code reorganization

release/4.3a0
Luca 2014-04-17 15:23:01 -04:00
parent 9bc0ddd4a2
commit 2e3dcd2ab7
4 changed files with 135 additions and 124 deletions

View File

@ -100,9 +100,6 @@ gtGraph = imuSimulator.covarianceAnalysisCreateFactorGraph( ...
%gtGraph.print(sprintf('\nGround Truth Factor graph:\n'));
%gtValues.print(sprintf('\nGround Truth Values:\n '));
warning('Additional prior on zerobias')
warning('Additional PriorFactorLieVector on velocities')
figure(1)
hold on;
plot3DPoints(gtValues);
@ -150,9 +147,9 @@ for k=1:numMonteCarloRuns
marginals = Marginals(graph, estimate);
% for each pose in the trajectory
for i=1:size(gtMeasurements.deltaMatrix,1)+1
for i=0:options.trajectoryLength
% compute estimation errors
currentPoseKey = symbol('x', i-1);
currentPoseKey = symbol('x', i);
gtPosition = gtValues.at(currentPoseKey).translation.vector;
estPosition = estimate.at(currentPoseKey).translation.vector;
estR = estimate.at(currentPoseKey).rotation.matrix;
@ -163,7 +160,7 @@ for k=1:numMonteCarloRuns
covPosition = estR * cov(4:6,4:6) * estR';
% compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances
NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof
NEES(k,i+1) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof
end
figure(2)
@ -215,7 +212,7 @@ title('NEES normalized by dof VS bounds');
saveas(gcf,horzcat(folderName,'ANEES-',testName,'.fig'),'fig');
logFile = horzcat(folderName,'log-',testName);
save(logFile)
%save(logFile)
%% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4)
% the nees for a single experiment (i) is defined as

View File

@ -11,7 +11,7 @@ import gtsam.*;
graph = NonlinearFactorGraph;
% Iterate through the trajectory
for i=0:size(measurements.deltaMatrix, 1);
for i=0:length(measurements)
% Get the current pose
currentPoseKey = symbol('x', i);
currentPose = values.at(currentPoseKey);
@ -41,12 +41,12 @@ for i=0:size(measurements.deltaMatrix, 1);
end
else
prevPoseKey = symbol('x', i-1);
%% Add Between factors
if options.includeBetweenFactors == 1
prevPoseKey = symbol('x', i-1);
% Create the noisy pose estimate
deltaPose = Pose3.Expmap(measurements.deltaMatrix(i,:)' ...
deltaPose = Pose3.Expmap(measurements(i).deltaVector ...
+ (measurementNoise.poseNoiseVector .* randn(6,1))); % added noise
% Add the between factor to the graph
graph.add(BetweenFactorPose3(prevPoseKey, currentPoseKey, deltaPose, noiseModels.noisePose));
@ -57,50 +57,53 @@ for i=0:size(measurements.deltaMatrix, 1);
% Update keys
currentVelKey = symbol('v', i); % not used if includeIMUFactors is false
currentBiasKey = symbol('b', i); % not used if includeIMUFactors is false
% Generate IMU measurements with noise
imuAccel = measurements.imu.accel(i,:)' ...
+ (measurementNoise.imu.accelNoiseVector .* randn(3,1)); % added noise
imuGyro = measurements.imu.gyro(i,:)' ...
+ (measurementNoise.imu.gyroNoiseVector .* randn(3,1)); % added noise
if options.imuFactorType == 2
% Initialize preintegration
imuMeasurement = gtsam.CombinedImuFactorPreintegratedMeasurements(...
metadata.imu.zeroBias, ...
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
metadata.imu.IntegrationSigma.^2 * eye(3), ...
metadata.imu.BiasAccelerometerSigma.^2 * eye(3), ...
metadata.imu.BiasGyroscopeSigma.^2 * eye(3), ...
metadata.imu.BiasAccOmegaInit.^2 * eye(6));
% Preintegrate
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements.imu.deltaT(i));
% Add Imu factor
graph.add(CombinedImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey-1, currentBiasKey, ...
imuMeasurement, ...
metadata.imu.g, metadata.imu.omegaCoriolis, ...
noiseModel.Isotropic.Sigma(15, metadata.imu.epsBias)));
else % IMU type 1
if options.imuFactorType == 1
% Initialize preintegration
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(...
metadata.imu.zeroBias, ...
metadata.imu.AccelerometerSigma.^2 * eye(3), ...
metadata.imu.GyroscopeSigma.^2 * eye(3), ...
metadata.imu.IntegrationSigma.^2 * eye(3));
% Generate IMU measurements with noise
for j=1:length(measurements(i).imu) % all measurements to preintegrate
imuAccel = measurements(i).imu(j).accel ...
+ (measurementNoise.imu.accelNoiseVector .* randn(3,1)); % added noise
imuGyro = measurements(i).imu(j).gyro ...
+ (measurementNoise.imu.gyroNoiseVector .* randn(3,1)); % added noise
% Preintegrate
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements.imu.deltaT(i));
imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements(i).imu(j).deltaT);
% Add Imu factor
graph.add(ImuFactor(currentPoseKey-1, currentVelKey-1, currentPoseKey, currentVelKey, ...
currentBiasKey-1, imuMeasurement, metadata.imu.g, metadata.imu.omegaCoriolis));
% Add between factor on biases
graph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, metadata.imu.zeroBias, ...
noiseModel.Isotropic.Sigma(6, metadata.imu.epsBias)));
% Additional prior on zerobias
%graph.add(PriorFactorConstantBias(currentBiasKey, metadata.imu.zeroBias, ...
% noiseModel.Isotropic.Sigma(6, metadata.imu.epsBias)));
end
end
if options.imuFactorType == 2
% % Initialize preintegration
% imuMeasurement = gtsam.CombinedImuFactorPreintegratedMeasurements(...
% metadata.imu.zeroBias, ...
% metadata.imu.AccelerometerSigma.^2 * eye(3), ...
% metadata.imu.GyroscopeSigma.^2 * eye(3), ...
% metadata.imu.IntegrationSigma.^2 * eye(3), ...
% metadata.imu.BiasAccelerometerSigma.^2 * eye(3), ...
% metadata.imu.BiasGyroscopeSigma.^2 * eye(3), ...
% metadata.imu.BiasAccOmegaInit.^2 * eye(6));
% % Preintegrate
% imuMeasurement.integrateMeasurement(imuAccel, imuGyro, measurements.imu.deltaT(i));
% % Add Imu factor
% graph.add(CombinedImuFactor( ...
% currentPoseKey-1, currentVelKey-1, ...
% currentPoseKey, currentVelKey, ...
% currentBiasKey-1, currentBiasKey, ...
% imuMeasurement, ...
% metadata.imu.g, metadata.imu.omegaCoriolis, ...
% noiseModel.Isotropic.Sigma(15, metadata.imu.epsBias)));
end
end % end of IMU factor creation
@ -115,7 +118,7 @@ for i=0:size(measurements.deltaMatrix, 1);
landmarkKey = symbol('p', j);
try
Z = gtCamera.project(gtLandmarkPoints(j));
%% TO-DO probably want to do some type of filtering on the measurement values, because
% TO-DO probably want to do some type of filtering on the measurement values, because
% they might not all be valid
graph.add(GenericProjectionFactorCal3_S2(Z, cameraMeasurementNoise, currentPoseKey, landmarkKey, K));
catch

View File

@ -9,8 +9,8 @@ import gtsam.*;
values = Values;
warning('fake angles! TODO: use constructor from roll-pitch-yaw when using real data')
warning('using identity rotation')
warning('fake angles! TODO: use constructor from roll-pitch-yaw when using real data')
warning('using identity rotation')
if options.useRealData == 1
%% Create a ground truth trajectory from Real data (if available)
@ -18,47 +18,69 @@ if options.useRealData == 1
gtScenario = load('truth_scen2.mat', 'Time', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading',...
'VEast', 'VNorth', 'VUp');
Org_lat = gtScenario.Lat(1);
Org_lon = gtScenario.Lon(1);
initialPositionECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
% Limit the trajectory length
options.trajectoryLength = min([length(gtScenario.Lat) options.trajectoryLength+1]);
options.trajectoryLength = min([length(gtScenario.Lat) options.trajectoryLength]);
fprintf('Scenario Ind: ');
for i=1:options.trajectoryLength+1
% Update the pose key
currentPoseKey = symbol('x', i-1);
% Generate the current pose
scenarioInd = options.subsampleStep * (i-1) + 1;
for i=0:options.trajectoryLength
scenarioInd = options.subsampleStep * i + 1;
fprintf('%d, ', scenarioInd);
if mod(i,20) == 0
fprintf('\n');
end
gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(scenarioInd); gtScenario.Lon(scenarioInd); gtScenario.Alt(scenarioInd)]);
% truth in ENU
dX = gtECEF(1) - initialPositionECEF(1);
dY = gtECEF(2) - initialPositionECEF(2);
dZ = gtECEF(3) - initialPositionECEF(3);
[xlt, ylt, zlt] = imuSimulator.ct2ENU(dX, dY, dZ,Org_lat, Org_lon);
if (mod(i,20) == 0) fprintf('\n'); end
gtPosition = [xlt, ylt, zlt]';
gtRotation = Rot3; %Rot3.ypr(gtScenario.Heading(scenarioInd), gtScenario.Pitch(scenarioInd), gtScenario.Roll(scenarioInd));
currentPose = Pose3(gtRotation, Point3(gtPosition));
% Add values
%% Generate the current pose
currentPoseKey = symbol('x', i);
currentPose = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioInd);
% add to values
values.insert(currentPoseKey, currentPose);
% Generate the measurement. The first pose is considered the prior, so
% it has no measurement
if i > 1
%% gt Between measurements
if options.includeBetweenFactors == 1 && i > 0
prevPose = values.at(currentPoseKey - 1);
deltaPose = prevPose.between(currentPose);
measurements.deltaMatrix(i-1,:) = Pose3.Logmap(deltaPose);
measurements(i).deltaVector = Pose3.Logmap(deltaPose);
end
%% gt IMU measurements
if options.includeIMUFactors == 1
currentVelKey = symbol('v', i);
currentBiasKey = symbol('b', i);
deltaT = 0.01; % amount of time between IMU measurements
if i == 0
currentVel = [0 0 0]';
else
% integrate & store intermediate measurements
for j=1:options.subsampleStep % we integrate all the intermediate measurements
scenarioIndIMU1 = scenarioInd+j-1;
scenarioIndIMU2 = scenarioInd+j;
IMUPose1 = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioIndIMU1);
IMUPose2 = imuSimulator.getPoseFromGtScenario(gtScenario,scenarioIndIMU2);
IMUdeltaPose = IMUPose1.between(IMUPose2);
IMUdeltaPoseVector = Pose3.Logmap(IMUdeltaPose);
IMUdeltaRotVector = IMUdeltaPoseVector(1:3);
IMUdeltaPositionVector = IMUPose2.translation.vector - IMUPose1.translation.vector; % translation in absolute frame
measurements(i).imu(j).deltaT = deltaT;
% gyro rate: Logmap(R_i' * R_i+1) / deltaT
measurements(i).imu(j).gyro = IMUdeltaRotVector./deltaT;
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
measurements(i).imu(j).accel = (IMUdeltaPositionVector - currentVel.*deltaT).*(2/(deltaT*deltaT));
% Update velocity
currentVel = IMUdeltaPositionVector./deltaT;
end
end
% Add Values: velocity and bias
values.insert(currentVelKey, LieVector(currentVel));
values.insert(currentBiasKey, metadata.imu.zeroBias);
end
end
fprintf('\n');
else
error('Please use RealData')
%% Create a random trajectory as ground truth
currentPose = Pose3; % initial pose % initial pose
@ -87,41 +109,5 @@ else
end % end of random trajectory creation
end % end of else
%% Create IMU measurements and Values for the trajectory
if options.includeIMUFactors == 1
currentVel = [0 0 0]; % initial velocity (used to generate IMU measurements)
deltaT = 0.1; % amount of time between IMU measurements
% Iterate over the deltaMatrix to generate appropriate IMU measurements
for i = 0:size(measurements.deltaMatrix, 1)
% Update Keys
currentVelKey = symbol('v', i);
currentBiasKey = symbol('b', i);
if i == 0
% Add initial values
currentVel = [0 0 0];
values.insert(currentVelKey, LieVector(currentVel'));
values.insert(currentBiasKey, metadata.imu.zeroBias);
else
measurements.imu.deltaT(i) = deltaT;
% create accel and gyro measurements based on
measurements.imu.gyro(i,:) = measurements.deltaMatrix(i, 1:3)./measurements.imu.deltaT(i);
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
measurements.imu.accel(i,:) = (measurements.deltaMatrix(i, 4:6) ...
- currentVel.*measurements.imu.deltaT(i)).*(2/(measurements.imu.deltaT(i)*measurements.imu.deltaT(i)));
% Update velocity
currentVel = measurements.deltaMatrix(i,4:6)./measurements.imu.deltaT(i);
% Add Values: velocity and bias
values.insert(currentVelKey, LieVector(currentVel'));
values.insert(currentBiasKey, metadata.imu.zeroBias);
end
end
end % end of IMU measurements
end % end of function

View File

@ -0,0 +1,25 @@
function currentPose = getPoseFromGtScenario(gtScenario,scenarioInd)
% gtScenario contains vectors (Lat, Lon, Alt, Roll, Pitch, Yaw)
% The function picks the index 'scenarioInd' in those vectors and
% computes the corresponding pose by
% 1) Converting (Lat,Lon,Alt) to local coordinates
% 2) Converting (Roll,Pitch,Yaw) to a rotation matrix
import gtsam.*;
Org_lat = gtScenario.Lat(1);
Org_lon = gtScenario.Lon(1);
initialPositionECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(1); gtScenario.Lon(1); gtScenario.Alt(1)]);
gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario.Lat(scenarioInd); gtScenario.Lon(scenarioInd); gtScenario.Alt(scenarioInd)]);
% truth in ENU
dX = gtECEF(1) - initialPositionECEF(1);
dY = gtECEF(2) - initialPositionECEF(2);
dZ = gtECEF(3) - initialPositionECEF(3);
[xlt, ylt, zlt] = imuSimulator.ct2ENU(dX, dY, dZ,Org_lat, Org_lon);
gtPosition = [xlt, ylt, zlt]';
gtRotation = Rot3; %Rot3.ypr(gtScenario.Heading(scenarioInd), gtScenario.Pitch(scenarioInd), gtScenario.Roll(scenarioInd));
currentPose = Pose3(gtRotation, Point3(gtPosition));
end