
|
||||
body_P_sensor); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, sharedK, body_P_sensor);
|
||||
SmartFactorRS::shared_ptr factor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
|
||||
factor1->add(measurement2, x2, x3, interp_factor1,
|
||||
cameraId1); // different!
|
||||
factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
|
||||
|
||||
EXPECT(!factor1->equals(*factor2));
|
||||
EXPECT(!factor1->equals(*factor3));
|
||||
|
@ -196,9 +226,9 @@ TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
|
|||
Point2 level_uv_right = cam2.project(landmark1);
|
||||
Pose3 body_P_sensorId = Pose3::identity();
|
||||
|
||||
SmartFactorRS factor(model);
|
||||
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorId);
|
||||
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK, body_P_sensorId);
|
||||
SmartFactorRS factor(model, Camera(body_P_sensorId, sharedK), params);
|
||||
factor.add(level_uv, x1, x2, interp_factor1);
|
||||
factor.add(level_uv_right, x2, x3, interp_factor2);
|
||||
|
||||
Values values; // it's a pose factor, hence these are poses
|
||||
values.insert(x1, level_pose);
|
||||
|
@ -271,10 +301,9 @@ TEST(SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians) {
|
|||
Point2 level_uv_right = cam2.project(landmark1);
|
||||
Pose3 body_P_sensorNonId = body_P_sensor;
|
||||
|
||||
SmartFactorRS factor(model);
|
||||
factor.add(level_uv, x1, x2, interp_factor1, sharedK, body_P_sensorNonId);
|
||||
factor.add(level_uv_right, x2, x3, interp_factor2, sharedK,
|
||||
body_P_sensorNonId);
|
||||
SmartFactorRS factor(model, Camera(body_P_sensorNonId, sharedK), params);
|
||||
factor.add(level_uv, x1, x2, interp_factor1);
|
||||
factor.add(level_uv_right, x2, x3, interp_factor2);
|
||||
|
||||
Values values; // it's a pose factor, hence these are poses
|
||||
values.insert(x1, level_pose);
|
||||
|
@ -363,14 +392,17 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
|
|||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor2(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor3(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
@ -410,6 +442,170 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
|
|||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
|
||||
using namespace vanillaPoseRS;
|
||||
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
|
||||
|
||||
// create inputs
|
||||
std::vector<std::pair<Key, Key>> key_pairs;
|
||||
key_pairs.push_back(std::make_pair(x1, x2));
|
||||
key_pairs.push_back(std::make_pair(x2, x3));
|
||||
key_pairs.push_back(std::make_pair(x3, x1));
|
||||
|
||||
std::vector<double> interp_factors;
|
||||
interp_factors.push_back(interp_factor1);
|
||||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back(Camera(body_P_sensor, sharedK));
|
||||
cameraRig.push_back(Camera(Pose3::identity(), sharedK));
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {1, 1, 1});
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor2(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {1, 1, 1});
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor3(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {1, 1, 1});
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, level_pose, noisePrior);
|
||||
graph.addPrior(x2, pose_right, noisePrior);
|
||||
|
||||
Values groundTruth;
|
||||
groundTruth.insert(x1, level_pose);
|
||||
groundTruth.insert(x2, pose_right);
|
||||
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
|
||||
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
||||
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
values.insert(x2, pose_right);
|
||||
// initialize third pose with some noise, we expect it to move back to
|
||||
// original pose_above
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT( // check that the pose is actually noisy
|
||||
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
|
||||
-0.0313952598, -0.000986635786, 0.0314107591,
|
||||
-0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam2) {
|
||||
using namespace vanillaPoseRS;
|
||||
|
||||
Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
|
||||
|
||||
// create arbitrary body_T_sensor (transforms from sensor to body)
|
||||
Pose3 body_T_sensor1 = Pose3(Rot3::Ypr(-0.03, 0., 0.01), Point3(1, 1, 1));
|
||||
Pose3 body_T_sensor2 = Pose3(Rot3::Ypr(-0.1, 0., 0.05), Point3(0, 0, 1));
|
||||
Pose3 body_T_sensor3 = Pose3(Rot3::Ypr(-0.3, 0., -0.05), Point3(0, 1, 1));
|
||||
|
||||
Camera camera1(interp_pose1 * body_T_sensor1, sharedK);
|
||||
Camera camera2(interp_pose2 * body_T_sensor2, sharedK);
|
||||
Camera camera3(interp_pose3 * body_T_sensor3, sharedK);
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(camera1, camera2, camera3, landmark1,
|
||||
measurements_lmk1);
|
||||
projectToMultipleCameras(camera1, camera2, camera3, landmark2,
|
||||
measurements_lmk2);
|
||||
projectToMultipleCameras(camera1, camera2, camera3, landmark3,
|
||||
measurements_lmk3);
|
||||
|
||||
// create inputs
|
||||
std::vector<std::pair<Key, Key>> key_pairs;
|
||||
key_pairs.push_back(std::make_pair(x1, x2));
|
||||
key_pairs.push_back(std::make_pair(x2, x3));
|
||||
key_pairs.push_back(std::make_pair(x3, x1));
|
||||
|
||||
std::vector<double> interp_factors;
|
||||
interp_factors.push_back(interp_factor1);
|
||||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back(Camera(body_T_sensor1, sharedK));
|
||||
cameraRig.push_back(Camera(body_T_sensor2, sharedK));
|
||||
cameraRig.push_back(Camera(body_T_sensor3, sharedK));
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {0, 1, 2});
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor2(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {0, 1, 2});
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor3(
|
||||
new SmartFactorRS(model, cameraRig, params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {0, 1, 2});
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, level_pose, noisePrior);
|
||||
graph.addPrior(x2, pose_right, noisePrior);
|
||||
|
||||
Values groundTruth;
|
||||
groundTruth.insert(x1, level_pose);
|
||||
groundTruth.insert(x2, pose_right);
|
||||
groundTruth.insert(x3, pose_above); // pose above is the pose of the camera
|
||||
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
|
||||
// Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
values.insert(x2, pose_right);
|
||||
// initialize third pose with some noise, we expect it to move back to
|
||||
// original pose_above
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT( // check that the pose is actually noisy
|
||||
assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
|
||||
-0.0313952598, -0.000986635786, 0.0314107591,
|
||||
-0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-4));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
|
||||
// here we replicate a test in SmartProjectionPoseFactor by setting
|
||||
|
@ -417,7 +613,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
|
|||
// falls back to standard pixel measurements) Note: this is a quite extreme
|
||||
// test since in typical camera you would not have more than 1 measurement per
|
||||
// landmark at each interpolated pose
|
||||
using namespace vanillaPose;
|
||||
using namespace vanillaPoseRS;
|
||||
|
||||
// Default cameras for simple derivatives
|
||||
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
|
||||
|
@ -437,15 +633,14 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
|
|||
measurements_lmk1.push_back(cam1.project(landmark1));
|
||||
measurements_lmk1.push_back(cam2.project(landmark1));
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(body_P_sensorId, sharedKSimple), params));
|
||||
double interp_factor = 0; // equivalent to measurement taken at pose 1
|
||||
smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor, sharedKSimple,
|
||||
body_P_sensorId);
|
||||
smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor);
|
||||
interp_factor = 1; // equivalent to measurement taken at pose 2
|
||||
smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor, sharedKSimple,
|
||||
body_P_sensorId);
|
||||
smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor);
|
||||
|
||||
SmartFactor::Cameras cameras;
|
||||
SmartFactorRS::Cameras cameras;
|
||||
cameras.push_back(cam1);
|
||||
cameras.push_back(cam2);
|
||||
|
||||
|
@ -533,14 +728,14 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
|
|||
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
||||
params.setEnableEPI(true);
|
||||
|
||||
SmartFactorRS smartFactor1(model, params);
|
||||
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor1(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS smartFactor2(model, params);
|
||||
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor2(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS smartFactor3(model, params);
|
||||
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor3(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
@ -593,18 +788,20 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
SmartProjectionParams params;
|
||||
params.setRankTolerance(1.0);
|
||||
params.setLinearizationMode(gtsam::HESSIAN);
|
||||
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
|
||||
// params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY); // this would give an
|
||||
// exception as expected
|
||||
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
|
||||
params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
|
||||
params.setEnableEPI(false);
|
||||
|
||||
SmartFactorRS smartFactor1(model, params);
|
||||
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor1(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS smartFactor2(model, params);
|
||||
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor2(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS smartFactor3(model, params);
|
||||
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS smartFactor3(model, Camera(Pose3::identity(), sharedK), params);
|
||||
smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
@ -672,17 +869,21 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
|
||||
params.setEnableEPI(false);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model, params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model, params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor2(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model, params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor3(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor4(new SmartFactorRS(model, params));
|
||||
smartFactor4->add(measurements_lmk4, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor4(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor4->add(measurements_lmk4, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
@ -732,8 +933,9 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
|
@ -869,9 +1071,9 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
interp_factors.push_back(interp_factor3);
|
||||
interp_factors.push_back(interp_factor1);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors,
|
||||
sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors);
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
|
@ -1025,15 +1227,18 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
interp_factors_redundant.push_back(
|
||||
interp_factors.at(0)); // we readd the first interp factor
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor1(new SmartFactorRS(model));
|
||||
SmartFactorRS::shared_ptr smartFactor1(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
|
||||
interp_factors_redundant, sharedK);
|
||||
interp_factors_redundant);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor2(new SmartFactorRS(model));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor2(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS::shared_ptr smartFactor3(new SmartFactorRS(model));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, sharedK);
|
||||
SmartFactorRS::shared_ptr smartFactor3(
|
||||
new SmartFactorRS(model, Camera(Pose3::identity(), sharedK), params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
|
@ -1075,16 +1280,20 @@ TEST(SmartProjectionPoseFactorRollingShutter,
|
|||
|
||||
#ifndef DISABLE_TIMING
|
||||
#include <gtsam/base/timing.h>
|
||||
// -Total: 0 CPU (0 times, 0 wall, 0.04 children, min: 0 max: 0)
|
||||
//| -SF RS LINEARIZE: 0.02 CPU (1000 times, 0.017244 wall, 0.02 children, min:
|
||||
// 0 max: 0) | -RS LINEARIZE: 0.02 CPU (1000 times, 0.009035 wall, 0.02
|
||||
// children, min: 0 max: 0)
|
||||
//-Total: 0 CPU (0 times, 0 wall, 0.21 children, min: 0 max: 0)
|
||||
//| -SF RS LINEARIZE: 0.14 CPU
|
||||
//(10000 times, 0.131202 wall, 0.14 children, min: 0 max: 0)
|
||||
//| -RS LINEARIZE: 0.06 CPU
|
||||
//(10000 times, 0.066951 wall, 0.06 children, min: 0 max: 0)
|
||||
/* *************************************************************************/
|
||||
TEST(SmartProjectionPoseFactorRollingShutter, timing) {
|
||||
using namespace vanillaPose;
|
||||
|
||||
// Default cameras for simple derivatives
|
||||
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
|
||||
SmartProjectionParams params(
|
||||
gtsam::HESSIAN,
|
||||
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
|
||||
|
||||
Rot3 R = Rot3::identity();
|
||||
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
|
||||
|
@ -1101,16 +1310,15 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
|
|||
measurements_lmk1.push_back(cam1.project(landmark1));
|
||||
measurements_lmk1.push_back(cam2.project(landmark1));
|
||||
|
||||
size_t nrTests = 1000;
|
||||
size_t nrTests = 10000;
|
||||
|
||||
for (size_t i = 0; i < nrTests; i++) {
|
||||
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(model));
|
||||
SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(
|
||||
model, Camera(body_P_sensorId, sharedKSimple), params));
|
||||
double interp_factor = 0; // equivalent to measurement taken at pose 1
|
||||
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor,
|
||||
sharedKSimple, body_P_sensorId);
|
||||
smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor);
|
||||
interp_factor = 1; // equivalent to measurement taken at pose 2
|
||||
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor,
|
||||
sharedKSimple, body_P_sensorId);
|
||||
smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
|
@ -1121,7 +1329,8 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
|
|||
}
|
||||
|
||||
for (size_t i = 0; i < nrTests; i++) {
|
||||
SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
|
||||
SmartFactor::shared_ptr smartFactor(
|
||||
new SmartFactor(model, sharedKSimple, params));
|
||||
smartFactor->add(measurements_lmk1[0], x1);
|
||||
smartFactor->add(measurements_lmk1[1], x2);
|
||||
|
||||
|
@ -1141,6 +1350,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
|
|||
// spherical Camera with rolling shutter effect
|
||||
namespace sphericalCameraRS {
|
||||
typedef SphericalCamera Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionPoseFactorRollingShutter<Camera> SmartFactorRS_spherical;
|
||||
Pose3 interp_pose1 = interpolate<Pose3>(level_pose,pose_right,interp_factor1);
|
||||
Pose3 interp_pose2 = interpolate<Pose3>(pose_right,pose_above,interp_factor2);
|
||||
|
@ -1173,55 +1383,60 @@ TEST( SmartProjectionPoseFactorRollingShutter, optimization_3poses_sphericalCame
|
|||
interp_factors.push_back(interp_factor2);
|
||||
interp_factors.push_back(interp_factor3);
|
||||
|
||||
SmartProjectionParams params;
|
||||
SmartProjectionParams params(
|
||||
gtsam::HESSIAN,
|
||||
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
|
||||
params.setRankTolerance(0.1);
|
||||
|
||||
SmartFactorRS_spherical::shared_ptr smartFactor1(
|
||||
new SmartFactorRS_spherical(model,params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, emptyK);
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back(Camera(Pose3::identity(), emptyK));
|
||||
|
||||
// SmartFactorRS_spherical::shared_ptr smartFactor2(
|
||||
// new SmartFactorRS_spherical(model,params));
|
||||
// smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, emptyK);
|
||||
//
|
||||
// SmartFactorRS_spherical::shared_ptr smartFactor3(
|
||||
// new SmartFactorRS_spherical(model,params));
|
||||
// smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, emptyK);
|
||||
//
|
||||
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
//
|
||||
// NonlinearFactorGraph graph;
|
||||
// graph.push_back(smartFactor1);
|
||||
// graph.push_back(smartFactor2);
|
||||
// graph.push_back(smartFactor3);
|
||||
// graph.addPrior(x1, level_pose, noisePrior);
|
||||
// graph.addPrior(x2, pose_right, noisePrior);
|
||||
//
|
||||
// Values groundTruth;
|
||||
// groundTruth.insert(x1, level_pose);
|
||||
// groundTruth.insert(x2, pose_right);
|
||||
// groundTruth.insert(x3, pose_above);
|
||||
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
//
|
||||
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
// Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
// Values values;
|
||||
// values.insert(x1, level_pose);
|
||||
// values.insert(x2, pose_right);
|
||||
// // initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
// values.insert(x3, pose_above * noise_pose);
|
||||
// EXPECT( // check that the pose is actually noisy
|
||||
// assert_equal(
|
||||
// Pose3(
|
||||
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
//
|
||||
// Values result;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
// result = optimizer.optimize();
|
||||
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
SmartFactorRS_spherical::shared_ptr smartFactor1(
|
||||
new SmartFactorRS_spherical(model,cameraRig,params));
|
||||
smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS_spherical::shared_ptr smartFactor2(
|
||||
new SmartFactorRS_spherical(model,cameraRig,params));
|
||||
smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
|
||||
|
||||
SmartFactorRS_spherical::shared_ptr smartFactor3(
|
||||
new SmartFactorRS_spherical(model,cameraRig,params));
|
||||
smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, level_pose, noisePrior);
|
||||
graph.addPrior(x2, pose_right, noisePrior);
|
||||
|
||||
Values groundTruth;
|
||||
groundTruth.insert(x1, level_pose);
|
||||
groundTruth.insert(x2, pose_right);
|
||||
groundTruth.insert(x3, pose_above);
|
||||
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, level_pose);
|
||||
values.insert(x2, pose_right);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT( // check that the pose is actually noisy
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue