fixed last test - this is good to go!
parent
9834042040
commit
2f03e588fc
|
@ -17,6 +17,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/geometry/CameraSet.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -127,89 +128,86 @@ TEST(CameraSet, Pinhole) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(CameraSet, SchurComplementAndRearrangeBlocks) {
|
||||
typedef PinholePose<Cal3Bundler> Camera;
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef CameraSet<Camera> Set;
|
||||
typedef Point2Vector ZZ;
|
||||
|
||||
KeyVector nonuniqueKeys;
|
||||
nonuniqueKeys.push_back(0);
|
||||
nonuniqueKeys.push_back(1);
|
||||
nonuniqueKeys.push_back(1);
|
||||
nonuniqueKeys.push_back(2);
|
||||
nonuniqueKeys.push_back(2);
|
||||
nonuniqueKeys.push_back(0);
|
||||
|
||||
KeyVector uniqueKeys;
|
||||
uniqueKeys.push_back(0);
|
||||
uniqueKeys.push_back(1);
|
||||
uniqueKeys.push_back(2);
|
||||
|
||||
// this is the (block) Jacobian with respect to the nonuniqueKeys
|
||||
std::vector<Eigen::Matrix<double,2, 12>,
|
||||
Eigen::aligned_allocator<Eigen::Matrix<double,2,12> > > Fs;
|
||||
Fs.push_back(1 * Matrix::Ones(2,12)); // corresponding to key pair (0,1)
|
||||
Fs.push_back(2 * Matrix::Ones(2,12)); // corresponding to key pair (1,2)
|
||||
Fs.push_back(3 * Matrix::Ones(2,12)); // corresponding to key pair (2,0)
|
||||
Matrix E = Matrix::Identity(6,3) + Matrix::Ones(6,3);
|
||||
Matrix34 Et = E.transpose();
|
||||
std::vector<Eigen::Matrix<double, 2, 12>,
|
||||
Eigen::aligned_allocator<Eigen::Matrix<double, 2, 12> > > Fs;
|
||||
Fs.push_back(1 * Matrix::Ones(2, 12)); // corresponding to key pair (0,1)
|
||||
Fs.push_back(2 * Matrix::Ones(2, 12)); // corresponding to key pair (1,2)
|
||||
Fs.push_back(3 * Matrix::Ones(2, 12)); // corresponding to key pair (2,0)
|
||||
Matrix E = 4 * Matrix::Identity(6, 3) + Matrix::Ones(6, 3);
|
||||
E(0, 0) = 3;
|
||||
E(1, 1) = 2;
|
||||
E(2, 2) = 5;
|
||||
Matrix Et = E.transpose();
|
||||
Matrix P = (Et * E).inverse();
|
||||
Vector b = 5*Vector::Ones(6);
|
||||
Vector b = 5 * Vector::Ones(6);
|
||||
|
||||
// { // SchurComplement
|
||||
// // Actual
|
||||
// SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplement<3,12>(Fs,E,P,b);
|
||||
// Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
|
||||
//
|
||||
// // Expected
|
||||
// Matrix F = Matrix::Zero(6,3*12);
|
||||
// F.block<2,12>(0,0) = Fs[0];
|
||||
// F.block<2,12>(2,12) = Fs[1];
|
||||
// F.block<2,12>(4,24) = Fs[2];
|
||||
//
|
||||
// std::cout << "E \n" << E << std::endl;
|
||||
// std::cout << "P \n" << P << std::endl;
|
||||
// std::cout << "F \n" << F << std::endl;
|
||||
//
|
||||
// Matrix Ft = F.transpose();
|
||||
// Matrix H = Ft * F - Ft * E * P * Et * F;
|
||||
// Vector v = Ft * (b - E * P * Et * b);
|
||||
// Matrix expectedAugmentedHessian = Matrix::Zero(3*12+1, 3*12+1);
|
||||
// expectedAugmentedHessian.block<36,36>(0,0) = H;
|
||||
// expectedAugmentedHessian.block<36,1>(0,36) = v;
|
||||
// expectedAugmentedHessian.block<1,36>(36,0) = v.transpose();
|
||||
// expectedAugmentedHessian(36,36) = b.squaredNorm();
|
||||
//
|
||||
// EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
|
||||
// }
|
||||
{ // SchurComplement
|
||||
// Actual
|
||||
SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplement<3, 12>(Fs, E,
|
||||
P, b);
|
||||
Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
|
||||
|
||||
// { // SchurComplementAndRearrangeBlocks
|
||||
// // Actual
|
||||
// SymmetricBlockMatrix augmentedHessianBM = Set::SchurComplementAndRearrangeBlocks<3,12,6>(
|
||||
// Fs,E,P,b,nonuniqueKeys,uniqueKeys);
|
||||
// Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
|
||||
//
|
||||
// // Expected
|
||||
// // we first need to build the Jacobian F according to unique keys
|
||||
// Matrix F = Matrix::Zero(6,18);
|
||||
// F.block<2,6>(0,0) = Fs[0].block<2,6>(0,0);
|
||||
// F.block<2,6>(0,6) = Fs[0].block<2,6>(0,6);
|
||||
// F.block<2,6>(2,6) = Fs[1].block<2,6>(0,0);
|
||||
// F.block<2,6>(2,12) = Fs[1].block<2,6>(0,6);
|
||||
// F.block<2,6>(4,12) = Fs[2].block<2,6>(0,0);
|
||||
// F.block<2,6>(4,0) = Fs[2].block<2,6>(0,6);
|
||||
//
|
||||
// std::cout << "P \n" << P << std::endl;
|
||||
// std::cout << "F \n" << F << std::endl;
|
||||
//
|
||||
// Matrix Ft = F.transpose();
|
||||
// Matrix34 Et = E.transpose();
|
||||
// Vector v = Ft * (b - E * P * Et * b);
|
||||
// Matrix H = Ft * F - Ft * E * P * Et * F;
|
||||
// Matrix expectedAugmentedHessian(19, 19);
|
||||
// expectedAugmentedHessian << H, v, v.transpose(), b.squaredNorm();
|
||||
//
|
||||
// EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
|
||||
// }
|
||||
// Expected
|
||||
Matrix F = Matrix::Zero(6, 3 * 12);
|
||||
F.block<2, 12>(0, 0) = 1 * Matrix::Ones(2, 12);
|
||||
F.block<2, 12>(2, 12) = 2 * Matrix::Ones(2, 12);
|
||||
F.block<2, 12>(4, 24) = 3 * Matrix::Ones(2, 12);
|
||||
|
||||
Matrix Ft = F.transpose();
|
||||
Matrix H = Ft * F - Ft * E * P * Et * F;
|
||||
Vector v = Ft * (b - E * P * Et * b);
|
||||
Matrix expectedAugmentedHessian = Matrix::Zero(3 * 12 + 1, 3 * 12 + 1);
|
||||
expectedAugmentedHessian.block<36, 36>(0, 0) = H;
|
||||
expectedAugmentedHessian.block<36, 1>(0, 36) = v;
|
||||
expectedAugmentedHessian.block<1, 36>(36, 0) = v.transpose();
|
||||
expectedAugmentedHessian(36, 36) = b.squaredNorm();
|
||||
|
||||
EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
|
||||
}
|
||||
|
||||
{ // SchurComplementAndRearrangeBlocks
|
||||
KeyVector nonuniqueKeys;
|
||||
nonuniqueKeys.push_back(0);
|
||||
nonuniqueKeys.push_back(1);
|
||||
nonuniqueKeys.push_back(1);
|
||||
nonuniqueKeys.push_back(2);
|
||||
nonuniqueKeys.push_back(2);
|
||||
nonuniqueKeys.push_back(0);
|
||||
|
||||
KeyVector uniqueKeys;
|
||||
uniqueKeys.push_back(0);
|
||||
uniqueKeys.push_back(1);
|
||||
uniqueKeys.push_back(2);
|
||||
|
||||
// Actual
|
||||
SymmetricBlockMatrix augmentedHessianBM =
|
||||
Set::SchurComplementAndRearrangeBlocks<3, 12, 6>(Fs, E, P, b,
|
||||
nonuniqueKeys,
|
||||
uniqueKeys);
|
||||
Matrix actualAugmentedHessian = augmentedHessianBM.selfadjointView();
|
||||
|
||||
// Expected
|
||||
// we first need to build the Jacobian F according to unique keys
|
||||
Matrix F = Matrix::Zero(6, 18);
|
||||
F.block<2, 6>(0, 0) = Fs[0].block<2, 6>(0, 0);
|
||||
F.block<2, 6>(0, 6) = Fs[0].block<2, 6>(0, 6);
|
||||
F.block<2, 6>(2, 6) = Fs[1].block<2, 6>(0, 0);
|
||||
F.block<2, 6>(2, 12) = Fs[1].block<2, 6>(0, 6);
|
||||
F.block<2, 6>(4, 12) = Fs[2].block<2, 6>(0, 0);
|
||||
F.block<2, 6>(4, 0) = Fs[2].block<2, 6>(0, 6);
|
||||
|
||||
Matrix Ft = F.transpose();
|
||||
Vector v = Ft * (b - E * P * Et * b);
|
||||
Matrix H = Ft * F - Ft * E * P * Et * F;
|
||||
Matrix expectedAugmentedHessian(19, 19);
|
||||
expectedAugmentedHessian << H, v, v.transpose(), b.squaredNorm();
|
||||
|
||||
EXPECT(assert_equal(expectedAugmentedHessian, actualAugmentedHessian));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue