Used a map for config

release/4.3a0
Manohar Paluri 2009-12-07 00:49:13 +00:00
parent b9e15ee789
commit 28eb550781
2 changed files with 33 additions and 31 deletions

View File

@ -57,6 +57,15 @@ namespace gtsam {
cpt_ = cpt;
}
double probability( std::map<std::string,bool> config) {
int index = 0, count = 0;
BOOST_FOREACH( std::string parent, parents_)
index += pow(2,count++)*(int)(config[parent]);
if( config.find(key_)->second )
index += pow(2,count);
return cpt_[index];
}
/** print */
void print(const std::string& s = "BinaryConditional") const {
std::cout << s << " P(" << key_;

View File

@ -7,6 +7,7 @@
// STL/C++
#include <iostream>
#include <sstream>
#include <map>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/foreach.hpp>
@ -30,36 +31,28 @@ using namespace gtsam;
/** A Bayes net made from binary conditional probability tables */
typedef BayesNet<BinaryConditional> BinaryBayesNet;
struct BinaryConfig {
bool px_;
bool py_;
BinaryConfig( bool px, bool py ):px_(px), py_(py){}
};
double probability(const BinaryBayesNet& bayesNet, const BinaryConfig& config) {
double result = 1.0;
/* TODO: using config multiply the probabilities */
return result;
}
/* ************************************************************************* */
TEST( BinaryBayesNet, constructor )
{
// small Bayes Net x <- y
// p(y) = 0.2
// p(x|y=0) = 0.3
// p(x|y=1) = 0.5
// p(x|y=1) = 0.6
map<string,bool> config;
config["y"] = false;
config["x"] = false;
// unary conditional for y
boost::shared_ptr<BinaryConditional> py(new BinaryConditional("y",0.2));
py->print("py");
DOUBLES_EQUAL(0.8,py->probability(config),0.01);
// single parent conditional for x
vector<double> cpt;
cpt += 0.7, 0.5, 0.3, 0.5 ; // array index corresponds to binary parent configuration
cpt += 0.7, 0.4, 0.3, 0.6 ; // array index corresponds to binary parent configuration
boost::shared_ptr<BinaryConditional> px_y(new BinaryConditional("x","y",cpt));
px_y->print("px_y");
DOUBLES_EQUAL(0.7,px_y->probability(config),0.01);
// push back conditionals in topological sort order (parents last)
BinaryBayesNet bbn;
@ -67,7 +60,7 @@ TEST( BinaryBayesNet, constructor )
bbn.push_back(px_y);
// Test probability of 00,01,10,11
DOUBLES_EQUAL(0.56,probability(bbn,BinaryConfig(false,false)),0.01); // P(y=0)P(x=0|y=0) = 0.8 * 0.7 = 0.56;
//DOUBLES_EQUAL(0.56,bbn.probability(config),0.01); // P(y=0)P(x=0|y=0) = 0.8 * 0.7 = 0.56;
}
/* ************************************************************************* */