Function object with sane Jacobian

release/4.3a0
Frank Dellaert 2024-06-09 08:59:48 -07:00
parent d290f83268
commit 2dad81d671
3 changed files with 83 additions and 67 deletions

View File

@ -68,17 +68,15 @@ bool PreintegratedRotation::equals(const PreintegratedRotation& other,
&& equal_with_abs_tol(delRdelBiasOmega_, other.delRdelBiasOmega_, tol); && equal_with_abs_tol(delRdelBiasOmega_, other.delRdelBiasOmega_, tol);
} }
Rot3 PreintegratedRotation::incrementalRotation(const Vector3& measuredOmega, Rot3 PreintegratedRotation::IncrementalRotation::operator()(
const Vector3& biasHat, double deltaT, const Vector3& bias, OptionalJacobian<3, 3> H_bias) const {
OptionalJacobian<3, 3> D_incrR_integratedOmega) const {
// First we compensate the measurements for the bias // First we compensate the measurements for the bias
Vector3 correctedOmega = measuredOmega - biasHat; Vector3 correctedOmega = measuredOmega - bias;
// Then compensate for sensor-body displacement: we express the quantities // Then compensate for sensor-body displacement: we express the quantities
// (originally in the IMU frame) into the body frame // (originally in the IMU frame) into the body frame
if (p_->body_P_sensor) { if (body_P_sensor) {
Matrix3 body_R_sensor = p_->body_P_sensor->rotation().matrix(); const Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
// rotation rate vector in the body frame // rotation rate vector in the body frame
correctedOmega = body_R_sensor * correctedOmega; correctedOmega = body_R_sensor * correctedOmega;
} }
@ -86,7 +84,10 @@ Rot3 PreintegratedRotation::incrementalRotation(const Vector3& measuredOmega,
// rotation vector describing rotation increment computed from the // rotation vector describing rotation increment computed from the
// current rotation rate measurement // current rotation rate measurement
const Vector3 integratedOmega = correctedOmega * deltaT; const Vector3 integratedOmega = correctedOmega * deltaT;
return Rot3::Expmap(integratedOmega, D_incrR_integratedOmega); // expensive !! Rot3 incrR = Rot3::Expmap(integratedOmega, H_bias); // expensive !!
if (H_bias)
*H_bias *= -deltaT; // Correct so accurately reflects bias derivative
return incrR;
} }
void PreintegratedRotation::integrateMeasurement( void PreintegratedRotation::integrateMeasurement(
@ -94,8 +95,8 @@ void PreintegratedRotation::integrateMeasurement(
OptionalJacobian<3, 3> optional_D_incrR_integratedOmega, OptionalJacobian<3, 3> optional_D_incrR_integratedOmega,
OptionalJacobian<3, 3> F) { OptionalJacobian<3, 3> F) {
Matrix3 D_incrR_integratedOmega; Matrix3 D_incrR_integratedOmega;
const Rot3 incrR = incrementalRotation(measuredOmega, biasHat, deltaT, IncrementalRotation f{measuredOmega, deltaT, p_->body_P_sensor};
D_incrR_integratedOmega); const Rot3 incrR = f(biasHat, D_incrR_integratedOmega);
// If asked, pass first derivative as well // If asked, pass first derivative as well
if (optional_D_incrR_integratedOmega) { if (optional_D_incrR_integratedOmega) {

View File

@ -21,9 +21,9 @@
#pragma once #pragma once
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/Matrix.h> #include <gtsam/base/Matrix.h>
#include <gtsam/base/std_optional_serialization.h> #include <gtsam/base/std_optional_serialization.h>
#include <gtsam/geometry/Pose3.h>
namespace gtsam { namespace gtsam {
@ -159,19 +159,25 @@ class GTSAM_EXPORT PreintegratedRotation {
/// @{ /// @{
/** /**
* @brief Take the gyro measurement, correct it using the (constant) bias * @brief Function object for incremental rotation.
* estimate and possibly the sensor pose, and then integrate it forward in
* time to yield an incremental rotation.
* @param measuredOmega The measured angular velocity (as given by the sensor) * @param measuredOmega The measured angular velocity (as given by the sensor)
* @param biasHat The bias estimate * @param deltaT The time interval over which the rotation is integrated.
* @param deltaT The time interval * @param body_P_sensor Optional transform between body and IMU.
* @param D_incrR_integratedOmega Jacobian of the incremental rotation w.r.t.
* delta_T * (measuredOmega - biasHat), possibly rotated by body_R_sensor.
* @return The incremental rotation
*/ */
Rot3 incrementalRotation( struct IncrementalRotation {
const Vector3& measuredOmega, const Vector3& biasHat, double deltaT, const Vector3& measuredOmega;
OptionalJacobian<3, 3> D_incrR_integratedOmega) const; const double deltaT;
const std::optional<Pose3>& body_P_sensor;
/**
* @brief Integrate angular velocity, but corrected by bias.
* @param bias The bias estimate
* @param H_bias Jacobian of the rotation w.r.t. bias.
* @return The incremental rotation
*/
Rot3 operator()(const Vector3& biasHat,
OptionalJacobian<3, 3> H_bias = {}) const;
};
/** /**
* @brief Calculate an incremental rotation given the gyro measurement and a * @brief Calculate an incremental rotation given the gyro measurement and a
@ -198,6 +204,24 @@ class GTSAM_EXPORT PreintegratedRotation {
/// @} /// @}
/// @name Deprecated API
/// @{
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43
/// @deprecated: use IncrementalRotation functor with sane Jacobian
inline Rot3 GTSAM_DEPRECATED incrementalRotation(
const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
OptionalJacobian<3, 3> D_incrR_integratedOmega) const {
IncrementalRotation f{measuredOmega, deltaT, p_->body_P_sensor};
Rot3 incrR = f(biasHat, D_incrR_integratedOmega);
// Backwards compatible "weird" Jacobian, no longer used.
if (D_incrR_integratedOmega) *D_incrR_integratedOmega /= -deltaT;
return incrR;
}
#endif
/// @}
private: private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */ /** Serialization function */

View File

@ -30,40 +30,36 @@ using namespace gtsam;
namespace simple_roll { namespace simple_roll {
auto p = std::make_shared<PreintegratedRotationParams>(); auto p = std::make_shared<PreintegratedRotationParams>();
PreintegratedRotation pim(p); PreintegratedRotation pim(p);
const double roll = 0.1; const double omega = 0.1;
const Vector3 measuredOmega(roll, 0, 0); const Vector3 measuredOmega(omega, 0, 0);
const Vector3 biasHat(0, 0, 0); const Vector3 bias(0, 0, 0);
const double deltaT = 0.5; const double deltaT = 0.5;
} // namespace simple_roll } // namespace simple_roll
//****************************************************************************** //******************************************************************************
TEST(PreintegratedRotation, incrementalRotation) { TEST(PreintegratedRotation, IncrementalRotation) {
using namespace simple_roll; using namespace simple_roll;
// Check the value. // Check the value.
Matrix3 D_incrR_integratedOmega; Matrix3 H_bias;
const Rot3 incrR = pim.incrementalRotation(measuredOmega, biasHat, deltaT, PreintegratedRotation::IncrementalRotation f{measuredOmega, deltaT,
D_incrR_integratedOmega); p->getBodyPSensor()};
Rot3 expected = Rot3::Roll(roll * deltaT); const Rot3 incrR = f(bias, H_bias);
Rot3 expected = Rot3::Roll(omega * deltaT);
EXPECT(assert_equal(expected, incrR, 1e-9)); EXPECT(assert_equal(expected, incrR, 1e-9));
// Lambda for numerical derivative: // Check the derivative:
auto f = [&](const Vector3& x, const Vector3& y) { EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(f, bias), H_bias));
// Ephemeral test for deprecated Jacobian:
Matrix3 D_incrR_integratedOmega;
(void)pim.incrementalRotation(measuredOmega, bias, deltaT,
D_incrR_integratedOmega);
auto g = [&](const Vector3& x, const Vector3& y) {
return pim.incrementalRotation(x, y, deltaT, {}); return pim.incrementalRotation(x, y, deltaT, {});
}; };
// NOTE(frank): these derivatives as computed by the function violate the
// "Jacobian contract". We should refactor this. It's not clear that the
// deltaT factor is actually understood in calling code.
// Check derivative with respect to measuredOmega
EXPECT(assert_equal<Matrix3>( EXPECT(assert_equal<Matrix3>(
numericalDerivative21<Rot3, Vector3, Vector3>(f, measuredOmega, biasHat), numericalDerivative22<Rot3, Vector3, Vector3>(g, measuredOmega, bias),
deltaT * D_incrR_integratedOmega));
// Check derivative with respect to biasHat
EXPECT(assert_equal<Matrix3>(
numericalDerivative22<Rot3, Vector3, Vector3>(f, measuredOmega, biasHat),
-deltaT * D_incrR_integratedOmega)); -deltaT * D_incrR_integratedOmega));
} }
@ -77,40 +73,35 @@ static std::shared_ptr<PreintegratedRotationParams> paramsWithTransform() {
namespace roll_in_rotated_frame { namespace roll_in_rotated_frame {
auto p = paramsWithTransform(); auto p = paramsWithTransform();
PreintegratedRotation pim(p); PreintegratedRotation pim(p);
const double roll = 0.1; const double omega = 0.1;
const Vector3 measuredOmega(roll, 0, 0); const Vector3 measuredOmega(omega, 0, 0);
const Vector3 biasHat(0, 0, 0); const Vector3 bias(0, 0, 0);
const double deltaT = 0.5; const double deltaT = 0.5;
} // namespace roll_in_rotated_frame } // namespace roll_in_rotated_frame
//****************************************************************************** //******************************************************************************
TEST(PreintegratedRotation, incrementalRotationWithTransform) { TEST(PreintegratedRotation, IncrementalRotationWithTransform) {
using namespace roll_in_rotated_frame; using namespace roll_in_rotated_frame;
// Check the value. // Check the value.
Matrix3 D_incrR_integratedOmega; Matrix3 H_bias;
const Rot3 incrR = pim.incrementalRotation(measuredOmega, biasHat, deltaT, PreintegratedRotation::IncrementalRotation f{measuredOmega, deltaT,
D_incrR_integratedOmega); p->getBodyPSensor()};
Rot3 expected = Rot3::Pitch(roll * deltaT); Rot3 expected = Rot3::Pitch(omega * deltaT);
EXPECT(assert_equal(expected, incrR, 1e-9)); EXPECT(assert_equal(expected, f(bias, H_bias), 1e-9));
// Lambda for numerical derivative: // Check the derivative:
auto f = [&](const Vector3& x, const Vector3& y) { EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(f, bias), H_bias));
// Ephemeral test for deprecated Jacobian:
Matrix3 D_incrR_integratedOmega;
(void)pim.incrementalRotation(measuredOmega, bias, deltaT,
D_incrR_integratedOmega);
auto g = [&](const Vector3& x, const Vector3& y) {
return pim.incrementalRotation(x, y, deltaT, {}); return pim.incrementalRotation(x, y, deltaT, {});
}; };
// NOTE(frank): Here, once again, the derivatives are weird, as they do not
// take the rotation into account. They *are* the derivatives of the rotated
// omegas, but not the derivatives with respect to the function arguments.
// Check derivative with respect to measuredOmega
EXPECT(assert_equal<Matrix3>( EXPECT(assert_equal<Matrix3>(
numericalDerivative21<Rot3, Vector3, Vector3>(f, measuredOmega, biasHat), numericalDerivative22<Rot3, Vector3, Vector3>(g, measuredOmega, bias),
deltaT * D_incrR_integratedOmega));
// Check derivative with respect to biasHat
EXPECT(assert_equal<Matrix3>(
numericalDerivative22<Rot3, Vector3, Vector3>(f, measuredOmega, biasHat),
-deltaT * D_incrR_integratedOmega)); -deltaT * D_incrR_integratedOmega));
} }