Some musings
parent
64672471e9
commit
28afa7496b
|
@ -24,10 +24,11 @@
|
|||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\paperfontsize 11
|
||||
\spacing single
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_geometry true
|
||||
\use_amsmath 1
|
||||
\use_esint 1
|
||||
\use_mhchem 1
|
||||
|
@ -42,6 +43,10 @@
|
|||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\leftmargin 3cm
|
||||
\topmargin 3cm
|
||||
\rightmargin 3cm
|
||||
\bottommargin 3cm
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
|
@ -68,20 +73,536 @@ Frank Dellaert
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us assume a setup where frames with measurements are processed at some
|
||||
fairly low rate, e.g., 10 Hz.
|
||||
Let us assume a setup where frames with image and/or laser measurements
|
||||
are processed at some fairly low rate, e.g., 10 Hz.
|
||||
We define the state of the vehicle at those times as attitude, position,
|
||||
and velocity.
|
||||
These three quantities are referred to as a NavState, defining a 9-dimensional
|
||||
manifold.
|
||||
These three quantities are jointly referred to as a NavState
|
||||
\begin_inset Formula $X\doteq(R_{b}^{n},p^{n},v^{n})$
|
||||
\end_inset
|
||||
|
||||
, where the superscript
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
denotes the
|
||||
\emph on
|
||||
navigation frame
|
||||
\emph default
|
||||
, and
|
||||
\begin_inset Formula $b$
|
||||
\end_inset
|
||||
|
||||
the
|
||||
\emph on
|
||||
body frame
|
||||
\emph default
|
||||
.
|
||||
For simplicity, we drop these indices below where clear from context.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us consider a simplified situation where we have a perfect gyroscope
|
||||
and accelerometer, i.e., assuming zero noise and bias terms, where the angular
|
||||
velocity
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
and acceleration
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
are measured in the body frame.
|
||||
Then we can model the state of the vehicle as governed by the following
|
||||
kinematic equations,
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\dot{R} & = & R\hat{\omega}\label{eq:diffeq}\\
|
||||
\dot{p} & = & v\label{eq:diffeq2}\\
|
||||
\dot{v} & = & g+Ra\label{eq:diffeq3}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
Note that gravity is not measured by an accelerometer and needs to be added
|
||||
separately.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We only measure
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
at discrete instants of time, and hence we need to make choices about how
|
||||
to integrate the equations above numerically.
|
||||
For a vehicle such as a quadrotor UAV, it is not a bad assumption to model
|
||||
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
as piecewise constant in the body frame, as the actuation is fixed to the
|
||||
body.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
This motivates splitting up the integration into two parts: one that depends
|
||||
on knowing the exact rotation at the beginning of the interval, and another
|
||||
that does not:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R(t) & = & R_{0}\int_{0}^{t}R_{0}^{T}R(\tau)\hat{\omega}(\tau)d\tau\\
|
||||
\dot{p} & = & R_{0}\int_{0}^{t}R_{0}^{T}v(\tau)d\tau\\
|
||||
\dot{v} & = & \int_{0}^{t}gd\tau+R_{0}\int_{0}^{t}R_{0}^{T}R(\tau)a(\tau)d\tau
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
It is well known that constant angular and linear velocity, expressed in
|
||||
the body frame, integrate to a spiral trajectory.
|
||||
This is captured exactly by the exponential map of
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{cc}
|
||||
R & p\\
|
||||
0 & 1
|
||||
\end{array}\right]=\lim_{n\rightarrow\infty}\left(I+\left[\begin{array}{cc}
|
||||
\hat{\omega} & v^{b}\\
|
||||
0 & 0
|
||||
\end{array}\right]\frac{\Delta t}{n}\right)^{n}\doteq\exp\left[\begin{array}{cc}
|
||||
\hat{\omega} & v^{b}\\
|
||||
0 & 0
|
||||
\end{array}\right]\Delta t
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
As can be seen from the definition, the exponential map directly derives
|
||||
from dividing up a finite interval
|
||||
\begin_inset Formula $\Delta t$
|
||||
\end_inset
|
||||
|
||||
into an infinite number of infinitesimally small intervals
|
||||
\begin_inset Formula $\Delta t/n$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
As a consequence, integrating the kinematics forward in
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
translates simply to
|
||||
\emph on
|
||||
multiplication
|
||||
\emph default
|
||||
with
|
||||
\begin_inset Formula $\Delta t$
|
||||
\end_inset
|
||||
|
||||
in the 6-dimensional tangent space.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
What is needed to achieve the same understanding for NavStates, integrated
|
||||
forward under constant angular velocity and linear acceleration? For
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
, the exponential map arose naturally when we embedded the 6-dimensional
|
||||
manifold in
|
||||
\begin_inset Formula $GL(4)$
|
||||
\end_inset
|
||||
|
||||
, the space of all non-singular
|
||||
\begin_inset Formula $4\times4$
|
||||
\end_inset
|
||||
|
||||
matrices.
|
||||
We can try the same trick with NavStates, e.g., embedding them in
|
||||
\begin_inset Formula $GL(7)$
|
||||
\end_inset
|
||||
|
||||
using the following representation:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
X=\left[\begin{array}{ccc}
|
||||
R & & p\\
|
||||
& R & v\\
|
||||
& & 1
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
However, the induced group operation does not really do what we want, nor
|
||||
are NavStates even expected to behave as a group.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
The group operation inherited from
|
||||
\begin_inset Formula $GL(7)$
|
||||
\end_inset
|
||||
|
||||
yields the following result,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{ccc}
|
||||
R_{1} & & p_{1}\\
|
||||
& R_{1} & v_{1}\\
|
||||
& & 1
|
||||
\end{array}\right]\left[\begin{array}{ccc}
|
||||
R_{2} & & p_{2}\\
|
||||
& R_{2} & v_{2}\\
|
||||
& & 1
|
||||
\end{array}\right]=\left[\begin{array}{ccc}
|
||||
R_{1}R_{2} & & p_{1}+R_{1}p_{2}\\
|
||||
& R_{1}R_{2} & v_{1}+R_{1}v_{2}\\
|
||||
& & 1
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
i.e.,
|
||||
\begin_inset Formula $R_{2}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $p_{2}$
|
||||
\end_inset
|
||||
|
||||
, and
|
||||
\begin_inset Formula $v_{2}$
|
||||
\end_inset
|
||||
|
||||
are to interpreted as quantities in the body frame.
|
||||
How can we achieve a constant angular velocity/constant acceleration operation
|
||||
with this representation? For an infinitesimal interval
|
||||
\begin_inset Formula $\delta$
|
||||
\end_inset
|
||||
|
||||
, we expect the result to be
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{ccc}
|
||||
R+R\hat{\omega}\delta & & p+v\delta\\
|
||||
& R+R\hat{\omega}\delta & v+Ra\delta\\
|
||||
& & 1
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This can NOT be achieved by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{ccc}
|
||||
R & & p\\
|
||||
& R & v\\
|
||||
& & 1
|
||||
\end{array}\right]\left[\begin{array}{ccc}
|
||||
I+\hat{\omega}\delta & \delta & 0\\
|
||||
& I+\hat{\omega}\delta & a\delta\\
|
||||
& & 1
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
because it is not closed.
|
||||
Hence, the exponential map as defined below does not really do it for us
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{ccc}
|
||||
R & & p\\
|
||||
& R & v\\
|
||||
& & 1
|
||||
\end{array}\right]=\lim_{n\rightarrow\infty}\left(I+\left[\begin{array}{ccc}
|
||||
\hat{\omega} & & v^{b}\\
|
||||
& \hat{\omega} & a\\
|
||||
& & 1
|
||||
\end{array}\right]\frac{\Delta t}{n}\right)^{n}=\left[\begin{array}{ccc}
|
||||
R+R\hat{\omega}\delta & & p+v\delta\\
|
||||
& R+R\hat{\omega}\delta & v+Ra\delta\\
|
||||
& & 1
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We can still, however, treat the NavState as living in a 9-dimensional manifold
|
||||
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
, defined by the orthonormality constraints on
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In mechanics, a natural manifold associated with
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
is its
|
||||
\emph on
|
||||
tangent bundle
|
||||
\emph default
|
||||
, which is 12-dimensional and consists of pairs
|
||||
\begin_inset Formula $((R,p),(\omega,v))$
|
||||
\end_inset
|
||||
|
||||
, and is useful for integrating the Euler-Lagrange equations of motion.
|
||||
However, in an inertial navigation context, we measure
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
, and we can make do with the 9-dimensional manifold
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
consisting of the triples
|
||||
\begin_inset Formula $(R,p,v)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Under constant angular velocity and linear acceleration, in the body frame,
|
||||
we obtain a family of trajectories
|
||||
\begin_inset Formula $\gamma(t):R\rightarrow M$
|
||||
\end_inset
|
||||
|
||||
by integrating
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R(t) & = & \int_{0}^{t}R(\tau)\hat{\omega}d\tau\\
|
||||
p(t) & = & \int_{0}^{t}v(\tau)d\tau\\
|
||||
v(t) & = & \int_{0}^{t}\left\{ g+R(\tau)a\right\} d\tau
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $\gamma(0)=(R_{0},p_{0},v_{0})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In analogy to
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
we know that (Murray94book, page 42):
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R(t) & = & R_{0}\exp\hat{\omega}t\\
|
||||
v(t) & = & v_{0}+gt+R_{0}\left\{ (I-\exp\hat{\omega}t)\left(\omega\times a\right)+\omega\omega^{T}at\right\}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Plugging that into position yields
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
p(t) & = & p_{0}+v_{0}t+g\frac{t^{2}}{2}+R_{0}\int_{0}^{t}\left\{ (I-\exp\hat{\omega}\tau)\left(\omega\times a\right)+\omega\omega^{T}a\tau\right\} d\tau
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
where the last term integrates the velocity spiral induced by constant accelerat
|
||||
ion in the rotating body frame.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
It is worth asking what all this complexity buys us, however.
|
||||
Even for a quadrotor, forces induced by wind effects and drag are arguably
|
||||
better approximated over short intervals as constant in the navigation
|
||||
frame.
|
||||
And gravity is clearly constant in the navigation frame, but
|
||||
\emph on
|
||||
not
|
||||
\emph default
|
||||
in the body frame.
|
||||
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
More so, if we do not know
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
perfectly, integrating gravity in the body frame could lead to significant
|
||||
errors, as gravity typically dominates other accelerations in the system.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us examine what we obtain using a constant angular velocity in the body,
|
||||
but with a zero-order hold on acceleration in the navigation frame instead.
|
||||
While
|
||||
\begin_inset Formula $a$
|
||||
\end_inset
|
||||
|
||||
is still measured in the body frame, we rotate it once by
|
||||
\begin_inset Formula $R_{0}$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $t=0$
|
||||
\end_inset
|
||||
|
||||
, and we obtain a much simplified picture:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R(t) & = & R_{0}\exp\hat{\omega}t\\
|
||||
v(t) & = & v_{0}+\left(g+R_{0}a\right)t
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Plugging this into position now yields a much simpler equation, as well:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
p(t) & = & p_{0}+v_{0}t+\left(g+R_{0}a\right)\frac{t^{2}}{2}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
In the context of the IMU factor it is useful to describe these trajectories
|
||||
in a manner that does not depend on the initial NavState
|
||||
\begin_inset Formula $(R_{0},p_{0},v_{0})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Here is an attempt:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R(t) & = & \int_{0}^{t}R(\tau)\hat{\omega}d\tau\\
|
||||
p(t) & = & \int_{0}^{t}v(\tau)d\tau\\
|
||||
v(t) & = & \int_{0}^{t}R(\tau)ad\tau
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
We now choose to define the retraction from the tangent space at
|
||||
\begin_inset Formula $X$
|
||||
\end_inset
|
||||
|
||||
back to the manifold as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
X\oplus dX=(R,p,v)\oplus(d_{R},d_{p},d_{v})\doteq(R\exp d_{R},p+Rd_{p},v+Rd_{v})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
A crucial detail is that the incremental position
|
||||
\begin_inset Formula $d_{p}$
|
||||
\end_inset
|
||||
|
||||
and velocity
|
||||
\begin_inset Formula $d_{v}$
|
||||
\end_inset
|
||||
|
||||
are given in the NavState frame, rather than in the global frame, and hence
|
||||
are rotated by
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
before applying.
|
||||
This is in analogy to
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
, treating velocity here in the same way as position in
|
||||
\begin_inset Formula $SE(3)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The goal of the IMU factor is to integrate IMU measurement between two successiv
|
||||
e frames and create a binary factor between two NavStates.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The binary factor is set up as a prediction:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
|
@ -103,6 +624,55 @@ where
|
|||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Integrating gyro and accelerometer readings, following Forster05rss, and
|
||||
assuming zero bias for now, is done by:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R_{j} & = & R_{i}\prod_{k}\exp\omega_{k}\Delta t\\
|
||||
p_{j} & = & p_{i}+\sum_{k}v_{k}\Delta t+\frac{1}{2}g\Delta t_{ij}^{2}+\frac{1}{2}\sum_{k}R_{k}a_{k}\Delta t^{2}\\
|
||||
v_{j} & = & v_{i}+g\Delta t_{ij}+\sum_{k}R_{k}a_{k}\Delta t
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
We would, however, like to separate out the constant velocity and gravity
|
||||
components from the IMU-induced terms:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R_{j} & = & R_{i}\prod_{k}\exp\omega_{k}\Delta t\\
|
||||
p_{j} & = & \left\{ p_{i}+v_{i}\Delta t_{ij}+\frac{1}{2}g\Delta t_{ij}^{2}\right\} +\sum_{k}\left(v_{k}-v_{i}\right)\Delta t+\frac{1}{2}\sum_{k}R_{k}a_{k}\Delta t^{2}\\
|
||||
v_{j} & = & \left\{ v_{i}+g\Delta t_{ij}\right\} +\sum_{k}R_{k}a_{k}\Delta t
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us look at a single interval of the incremental terms:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
R_{j} & = & R_{i}\exp\omega\Delta t\\
|
||||
p_{j} & = & p_{i}+v_{i}\Delta t+\frac{1}{2}g\Delta t^{2}+\frac{1}{2}R_{i}a\Delta t^{2}\\
|
||||
v_{j} & = & v_{i}+g\Delta t+R_{i}a_{k}\Delta t
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Comparing that with the definition of retract, we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
R_{j}=R_{i}\oplus\left(\omega,R_{i}^{T}v_{i}+\frac{1}{2}R_{i}^{T}g\Delta t+\frac{1}{2}a\Delta t,R_{i}^{T}g+a_{k}\right)\Delta t
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
|
|
Loading…
Reference in New Issue