add timing checkpoints
parent
50d24ab38e
commit
2b72f75a07
|
@ -161,12 +161,14 @@ void HybridBayesNet::updateDiscreteConditionals(
|
|||
DecisionTreeFactor::ADT prunedDiscreteTree =
|
||||
discreteTree->apply(prunerFunc(prunedDiscreteProbs, *conditional));
|
||||
|
||||
gttic_(HybridBayesNet_MakeConditional);
|
||||
// Create the new (hybrid) conditional
|
||||
KeyVector frontals(discrete->frontals().begin(),
|
||||
discrete->frontals().end());
|
||||
auto prunedDiscrete = std::make_shared<DiscreteLookupTable>(
|
||||
frontals.size(), conditional->discreteKeys(), prunedDiscreteTree);
|
||||
conditional = std::make_shared<HybridConditional>(prunedDiscrete);
|
||||
gttoc_(HybridBayesNet_MakeConditional);
|
||||
|
||||
// Add it back to the BayesNet
|
||||
this->at(i) = conditional;
|
||||
|
@ -177,12 +179,16 @@ void HybridBayesNet::updateDiscreteConditionals(
|
|||
/* ************************************************************************* */
|
||||
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
||||
// Get the decision tree of only the discrete keys
|
||||
gttic_(HybridBayesNet_PruneDiscreteConditionals);
|
||||
DecisionTreeFactor::shared_ptr discreteConditionals =
|
||||
this->discreteConditionals();
|
||||
const DecisionTreeFactor prunedDiscreteProbs =
|
||||
discreteConditionals->prune(maxNrLeaves);
|
||||
gttoc_(HybridBayesNet_PruneDiscreteConditionals);
|
||||
|
||||
gttic_(HybridBayesNet_UpdateDiscreteConditionals);
|
||||
this->updateDiscreteConditionals(prunedDiscreteProbs);
|
||||
gttoc_(HybridBayesNet_UpdateDiscreteConditionals);
|
||||
|
||||
/* To Prune, we visitWith every leaf in the GaussianMixture.
|
||||
* For each leaf, using the assignment we can check the discrete decision tree
|
||||
|
@ -193,6 +199,7 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
|
||||
HybridBayesNet prunedBayesNetFragment;
|
||||
|
||||
gttic_(HybridBayesNet_PruneMixtures);
|
||||
// Go through all the conditionals in the
|
||||
// Bayes Net and prune them as per prunedDiscreteProbs.
|
||||
for (auto &&conditional : *this) {
|
||||
|
@ -209,6 +216,7 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
|
|||
prunedBayesNetFragment.push_back(conditional);
|
||||
}
|
||||
}
|
||||
gttoc_(HybridBayesNet_PruneMixtures);
|
||||
|
||||
return prunedBayesNetFragment;
|
||||
}
|
||||
|
|
|
@ -98,7 +98,7 @@ static GaussianFactorGraphTree addGaussian(
|
|||
// TODO(dellaert): it's probably more efficient to first collect the discrete
|
||||
// keys, and then loop over all assignments to populate a vector.
|
||||
GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
||||
gttic(assembleGraphTree);
|
||||
gttic_(assembleGraphTree);
|
||||
|
||||
GaussianFactorGraphTree result;
|
||||
|
||||
|
@ -131,7 +131,7 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
|
|||
}
|
||||
}
|
||||
|
||||
gttoc(assembleGraphTree);
|
||||
gttoc_(assembleGraphTree);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -235,7 +235,9 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
gttic_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
gttic_(hybrid_continuous_eliminate);
|
||||
auto result = EliminatePreferCholesky(graph, frontalKeys);
|
||||
gttoc_(hybrid_continuous_eliminate);
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
gttoc_(hybrid_eliminate);
|
||||
|
|
Loading…
Reference in New Issue