Merge branch 'develop' into fix/imu-factor-serialization

release/4.3a0
Varun Agrawal 2020-07-11 09:52:36 -04:00
commit 2c67f6fd11
18 changed files with 729 additions and 256 deletions

View File

@ -598,7 +598,11 @@ print_config_flag(${GTSAM_TANGENT_PREINTEGRATION} "Use tangent-space preint
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ") print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
message(STATUS "MATLAB toolbox flags ") message(STATUS "MATLAB toolbox flags ")
print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install matlab toolbox ") print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install MATLAB toolbox ")
if (${GTSAM_INSTALL_MATLAB_TOOLBOX})
message(STATUS " MATLAB root : ${MATLAB_ROOT}")
message(STATUS " MEX binary : ${MEX_COMMAND}")
endif()
message(STATUS "Cython toolbox flags ") message(STATUS "Cython toolbox flags ")
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ") print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")

View File

@ -1,7 +1,4 @@
set (excluded_examples set (excluded_examples
DiscreteBayesNet_FG.cpp
UGM_chain.cpp
UGM_small.cpp
elaboratePoint2KalmanFilter.cpp elaboratePoint2KalmanFilter.cpp
) )

6
examples/Data/Klaus3.g2o Normal file
View File

@ -0,0 +1,6 @@
VERTEX_SE3:QUAT 0 -3.865747774038187 0.06639337702667497 -0.16064874691945374 0.024595211709139555 0.49179523413089893 -0.06279232989379242 0.8680954132776109
VERTEX_SE3:QUAT 1 -3.614793159814815 0.04774490041587656 -0.2837650367985949 0.00991721787943912 0.4854918961891193 -0.042343290945895576 0.8731588132957809
VERTEX_SE3:QUAT 2 -3.255096913553434 0.013296754286114112 -0.5339792269680574 -0.027851108010665374 0.585478168397957 -0.05088341463532465 0.8086102325762403
EDGE_SE3:QUAT 0 1 0.2509546142233723 -0.01864847661079841 -0.12311628987914114 -0.022048798853273946 -0.01796327847857683 0.010210006313668573 0.9995433591728293 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0
EDGE_SE3:QUAT 0 2 0.6106508604847534 -0.05309662274056086 -0.3733304800486037 -0.054972994022992064 0.10432547598981769 -0.02221474884651081 0.9927742290779572 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0
EDGE_SE3:QUAT 1 2 0.3596962462613811 -0.03444814612976245 -0.25021419016946256 -0.03174661848656213 0.11646825423134777 -0.02951742735854383 0.9922479626852876 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0

11
examples/Data/toyExample.g2o Executable file
View File

@ -0,0 +1,11 @@
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
VERTEX_SE3:QUAT 1 0 0 0 0 0 0 1
VERTEX_SE3:QUAT 2 0 0 0 0.00499994 0.00499994 0.00499994 0.999963
VERTEX_SE3:QUAT 3 0 0 0 -0.00499994 -0.00499994 -0.00499994 0.999963
VERTEX_SE3:QUAT 4 0 0 0 0.00499994 0.00499994 0.00499994 0.999963
EDGE_SE3:QUAT 1 2 1 2 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 2 3 -3.26795e-07 1 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 3 4 1 1 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 3 1 6.9282e-07 2 0 0 0 1 1.73205e-07 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 1 4 -1 1 0 0 0 -0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 0 1 0 0 0 0 0 0 1 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100

View File

@ -10,34 +10,43 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file DiscreteBayesNet_FG.cpp * @file DiscreteBayesNet_graph.cpp
* @brief Discrete Bayes Net example using Factor Graphs * @brief Discrete Bayes Net example using Factor Graphs
* @author Abhijit * @author Abhijit
* @date Jun 4, 2012 * @date Jun 4, 2012
* *
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529] * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
* You may be familiar with other graphical model packages like BNT (available * p529] You may be familiar with other graphical model packages like BNT
* at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an * (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
* example. The following demo is same as that in the above link, except that * is used as an example. The following demo is same as that in the above link,
* everything is using GTSAM. * except that everything is using GTSAM.
*/ */
#include <gtsam/discrete/DiscreteFactorGraph.h> #include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h> #include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip> #include <iomanip>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
int main(int argc, char **argv) { int main(int argc, char **argv) {
// Define keys and a print function
Key C(1), S(2), R(3), W(4);
auto print = [=](DiscreteFactor::sharedValues values) {
cout << boolalpha << "Cloudy = " << static_cast<bool>((*values)[C])
<< " Sprinkler = " << static_cast<bool>((*values)[S])
<< " Rain = " << boolalpha << static_cast<bool>((*values)[R])
<< " WetGrass = " << static_cast<bool>((*values)[W]) << endl;
};
// We assume binary state variables // We assume binary state variables
// we have 0 == "False" and 1 == "True" // we have 0 == "False" and 1 == "True"
const size_t nrStates = 2; const size_t nrStates = 2;
// define variables // define variables
DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates), DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
WetGrass(4, nrStates); WetGrass(W, nrStates);
// create Factor Graph of the bayes net // create Factor Graph of the bayes net
DiscreteFactorGraph graph; DiscreteFactorGraph graph;
@ -49,8 +58,9 @@ int main(int argc, char **argv) {
graph.add(Sprinkler & Rain & WetGrass, graph.add(Sprinkler & Rain & WetGrass,
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain) "1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional // Alternatively we can also create a DiscreteBayesNet, add
// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp) // DiscreteConditional factors and create a FactorGraph from it. (See
// testDiscreteBayesNet.cpp)
// Since this is a relatively small distribution, we can as well print // Since this is a relatively small distribution, we can as well print
// the whole distribution.. // the whole distribution..
@ -63,57 +73,48 @@ int main(int argc, char **argv) {
for (size_t h = 0; h < nrStates; h++) for (size_t h = 0; h < nrStates; h++)
for (size_t c = 0; c < nrStates; c++) { for (size_t c = 0; c < nrStates; c++) {
DiscreteFactor::Values values; DiscreteFactor::Values values;
values[Cloudy.first] = c; values[C] = c;
values[Sprinkler.first] = h; values[S] = h;
values[Rain.first] = m; values[R] = m;
values[WetGrass.first] = a; values[W] = a;
double prodPot = graph(values); double prodPot = graph(values);
cout << boolalpha << setw(8) << (bool) c << setw(14) cout << setw(8) << static_cast<bool>(c) << setw(14)
<< (bool) h << setw(12) << (bool) m << setw(13) << static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
<< (bool) a << setw(16) << prodPot << endl; << setw(13) << static_cast<bool>(a) << setw(16) << prodPot
<< endl;
} }
// "Most Probable Explanation", i.e., configuration with largest value // "Most Probable Explanation", i.e., configuration with largest value
DiscreteSequentialSolver solver(graph); DiscreteFactor::sharedValues mpe = graph.eliminateSequential()->optimize();
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
cout << "\nMost Probable Explanation (MPE):" << endl; cout << "\nMost Probable Explanation (MPE):" << endl;
cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first] print(mpe);
<< " Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
<< " Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
<< " WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
// "Inference" We show an inference query like: probability that the Sprinkler
// was on; given that the grass is wet i.e. P( S | C=0) = ?
// "Inference" We show an inference query like: probability that the Sprinkler was on; // add evidence that it is not Cloudy
// given that the grass is wet i.e. P( S | W=1) =? graph.add(Cloudy, "1 0");
cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
// Method 1: we can compute the joint marginal P(S,W) and from that we can compute // solve again, now with evidence
// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps.. DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues mpe_with_evidence = chordal->optimize();
//Step1: Compute P(S,W) cout << "\nMPE given C=0:" << endl;
DiscreteFactorGraph jointFG; print(mpe_with_evidence);
jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
DecisionTreeFactor probSW = jointFG.product();
//Step2: Compute P(W) // we can also calculate arbitrary marginals:
DiscreteFactor::shared_ptr probW = solver.marginalFactor(WetGrass.first); DiscreteMarginals marginals(graph);
cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1) << endl;
DiscreteFactor::Values values; cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
values[WetGrass.first] = 1; cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
<< endl;
//print P(S=0|W=1)
values[Sprinkler.first] = 0;
cout << "P(S=0|W=1) = " << probSW(values)/(*probW)(values) << endl;
//print P(S=1|W=1)
values[Sprinkler.first] = 1;
cout << "P(S=1|W=1) = " << probSW(values)/(*probW)(values) << endl;
// TODO: Method 2 : One way is to modify the factor graph to
// incorporate the evidence node and compute the marginal
// TODO: graph.addEvidence(Cloudy,0);
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) {
DiscreteFactor::sharedValues sample = chordal->sample();
print(sample);
}
return 0; return 0;
} }

View File

@ -0,0 +1,353 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file IMUKittiExampleGPS
* @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
* @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ Electronics
*/
// GTSAM related includes.
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Params.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <cstring>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
struct KittiCalibration {
double body_ptx;
double body_pty;
double body_ptz;
double body_prx;
double body_pry;
double body_prz;
double accelerometer_sigma;
double gyroscope_sigma;
double integration_sigma;
double accelerometer_bias_sigma;
double gyroscope_bias_sigma;
double average_delta_t;
};
struct ImuMeasurement {
double time;
double dt;
Vector3 accelerometer;
Vector3 gyroscope; // omega
};
struct GpsMeasurement {
double time;
Vector3 position; // x,y,z
};
const string output_filename = "IMUKittiExampleGPSResults.csv";
void loadKittiData(KittiCalibration& kitti_calibration,
vector<ImuMeasurement>& imu_measurements,
vector<GpsMeasurement>& gps_measurements) {
string line;
// Read IMU metadata and compute relative sensor pose transforms
// BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma GyroscopeSigma IntegrationSigma
// AccelerometerBiasSigma GyroscopeBiasSigma AverageDeltaT
string imu_metadata_file = findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
ifstream imu_metadata(imu_metadata_file.c_str());
printf("-- Reading sensor metadata\n");
getline(imu_metadata, line, '\n'); // ignore the first line
// Load Kitti calibration
getline(imu_metadata, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&kitti_calibration.body_ptx,
&kitti_calibration.body_pty,
&kitti_calibration.body_ptz,
&kitti_calibration.body_prx,
&kitti_calibration.body_pry,
&kitti_calibration.body_prz,
&kitti_calibration.accelerometer_sigma,
&kitti_calibration.gyroscope_sigma,
&kitti_calibration.integration_sigma,
&kitti_calibration.accelerometer_bias_sigma,
&kitti_calibration.gyroscope_bias_sigma,
&kitti_calibration.average_delta_t);
printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
kitti_calibration.body_ptx,
kitti_calibration.body_pty,
kitti_calibration.body_ptz,
kitti_calibration.body_prx,
kitti_calibration.body_pry,
kitti_calibration.body_prz,
kitti_calibration.accelerometer_sigma,
kitti_calibration.gyroscope_sigma,
kitti_calibration.integration_sigma,
kitti_calibration.accelerometer_bias_sigma,
kitti_calibration.gyroscope_bias_sigma,
kitti_calibration.average_delta_t);
// Read IMU data
// Time dt accelX accelY accelZ omegaX omegaY omegaZ
string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
printf("-- Reading IMU measurements from file\n");
{
ifstream imu_data(imu_data_file.c_str());
getline(imu_data, line, '\n'); // ignore the first line
double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0, gyro_y = 0, gyro_z = 0;
while (!imu_data.eof()) {
getline(imu_data, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf",
&time, &dt,
&acc_x, &acc_y, &acc_z,
&gyro_x, &gyro_y, &gyro_z);
ImuMeasurement measurement;
measurement.time = time;
measurement.dt = dt;
measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
imu_measurements.push_back(measurement);
}
}
// Read GPS data
// Time,X,Y,Z
string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
printf("-- Reading GPS measurements from file\n");
{
ifstream gps_data(gps_data_file.c_str());
getline(gps_data, line, '\n'); // ignore the first line
double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
while (!gps_data.eof()) {
getline(gps_data, line, '\n');
sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
GpsMeasurement measurement;
measurement.time = time;
measurement.position = Vector3(gps_x, gps_y, gps_z);
gps_measurements.push_back(measurement);
}
}
}
int main(int argc, char* argv[]) {
KittiCalibration kitti_calibration;
vector<ImuMeasurement> imu_measurements;
vector<GpsMeasurement> gps_measurements;
loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
Vector6 BodyP = (Vector(6) << kitti_calibration.body_ptx, kitti_calibration.body_pty, kitti_calibration.body_ptz,
kitti_calibration.body_prx, kitti_calibration.body_pry, kitti_calibration.body_prz)
.finished();
auto body_T_imu = Pose3::Expmap(BodyP);
if (!body_T_imu.equals(Pose3(), 1e-5)) {
printf("Currently only support IMUinBody is identity, i.e. IMU and body frame are the same");
exit(-1);
}
// Configure different variables
double t_offset = gps_measurements[0].time;
size_t first_gps_pose = 1;
size_t gps_skip = 10; // Skip this many GPS measurements each time
double g = 9.8;
auto w_coriolis = Vector3(); // zero vector
// Configure noise models
auto noise_model_gps = noiseModel::Diagonal::Precisions((Vector(6) << Vector3::Constant(0),
Vector3::Constant(1.0/0.07))
.finished());
// Set initial conditions for the estimated trajectory
// initial pose is the reference frame (navigation frame)
auto current_pose_global = Pose3(Rot3(), gps_measurements[first_gps_pose].position);
auto current_velocity_global = Vector3(); // the vehicle is stationary at the beginning at position 0,0,0
auto current_bias = imuBias::ConstantBias(); // init with zero bias
auto sigma_init_x = noiseModel::Diagonal::Precisions((Vector(6) << Vector3::Constant(0),
Vector3::Constant(1.0))
.finished());
auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
auto sigma_init_b = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.100),
Vector3::Constant(5.00e-05))
.finished());
// Set IMU preintegration parameters
Matrix33 measured_acc_cov = I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov = I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
// error committed in integrating position from velocities
Matrix33 integration_error_cov = I_3x3 * pow(kitti_calibration.integration_sigma, 2);
auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
imu_params->accelerometerCovariance = measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance = integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance = measured_omega_cov; // gyro white noise in continuous
imu_params->omegaCoriolis = w_coriolis;
std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement = nullptr;
// Set ISAM2 parameters and create ISAM2 solver object
ISAM2Params isam_params;
isam_params.factorization = ISAM2Params::CHOLESKY;
isam_params.relinearizeSkip = 10;
ISAM2 isam(isam_params);
// Create the factor graph and values object that will store new factors and values to add to the incremental graph
NonlinearFactorGraph new_factors;
Values new_values; // values storing the initial estimates of new nodes in the factor graph
/// Main loop:
/// (1) we read the measurements
/// (2) we create the corresponding factors in the graph
/// (3) we solve the graph to obtain and optimal estimate of robot trajectory
printf("-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n");
size_t j = 0;
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
// At each non=IMU measurement we initialize a new node in the graph
auto current_pose_key = X(i);
auto current_vel_key = V(i);
auto current_bias_key = B(i);
double t = gps_measurements[i].time;
if (i == first_gps_pose) {
// Create initial estimate and prior on initial pose, velocity, and biases
new_values.insert(current_pose_key, current_pose_global);
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(current_bias_key, current_bias, sigma_init_b);
} else {
double t_previous = gps_measurements[i-1].time;
// Summarize IMU data between the previous GPS measurement and now
current_summarized_measurement = std::make_shared<PreintegratedImuMeasurements>(imu_params, current_bias);
static size_t included_imu_measurement_count = 0;
while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
if (imu_measurements[j].time >= t_previous) {
current_summarized_measurement->integrateMeasurement(imu_measurements[j].accelerometer,
imu_measurements[j].gyroscope,
imu_measurements[j].dt);
included_imu_measurement_count++;
}
j++;
}
// Create IMU factor
auto previous_pose_key = X(i-1);
auto previous_vel_key = V(i-1);
auto previous_bias_key = B(i-1);
new_factors.emplace_shared<ImuFactor>(previous_pose_key, previous_vel_key,
current_pose_key, current_vel_key,
previous_bias_key, *current_summarized_measurement);
// Bias evolution as given in the IMU metadata
auto sigma_between_b = noiseModel::Diagonal::Sigmas((Vector(6) <<
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.gyroscope_bias_sigma))
.finished());
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(previous_bias_key,
current_bias_key,
imuBias::ConstantBias(),
sigma_between_b);
// Create GPS factor
auto gps_pose = Pose3(current_pose_global.rotation(), gps_measurements[i].position);
if ((i % gps_skip) == 0) {
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, gps_pose, noise_model_gps);
new_values.insert(current_pose_key, gps_pose);
printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
gps_pose.translation().print();
printf("\n\n");
} else {
new_values.insert(current_pose_key, current_pose_global);
}
// Add initial values for velocity and bias based on the previous estimates
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
// Update solver
// =======================================================================
// We accumulate 2*GPSskip GPS measurements before updating the solver at
// first so that the heading becomes observable.
if (i > (first_gps_pose + 2*gps_skip)) {
printf("################ NEW FACTORS AT TIME %lf ################\n", t);
new_factors.print();
isam.update(new_factors, new_values);
// Reset the newFactors and newValues list
new_factors.resize(0);
new_values.clear();
// Extract the result/current estimates
Values result = isam.calculateEstimate();
current_pose_global = result.at<Pose3>(current_pose_key);
current_velocity_global = result.at<Vector3>(current_vel_key);
current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
printf("\n################ POSE AT TIME %lf ################\n", t);
current_pose_global.print();
printf("\n\n");
}
}
}
// Save results to file
printf("\nWriting results to file...\n");
FILE* fp_out = fopen(output_filename.c_str(), "w+");
fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
Values result = isam.calculateEstimate();
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
auto pose_key = X(i);
auto vel_key = V(i);
auto bias_key = B(i);
auto pose = result.at<Pose3>(pose_key);
auto velocity = result.at<Vector3>(vel_key);
auto bias = result.at<imuBias::ConstantBias>(bias_key);
auto pose_quat = pose.rotation().toQuaternion();
auto gps = gps_measurements[i].position;
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
gps_measurements[i].time,
pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
gps(0), gps(1), gps(2));
}
fclose(fp_out);
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file small.cpp * @file UGM_chain.cpp
* @brief UGM (undirected graphical model) examples: chain * @brief UGM (undirected graphical model) examples: chain
* @author Frank Dellaert * @author Frank Dellaert
* @author Abhijit Kundu * @author Abhijit Kundu
@ -19,10 +19,9 @@
* for more explanation. This code demos the same example using GTSAM. * for more explanation. This code demos the same example using GTSAM.
*/ */
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/base/timing.h> #include <gtsam/base/timing.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip> #include <iomanip>
@ -30,7 +29,6 @@ using namespace std;
using namespace gtsam; using namespace gtsam;
int main(int argc, char** argv) { int main(int argc, char** argv) {
// Set Number of Nodes in the Graph // Set Number of Nodes in the Graph
const int nrNodes = 60; const int nrNodes = 60;
@ -51,10 +49,10 @@ int main(int argc, char** argv) {
// add node potentials // add node potentials
graph.add(nodes[0], ".3 .6 .1 0 0 0 0"); graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
for (int i = 1; i < nrNodes; i++) for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
graph.add(nodes[i], "1 1 1 1 1 1 1");
const std::string edgePotential = ".08 .9 .01 0 0 0 .01 " const std::string edgePotential =
".08 .9 .01 0 0 0 .01 "
".03 .95 .01 0 0 0 .01 " ".03 .95 .01 0 0 0 .01 "
".06 .06 .75 .05 .05 .02 .01 " ".06 .06 .75 .05 .05 .02 .01 "
"0 0 0 .3 .6 .09 .01 " "0 0 0 .3 .6 .09 .01 "
@ -71,39 +69,24 @@ int main(int argc, char** argv) {
// "Decoding", i.e., configuration with largest value // "Decoding", i.e., configuration with largest value
// We use sequential variable elimination // We use sequential variable elimination
DiscreteSequentialSolver solver(graph); DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues optimalDecoding = solver.optimize(); DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n"); optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
// "Inference" Computing marginals for each node // "Inference" Computing marginals for each node
cout << "\nComputing Node Marginals ..(Sequential Elimination)" << endl;
gttic_(Sequential);
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end();
++itr) {
//Compute the marginal
Vector margProbs = solver.marginalProbabilities(*itr);
//Print the marginals
cout << "Node#" << setw(4) << itr->first << " : ";
print(margProbs);
}
gttoc_(Sequential);
// Here we'll make use of DiscreteMarginals class, which makes use of // Here we'll make use of DiscreteMarginals class, which makes use of
// bayes-tree based shortcut evaluation of marginals // bayes-tree based shortcut evaluation of marginals
DiscreteMarginals marginals(graph); DiscreteMarginals marginals(graph);
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl; cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
gttic_(Multifrontal); gttic_(Multifrontal);
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end(); for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
++itr) { ++it) {
// Compute the marginal // Compute the marginal
Vector margProbs = marginals.marginalProbabilities(*itr); Vector margProbs = marginals.marginalProbabilities(*it);
// Print the marginals // Print the marginals
cout << "Node#" << setw(4) << itr->first << " : "; cout << "Node#" << setw(4) << it->first << " : ";
print(margProbs); print(margProbs);
} }
gttoc_(Multifrontal); gttoc_(Multifrontal);
@ -111,4 +94,3 @@ int main(int argc, char** argv) {
tictoc_print_(); tictoc_print_();
return 0; return 0;
} }

View File

@ -10,15 +10,16 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file small.cpp * @file UGM_small.cpp
* @brief UGM (undirected graphical model) examples: small * @brief UGM (undirected graphical model) examples: small
* @author Frank Dellaert * @author Frank Dellaert
* *
* See http://www.di.ens.fr/~mschmidt/Software/UGM/small.html * See http://www.di.ens.fr/~mschmidt/Software/UGM/small.html
*/ */
#include <gtsam/base/Vector.h>
#include <gtsam/discrete/DiscreteFactorGraph.h> #include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h> #include <gtsam/discrete/DiscreteMarginals.h>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
@ -61,24 +62,24 @@ int main(int argc, char** argv) {
// "Decoding", i.e., configuration with largest value (MPE) // "Decoding", i.e., configuration with largest value (MPE)
// We use sequential variable elimination // We use sequential variable elimination
DiscreteSequentialSolver solver(graph); DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues optimalDecoding = solver.optimize(); DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
optimalDecoding->print("\noptimalDecoding"); optimalDecoding->print("\noptimalDecoding");
// "Inference" Computing marginals // "Inference" Computing marginals
cout << "\nComputing Node Marginals .." << endl; cout << "\nComputing Node Marginals .." << endl;
Vector margProbs; DiscreteMarginals marginals(graph);
margProbs = solver.marginalProbabilities(Cathy); Vector margProbs = marginals.marginalProbabilities(Cathy);
print(margProbs, "Cathy's Node Marginal:"); print(margProbs, "Cathy's Node Marginal:");
margProbs = solver.marginalProbabilities(Heather); margProbs = marginals.marginalProbabilities(Heather);
print(margProbs, "Heather's Node Marginal"); print(margProbs, "Heather's Node Marginal");
margProbs = solver.marginalProbabilities(Mark); margProbs = marginals.marginalProbabilities(Mark);
print(margProbs, "Mark's Node Marginal"); print(margProbs, "Mark's Node Marginal");
margProbs = solver.marginalProbabilities(Allison); margProbs = marginals.marginalProbabilities(Allison);
print(margProbs, "Allison's Node Marginal"); print(margProbs, "Allison's Node Marginal");
return 0; return 0;

View File

@ -548,17 +548,47 @@ GTSAM_EXPORT Vector columnNormSquare(const Matrix &A);
namespace boost { namespace boost {
namespace serialization { namespace serialization {
/**
* Ref. https://stackoverflow.com/questions/18382457/eigen-and-boostserialize/22903063#22903063
*
* Eigen supports calling resize() on both static and dynamic matrices.
* This allows for a uniform API, with resize having no effect if the static matrix
* is already the correct size.
* https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html#TutorialMatrixSizesResizing
*
* We use all the Matrix template parameters to ensure wide compatibility.
*
* eigen_typekit in ROS uses the same code
* http://docs.ros.org/lunar/api/eigen_typekit/html/eigen__mqueue_8cpp_source.html
*/
// split version - sends sizes ahead // split version - sends sizes ahead
template<class Archive> template<class Archive,
void save(Archive & ar, const gtsam::Matrix & m, unsigned int /*version*/) { typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void save(Archive & ar,
const Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
const size_t rows = m.rows(), cols = m.cols(); const size_t rows = m.rows(), cols = m.cols();
ar << BOOST_SERIALIZATION_NVP(rows); ar << BOOST_SERIALIZATION_NVP(rows);
ar << BOOST_SERIALIZATION_NVP(cols); ar << BOOST_SERIALIZATION_NVP(cols);
ar << make_nvp("data", make_array(m.data(), m.size())); ar << make_nvp("data", make_array(m.data(), m.size()));
} }
template<class Archive> template<class Archive,
void load(Archive & ar, gtsam::Matrix & m, unsigned int /*version*/) { typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void load(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
size_t rows, cols; size_t rows, cols;
ar >> BOOST_SERIALIZATION_NVP(rows); ar >> BOOST_SERIALIZATION_NVP(rows);
ar >> BOOST_SERIALIZATION_NVP(cols); ar >> BOOST_SERIALIZATION_NVP(cols);
@ -566,8 +596,19 @@ namespace boost {
ar >> make_nvp("data", make_array(m.data(), m.size())); ar >> make_nvp("data", make_array(m.data(), m.size()));
} }
// templated version of BOOST_SERIALIZATION_SPLIT_FREE(Eigen::Matrix);
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void serialize(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int version) {
split_free(ar, m, version);
}
} // namespace serialization } // namespace serialization
} // namespace boost } // namespace boost
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Matrix);

View File

@ -292,6 +292,10 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
boost::none) const; boost::none) const;
/// @} /// @}
template <class Archive>
friend void save(Archive&, SO&, const unsigned int);
template <class Archive>
friend void load(Archive&, SO&, const unsigned int);
template <class Archive> template <class Archive>
friend void serialize(Archive&, SO&, const unsigned int); friend void serialize(Archive&, SO&, const unsigned int);
friend class boost::serialization::access; friend class boost::serialization::access;
@ -329,6 +333,16 @@ template <>
SOn LieGroup<SOn, Eigen::Dynamic>::between(const SOn& g, DynamicJacobian H1, SOn LieGroup<SOn, Eigen::Dynamic>::between(const SOn& g, DynamicJacobian H1,
DynamicJacobian H2) const; DynamicJacobian H2) const;
/** Serialization function */
template<class Archive>
void serialize(
Archive& ar, SOn& Q,
const unsigned int file_version
) {
Matrix& M = Q.matrix_;
ar& M;
}
/* /*
* Define the traits. internal::LieGroup provides both Lie group and Testable * Define the traits. internal::LieGroup provides both Lie group and Testable
*/ */

View File

@ -90,6 +90,8 @@ public:
/// Copy assignment /// Copy assignment
Unit3& operator=(const Unit3 & u) { Unit3& operator=(const Unit3 & u) {
p_ = u.p_; p_ = u.p_;
B_ = u.B_;
H_B_ = u.H_B_;
return *this; return *this;
} }

View File

@ -484,6 +484,15 @@ TEST(Unit3, ErrorBetweenFactor) {
} }
} }
TEST(Unit3, CopyAssign) {
Unit3 p{1, 0.2, 0.3};
EXPECT(p.error(p).isZero());
p = Unit3{-1, 2, 8};
EXPECT(p.error(p).isZero());
}
/* ************************************************************************* */ /* ************************************************************************* */
TEST(actualH, Serialization) { TEST(actualH, Serialization) {
Unit3 p(0, 1, 0); Unit3 p(0, 1, 0);

View File

@ -33,7 +33,7 @@ namespace gtsam {
* isotropic. If it is, we extend to 'Dim' dimensions, otherwise we throw an * isotropic. If it is, we extend to 'Dim' dimensions, otherwise we throw an
* error. If defaultToUnit == false throws an exception on unexepcted input. * error. If defaultToUnit == false throws an exception on unexepcted input.
*/ */
boost::shared_ptr<noiseModel::Isotropic> ConvertPose3NoiseModel( GTSAM_EXPORT boost::shared_ptr<noiseModel::Isotropic> ConvertPose3NoiseModel(
const SharedNoiseModel& model, size_t d, bool defaultToUnit = true); const SharedNoiseModel& model, size_t d, bool defaultToUnit = true);
/** /**
@ -125,7 +125,7 @@ class FrobeniusBetweenFactor : public NoiseModelFactor2<Rot, Rot> {
* the SO(p) matrices down to a Stiefel manifold of p*d matrices. * the SO(p) matrices down to a Stiefel manifold of p*d matrices.
* TODO(frank): template on D=2 or 3 * TODO(frank): template on D=2 or 3
*/ */
class FrobeniusWormholeFactor : public NoiseModelFactor2<SOn, SOn> { class GTSAM_EXPORT FrobeniusWormholeFactor : public NoiseModelFactor2<SOn, SOn> {
Matrix M_; ///< measured rotation between R1 and R2 Matrix M_; ///< measured rotation between R1 and R2
size_t p_, pp_, dimension_; ///< dimensionality constants size_t p_, pp_, dimension_; ///< dimensionality constants
Matrix G_; ///< matrix of vectorized generators Matrix G_; ///< matrix of vectorized generators

View File

@ -207,10 +207,18 @@ protected:
Vector ue = cameras.reprojectionError(point, measured_, Fs, E); Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
if (body_P_sensor_ && Fs) { if (body_P_sensor_ && Fs) {
const Pose3 sensor_P_body = body_P_sensor_->inverse(); const Pose3 sensor_P_body = body_P_sensor_->inverse();
constexpr int camera_dim = traits<CAMERA>::dimension;
constexpr int pose_dim = traits<Pose3>::dimension;
for (size_t i = 0; i < Fs->size(); i++) { for (size_t i = 0; i < Fs->size(); i++) {
const Pose3 w_Pose_body = cameras[i].pose() * sensor_P_body; const Pose3 world_P_body = cameras[i].pose() * sensor_P_body;
Matrix J(6, 6); Eigen::Matrix<double, camera_dim, camera_dim> J;
const Pose3 world_P_body = w_Pose_body.compose(*body_P_sensor_, J); J.setZero();
Eigen::Matrix<double, pose_dim, pose_dim> H;
// Call compose to compute Jacobian for camera extrinsics
world_P_body.compose(*body_P_sensor_, H);
// Assign extrinsics part of the Jacobian
J.template block<pose_dim, pose_dim>(0, 0) = H;
Fs->at(i) = Fs->at(i) * J; Fs->at(i) = Fs->at(i) * J;
} }
} }

View File

@ -442,11 +442,11 @@ void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
auto p = dynamic_cast<const GenericValue<Pose3>*>(&key_value.value); auto p = dynamic_cast<const GenericValue<Pose3>*>(&key_value.value);
if (!p) continue; if (!p) continue;
const Pose3& pose = p->value(); const Pose3& pose = p->value();
Point3 t = pose.translation(); const Point3 t = pose.translation();
Rot3 R = pose.rotation(); const auto q = pose.rotation().toQuaternion();
stream << "VERTEX_SE3:QUAT " << key_value.key << " " << t.x() << " " << t.y() << " " << t.z() stream << "VERTEX_SE3:QUAT " << key_value.key << " " << t.x() << " "
<< " " << R.toQuaternion().x() << " " << R.toQuaternion().y() << " " << R.toQuaternion().z() << t.y() << " " << t.z() << " " << q.x() << " " << q.y() << " "
<< " " << R.toQuaternion().w() << endl; << q.z() << " " << q.w() << endl;
} }
// save edges (2D or 3D) // save edges (2D or 3D)
@ -486,13 +486,12 @@ void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
throw invalid_argument("writeG2o: invalid noise model!"); throw invalid_argument("writeG2o: invalid noise model!");
} }
Matrix Info = gaussianModel->R().transpose() * gaussianModel->R(); Matrix Info = gaussianModel->R().transpose() * gaussianModel->R();
Pose3 pose3D = factor3D->measured(); const Pose3 pose3D = factor3D->measured();
Point3 p = pose3D.translation(); const Point3 p = pose3D.translation();
Rot3 R = pose3D.rotation(); const auto q = pose3D.rotation().toQuaternion();
stream << "EDGE_SE3:QUAT " << factor3D->key1() << " " << factor3D->key2()
stream << "EDGE_SE3:QUAT " << factor3D->key1() << " " << factor3D->key2() << " " << " " << p.x() << " " << p.y() << " " << p.z() << " " << q.x()
<< p.x() << " " << p.y() << " " << p.z() << " " << R.toQuaternion().x() << " " << q.y() << " " << q.z() << " " << q.w();
<< " " << R.toQuaternion().y() << " " << R.toQuaternion().z() << " " << R.toQuaternion().w();
Matrix InfoG2o = I_6x6; Matrix InfoG2o = I_6x6;
InfoG2o.block(0,0,3,3) = Info.block(3,3,3,3); // cov translation InfoG2o.block(0,0,3,3) = Info.block(3,3,3,3); // cov translation
@ -511,6 +510,11 @@ void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
stream.close(); stream.close();
} }
/* ************************************************************************* */
static Rot3 NormalizedRot3(double w, double x, double y, double z) {
const double norm = sqrt(w * w + x * x + y * y + z * z), f = 1.0 / norm;
return Rot3::Quaternion(f * w, f * x, f * y, f * z);
}
/* ************************************************************************* */ /* ************************************************************************* */
std::map<Key, Pose3> parse3DPoses(const string& filename) { std::map<Key, Pose3> parse3DPoses(const string& filename) {
ifstream is(filename.c_str()); ifstream is(filename.c_str());
@ -535,14 +539,15 @@ std::map<Key, Pose3> parse3DPoses(const string& filename) {
Key id; Key id;
double x, y, z, qx, qy, qz, qw; double x, y, z, qx, qy, qz, qw;
ls >> id >> x >> y >> z >> qx >> qy >> qz >> qw; ls >> id >> x >> y >> z >> qx >> qy >> qz >> qw;
poses.emplace(id, Pose3(Rot3::Quaternion(qw, qx, qy, qz), {x, y, z})); poses.emplace(id, Pose3(NormalizedRot3(qw, qx, qy, qz), {x, y, z}));
} }
} }
return poses; return poses;
} }
/* ************************************************************************* */ /* ************************************************************************* */
BetweenFactorPose3s parse3DFactors(const string& filename, BetweenFactorPose3s parse3DFactors(
const string& filename,
const noiseModel::Diagonal::shared_ptr& corruptingNoise) { const noiseModel::Diagonal::shared_ptr& corruptingNoise) {
ifstream is(filename.c_str()); ifstream is(filename.c_str());
if (!is) throw invalid_argument("parse3DFactors: can not find file " + filename); if (!is) throw invalid_argument("parse3DFactors: can not find file " + filename);
@ -592,7 +597,7 @@ BetweenFactorPose3s parse3DFactors(const string& filename,
mgtsam.block<3, 3>(3, 0) = m.block<3, 3>(3, 0); // off diagonal mgtsam.block<3, 3>(3, 0) = m.block<3, 3>(3, 0); // off diagonal
SharedNoiseModel model = noiseModel::Gaussian::Information(mgtsam); SharedNoiseModel model = noiseModel::Gaussian::Information(mgtsam);
auto R12 = Rot3::Quaternion(qw, qx, qy, qz); auto R12 = NormalizedRot3(qw, qx, qy, qz);
if (sampler) { if (sampler) {
R12 = R12.retract(sampler->sample()); R12 = R12.retract(sampler->sample());
} }

View File

@ -122,45 +122,6 @@ TEST( dataSet, Balbianello)
EXPECT(assert_equal(expected,actual,1)); EXPECT(assert_equal(expected,actual,1));
} }
/* ************************************************************************* */
TEST( dataSet, readG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile);
Values expectedValues;
expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
expectedValues.insert(1, Pose2(1.030390, 0.011350, -0.081596));
expectedValues.insert(2, Pose2(2.036137, -0.129733, -0.301887));
expectedValues.insert(3, Pose2(3.015097, -0.442395, -0.345514));
expectedValues.insert(4, Pose2(3.343949, 0.506678, 1.214715));
expectedValues.insert(5, Pose2(3.684491, 1.464049, 1.183785));
expectedValues.insert(6, Pose2(4.064626, 2.414783, 1.176333));
expectedValues.insert(7, Pose2(4.429778, 3.300180, 1.259169));
expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
EXPECT(assert_equal(expectedValues,*actualValues,1e-5));
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions(Vector3(44.721360, 44.721360, 30.901699));
NonlinearFactorGraph expectedGraph;
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */ /* ************************************************************************* */
TEST(dataSet, readG2o3D) { TEST(dataSet, readG2o3D) {
const string g2oFile = findExampleDataFile("pose3example"); const string g2oFile = findExampleDataFile("pose3example");
@ -273,59 +234,103 @@ TEST( dataSet, readG2o3DNonDiagonalNoise)
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( dataSet, readG2oHuber) TEST(dataSet, readG2oCheckDeterminants) {
{ const string g2oFile = findExampleDataFile("toyExample.g2o");
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
bool is3D = false;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D, KernelFunctionTypeHUBER);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions(Vector3(44.721360, 44.721360, 30.901699)); // Check determinants in factors
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel); auto factors = parse3DFactors(g2oFile);
EXPECT_LONGS_EQUAL(6, factors.size());
for (const auto& factor : factors) {
const Rot3 R = factor->measured().rotation();
EXPECT_DOUBLES_EQUAL(1.0, R.matrix().determinant(), 1e-9);
}
NonlinearFactorGraph expectedGraph; // Check determinants in initial values
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model); const map<Key, Pose3> poses = parse3DPoses(g2oFile);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model); EXPECT_LONGS_EQUAL(5, poses.size());
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model); for (const auto& key_value : poses) {
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model); const Rot3 R = key_value.second.rotation();
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model); EXPECT_DOUBLES_EQUAL(1.0, R.matrix().determinant(), 1e-9);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model); }
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model);
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( dataSet, readG2oTukey) static NonlinearFactorGraph expectedGraph(const SharedNoiseModel& model) {
{ NonlinearFactorGraph g;
using Factor = BetweenFactor<Pose2>;
g.emplace_shared<Factor>(0, 1, Pose2(1.030390, 0.011350, -0.081596), model);
g.emplace_shared<Factor>(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
g.emplace_shared<Factor>(2, 3, Pose2(1.027650, -0.007456, -0.043627), model);
g.emplace_shared<Factor>(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model);
g.emplace_shared<Factor>(4, 5, Pose2(1.016030, 0.014565, -0.030930), model);
g.emplace_shared<Factor>(5, 6, Pose2(1.023890, 0.006808, -0.007452), model);
g.emplace_shared<Factor>(6, 7, Pose2(0.957734, 0.003159, 0.082836), model);
g.emplace_shared<Factor>(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model);
g.emplace_shared<Factor>(8, 9, Pose2(1.023440, 0.013984, -0.127624), model);
g.emplace_shared<Factor>(9, 10, Pose2(1.003350, 0.022250, -0.195918), model);
g.emplace_shared<Factor>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
g.emplace_shared<Factor>(3, 10, Pose2(0.044020, 0.988477, -1.553511), model);
return g;
}
/* ************************************************************************* */
TEST(dataSet, readG2o) {
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile);
auto model = noiseModel::Diagonal::Precisions(
Vector3(44.721360, 44.721360, 30.901699));
EXPECT(assert_equal(expectedGraph(model), *actualGraph, 1e-5));
Values expectedValues;
expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
expectedValues.insert(1, Pose2(1.030390, 0.011350, -0.081596));
expectedValues.insert(2, Pose2(2.036137, -0.129733, -0.301887));
expectedValues.insert(3, Pose2(3.015097, -0.442395, -0.345514));
expectedValues.insert(4, Pose2(3.343949, 0.506678, 1.214715));
expectedValues.insert(5, Pose2(3.684491, 1.464049, 1.183785));
expectedValues.insert(6, Pose2(4.064626, 2.414783, 1.176333));
expectedValues.insert(7, Pose2(4.429778, 3.300180, 1.259169));
expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
EXPECT(assert_equal(expectedValues, *actualValues, 1e-5));
}
/* ************************************************************************* */
TEST(dataSet, readG2oHuber) {
const string g2oFile = findExampleDataFile("pose2example"); const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph::shared_ptr actualGraph; NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues; Values::shared_ptr actualValues;
bool is3D = false; bool is3D = false;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY); boost::tie(actualGraph, actualValues) =
readG2o(g2oFile, is3D, KernelFunctionTypeHUBER);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions(Vector3(44.721360, 44.721360, 30.901699)); auto baseModel = noiseModel::Diagonal::Precisions(
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel); Vector3(44.721360, 44.721360, 30.901699));
auto model = noiseModel::Robust::Create(
noiseModel::mEstimator::Huber::Create(1.345), baseModel);
NonlinearFactorGraph expectedGraph; EXPECT(assert_equal(expectedGraph(model), *actualGraph, 1e-5));
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(0, 1, Pose2(1.030390, 0.011350, -0.081596), model); }
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(1.013900, -0.058639, -0.220291), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(1.027650, -0.007456, -0.043627), model); /* ************************************************************************* */
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3, 4, Pose2(-0.012016, 1.004360, 1.560229), model); TEST(dataSet, readG2oTukey) {
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(4, 5, Pose2(1.016030, 0.014565, -0.030930), model); const string g2oFile = findExampleDataFile("pose2example");
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 6, Pose2(1.023890, 0.006808, -0.007452), model); NonlinearFactorGraph::shared_ptr actualGraph;
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(6, 7, Pose2(0.957734, 0.003159, 0.082836), model); Values::shared_ptr actualValues;
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(7, 8, Pose2(-1.023820, -0.013668, -3.084560), model); bool is3D = false;
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(8, 9, Pose2(1.023440, 0.013984, -0.127624), model); boost::tie(actualGraph, actualValues) =
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(9,10, Pose2(1.003350, 0.022250, -0.195918), model); readG2o(g2oFile, is3D, KernelFunctionTypeTUKEY);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(5, 9, Pose2(0.033943, 0.032439, 3.073637), model);
expectedGraph.emplace_shared<BetweenFactor<Pose2> >(3,10, Pose2(0.044020, 0.988477, -1.553511), model); auto baseModel = noiseModel::Diagonal::Precisions(
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5)); Vector3(44.721360, 44.721360, 30.901699));
auto model = noiseModel::Robust::Create(
noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);
EXPECT(assert_equal(expectedGraph(model), *actualGraph, 1e-5));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -495,7 +500,7 @@ TEST( dataSet, writeBALfromValues_Dubrovnik){
SfmData readData; SfmData readData;
readBAL(filenameToRead, readData); readBAL(filenameToRead, readData);
Pose3 poseChange = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.3,0.1,0.3)); Pose3 poseChange = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.3,0.1,0.3));
Values value; Values value;
for(size_t i=0; i < readData.number_cameras(); i++){ // for each camera for(size_t i=0; i < readData.number_cameras(); i++){ // for each camera

View File

@ -37,11 +37,11 @@ class PinholeFactor: public SmartFactorBase<PinholeCamera<Cal3Bundler> > {
public: public:
typedef SmartFactorBase<PinholeCamera<Cal3Bundler> > Base; typedef SmartFactorBase<PinholeCamera<Cal3Bundler> > Base;
PinholeFactor() {} PinholeFactor() {}
PinholeFactor(const SharedNoiseModel& sharedNoiseModel): Base(sharedNoiseModel) { PinholeFactor(const SharedNoiseModel& sharedNoiseModel,
} boost::optional<Pose3> body_P_sensor = boost::none,
virtual double error(const Values& values) const { size_t expectedNumberCameras = 10)
return 0.0; : Base(sharedNoiseModel, body_P_sensor, expectedNumberCameras) {}
} virtual double error(const Values& values) const { return 0.0; }
virtual boost::shared_ptr<GaussianFactor> linearize( virtual boost::shared_ptr<GaussianFactor> linearize(
const Values& values) const { const Values& values) const {
return boost::shared_ptr<GaussianFactor>(new JacobianFactor()); return boost::shared_ptr<GaussianFactor>(new JacobianFactor());
@ -60,6 +60,40 @@ TEST(SmartFactorBase, Pinhole) {
EXPECT_LONGS_EQUAL(2 * 2, f.dim()); EXPECT_LONGS_EQUAL(2 * 2, f.dim());
} }
TEST(SmartFactorBase, PinholeWithSensor) {
Pose3 body_P_sensor(Rot3(), Point3(1, 0, 0));
PinholeFactor f = PinholeFactor(unit2, body_P_sensor);
EXPECT(assert_equal<Pose3>(f.body_P_sensor(), body_P_sensor));
PinholeFactor::Cameras cameras;
// Assume body at origin.
Pose3 world_P_body = Pose3();
// Camera coordinates in world frame.
Pose3 wTc = world_P_body * body_P_sensor;
cameras.push_back(PinholeCamera<Cal3Bundler>(wTc));
// Simple point to project slightly off image center
Point3 p(0, 0, 10);
Point2 measurement = cameras[0].project(p);
f.add(measurement, 1);
PinholeFactor::Cameras::FBlocks Fs;
Matrix E;
Vector error = f.unwhitenedError<Point3>(cameras, p, Fs, E);
Vector expectedError = Vector::Zero(2);
Matrix29 expectedFs;
expectedFs << -0.001, -1.00001, 0, -0.1, 0, -0.01, 0, 0, 0, 1, 0, 0, 0, -0.1, 0, 0, 0, 0;
Matrix23 expectedE;
expectedE << 0.1, 0, 0.01, 0, 0.1, 0;
EXPECT(assert_equal(error, expectedError));
// We only have the jacobian for the 1 camera
// Use of a lower tolerance value due to compiler precision mismatch.
EXPECT(assert_equal(expectedFs, Fs[0], 1e-3));
EXPECT(assert_equal(expectedE, E));
}
/* ************************************************************************* */ /* ************************************************************************* */
#include <gtsam/geometry/StereoCamera.h> #include <gtsam/geometry/StereoCamera.h>