Merge branch 'feature/sampson-epipolar-error' into feature/essential-mat-with-approx-k
commit
2e69d09732
|
|
@ -154,25 +154,27 @@ double EssentialMatrix::error(const Vector3& vA, const Vector3& vB,
|
|||
Matrix15 numerator_H;
|
||||
numerator_H << numerator_H_R, numerator_H_D;
|
||||
|
||||
*HE = numerator_H / denominator -
|
||||
algebraic_error * denominator_H / (denominator * denominator);
|
||||
*HE = 2 * sampson_error * (numerator_H / denominator -
|
||||
algebraic_error * denominator_H / (denominator * denominator));
|
||||
}
|
||||
|
||||
if (HvA){
|
||||
Matrix13 numerator_H_vA = vB.transpose() * matrix().transpose();
|
||||
Matrix13 denominator_H_vA = nA.transpose() * I * matrix().transpose() / denominator;
|
||||
|
||||
*HvA = numerator_H_vA / denominator - algebraic_error * denominator_H_vA / (denominator * denominator);
|
||||
*HvA = 2 * sampson_error * (numerator_H_vA / denominator -
|
||||
algebraic_error * denominator_H_vA / (denominator * denominator));
|
||||
}
|
||||
|
||||
if (HvB){
|
||||
Matrix13 numerator_H_vB = vA.transpose() * matrix();
|
||||
Matrix13 denominator_H_vB = nB.transpose() * I * matrix() / denominator;
|
||||
|
||||
*HvB = numerator_H_vB / denominator - algebraic_error * denominator_H_vB / (denominator * denominator);
|
||||
*HvB = 2 * sampson_error * (numerator_H_vB / denominator -
|
||||
algebraic_error * denominator_H_vB / (denominator * denominator));
|
||||
}
|
||||
|
||||
return sampson_error;
|
||||
return sampson_error * sampson_error;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -159,7 +159,7 @@ class EssentialMatrix {
|
|||
return E.rotate(cRb);
|
||||
}
|
||||
|
||||
/// epipolar error, sampson
|
||||
/// epipolar error, sampson squared
|
||||
GTSAM_EXPORT double error(const Vector3& vA, const Vector3& vB,
|
||||
OptionalJacobian<1, 5> HE = boost::none,
|
||||
OptionalJacobian<1, 3> HvA = boost::none,
|
||||
|
|
|
|||
|
|
@ -254,8 +254,8 @@ TEST(EssentialMatrix, errorValue) {
|
|||
// algebraic error = 5
|
||||
// norm of line for b = 1
|
||||
// norm of line for a = 1
|
||||
// sampson error = 5 / sqrt(1^2 + 1^2)
|
||||
double expected = 3.535533906;
|
||||
// sampson error = 5^2 / 1^2 + 1^2
|
||||
double expected = 12.5;
|
||||
|
||||
// check the error
|
||||
double actual = trueE.error(a, b);
|
||||
|
|
|
|||
|
|
@ -25,7 +25,7 @@ using namespace gtsam;
|
|||
|
||||
// Noise model for first type of factor is evaluating algebraic error
|
||||
noiseModel::Isotropic::shared_ptr model1 = noiseModel::Isotropic::Sigma(1,
|
||||
0.01);
|
||||
1e-4);
|
||||
// Noise model for second type of factor is evaluating pixel coordinates
|
||||
noiseModel::Unit::shared_ptr model2 = noiseModel::Unit::Create(2);
|
||||
|
||||
|
|
@ -120,7 +120,8 @@ TEST(EssentialMatrixFactor, ExpressionFactor) {
|
|||
Key key(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2, boost::none,
|
||||
boost::none);
|
||||
Expression<EssentialMatrix> E_(key); // leaf expression
|
||||
Expression<double> expr(f, E_); // unary expression
|
||||
|
||||
|
|
@ -146,9 +147,12 @@ TEST(EssentialMatrixFactor, ExpressionFactorRotationOnly) {
|
|||
Key key(1);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
boost::function<double(const EssentialMatrix&, OptionalJacobian<1, 5>)> f =
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2);
|
||||
boost::function<EssentialMatrix(const Rot3&, const Unit3&, OptionalJacobian<5, 3>,
|
||||
OptionalJacobian<5, 2>)> g;
|
||||
boost::bind(&EssentialMatrix::error, _1, vA(i), vB(i), _2, boost::none,
|
||||
boost::none);
|
||||
boost::function<EssentialMatrix(const Rot3&, const Unit3&,
|
||||
OptionalJacobian<5, 3>,
|
||||
OptionalJacobian<5, 2>)>
|
||||
g;
|
||||
Expression<Rot3> R_(key);
|
||||
Expression<Unit3> d_(trueDirection);
|
||||
Expression<EssentialMatrix> E_(&EssentialMatrix::FromRotationAndDirection, R_, d_);
|
||||
|
|
@ -195,9 +199,9 @@ TEST (EssentialMatrixFactor, minimization) {
|
|||
(Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1).finished());
|
||||
initial.insert(1, initialE);
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT_DOUBLES_EQUAL(419.07, graph.error(initial), 1e-2);
|
||||
EXPECT_DOUBLES_EQUAL(59403.51, graph.error(initial), 1e-2);
|
||||
#else
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2); # TODO: redo this error
|
||||
#endif
|
||||
|
||||
// Optimize
|
||||
|
|
@ -519,7 +523,7 @@ TEST(EssentialMatrixFactor, extraMinimization) {
|
|||
initial.insert(1, initialE);
|
||||
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT_DOUBLES_EQUAL(313.85, graph.error(initial), 1e-2);
|
||||
EXPECT_DOUBLES_EQUAL(59403.51, graph.error(initial), 1e-2);
|
||||
#else
|
||||
EXPECT_DOUBLES_EQUAL(639.84, graph.error(initial), 1e-2);
|
||||
#endif
|
||||
|
|
|
|||
Loading…
Reference in New Issue