pass on projection factor, but looks great overall

release/4.3a0
lcarlone 2021-07-20 21:06:51 -04:00
parent a204f6d508
commit 2812eeb1be
1 changed files with 197 additions and 159 deletions

View File

@ -23,192 +23,230 @@
namespace gtsam {
/**
* Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here.
* i.e. the main building block for visual SLAM.
* this version takes rolling shutter information into account like so: consider camera A (pose A) and camera B, and Point2 from camera A.
* camera A has timestamp t_A for the exposure time of its first row, and so does camera B t_B, Point2 has timestamp t_p according to the timestamp
* corresponding to the time of exposure of the row in the camera it belongs to.
* let us define the interp_param = (t_p - t_A) / (t_B - t_A), we will use the pose interpolated between A and B by the interp_param to project
* the corresponding landmark to Point2.
* @addtogroup SLAM
*/
/**
* Non-linear factor for 2D projection measurement obtained using a rolling shutter camera. The calibration is known here.
* This version takes rolling shutter information into account as follows: consider two consecutive poses A and B,
* and a Point2 measurement taken starting at time A using a rolling shutter camera.
* Pose A has timestamp t_A, and Pose B has timestamp t_B. The Point2 measurement has timestamp t_p (with t_A <= t_p <= t_B)
* corresponding to the time of exposure of the row of the image the pixel belongs to.
* Let us define the interp_param = (t_p - t_A) / (t_B - t_A), we will use the pose interpolated between A and B by
* the interp_param to project the corresponding landmark to Point2.
* @addtogroup SLAM
*/
class ProjectionFactorRollingShutter: public NoiseModelFactor3<Pose3, Pose3, Point3> {
protected:
class ProjectionFactorRollingShutter : public NoiseModelFactor3<Pose3, Pose3, Point3> {
protected:
// Keep a copy of measurement and calibration for I/O
Point2 measured_; ///< 2D measurement
double interp_param_; ///< interpolation parameter corresponding to the point2 measured
boost::shared_ptr<Cal3_S2> K_; ///< shared pointer to calibration object
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
// Keep a copy of measurement and calibration for I/O
Point2 measured_; ///< 2D measurement
double interp_param_; ///< interpolation parameter in [0,1] corresponding to the point2 measurement
boost::shared_ptr<Cal3_S2> K_; ///< shared pointer to calibration object
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
public:
/// shorthand for base class type
typedef NoiseModelFactor3<Pose3, Pose3, Point3> Base;
/// shorthand for base class type
typedef NoiseModelFactor3<Pose3, Pose3, Point3> Base;
/// shorthand for this class
typedef ProjectionFactorRollingShutter This;
/// shorthand for this class
typedef ProjectionFactorRollingShutter This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// Default constructor
ProjectionFactorRollingShutter() :
measured_(0, 0), interp_param_(0), throwCheirality_(false), verboseCheirality_(false) {
/// Default constructor
ProjectionFactorRollingShutter()
: measured_(0, 0),
interp_param_(0),
throwCheirality_(false),
verboseCheirality_(false) {
}
/**
* Constructor
* @param measured is the 2 dimensional location of point in image (the measurement)
* @param interp_param is the rolling shutter parameter for the measurement
* @param model is the standard deviation
* @param poseKey_a is the index of the first camera
* @param poseKey_b is the index of the second camera
* @param pointKey is the index of the landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double interp_param, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey, const boost::shared_ptr<Cal3_S2>& K,
boost::optional<Pose3> body_P_sensor = boost::none) :
Base(model, poseKey_a, poseKey_b, pointKey), measured_(measured), interp_param_(interp_param), K_(K), body_P_sensor_(body_P_sensor),
throwCheirality_(false), verboseCheirality_(false) {}
/**
* Constructor
* @param measured is the 2-dimensional pixel location of point in the image (the measurement)
* @param interp_param is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double interp_param,
const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
interp_param_(interp_param),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(false),
verboseCheirality_(false) {
}
/**
* Constructor with exception-handling flags
* @param measured is the 2 dimensional location of point in image (the measurement)
* @param interp_param is the rolling shutter parameter for the measurement
* @param model is the standard deviation
* @param poseKey_a is the index of the first camera
* @param poseKey_b is the index of the second camera
* @param pointKey is the index of the landmark
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are rethrown
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double interp_param, const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey, const boost::shared_ptr<Cal3_S2>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<Pose3> body_P_sensor = boost::none) :
Base(model, poseKey_a, poseKey_b, pointKey), measured_(measured), interp_param_(interp_param), K_(K), body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
/**
* Constructor with exception-handling flags
* @param measured is the 2-dimensional pixel location of point in the image (the measurement)
* @param interp_param is the rolling shutter parameter for the measurement
* @param model is the noise model
* @param poseKey_a is the key of the first camera
* @param poseKey_b is the key of the second camera
* @param pointKey is the key of the landmark
* @param K shared pointer to the constant calibration
* @param throwCheirality determines whether Cheirality exceptions are rethrown
* @param verboseCheirality determines whether exceptions are printed for Cheirality
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
ProjectionFactorRollingShutter(const Point2& measured, double interp_param,
const SharedNoiseModel& model,
Key poseKey_a, Key poseKey_b, Key pointKey,
const boost::shared_ptr<Cal3_S2>& K,
bool throwCheirality, bool verboseCheirality,
boost::optional<Pose3> body_P_sensor = boost::none)
: Base(model, poseKey_a, poseKey_b, pointKey),
measured_(measured),
interp_param_(interp_param),
K_(K),
body_P_sensor_(body_P_sensor),
throwCheirality_(throwCheirality),
verboseCheirality_(verboseCheirality) {
}
/** Virtual destructor */
virtual ~ProjectionFactorRollingShutter() {}
/** Virtual destructor */
virtual ~ProjectionFactorRollingShutter() {
}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast < gtsam::NonlinearFactor
> (gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "ProjectionFactorRollingShutter, z = ";
traits<Point2>::Print(measured_);
std::cout << " rolling shutter interpolation param = " << interp_param_;
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "ProjectionFactorRollingShutter, z = ";
traits<Point2>::Print(measured_);
std::cout << " rolling shutter interpolation param = " << interp_param_;
if (this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e
&& Base::equals(p, tol)
&& (interp_param_ == e->interp_param())
&& traits<Point2>::Equals(this->measured_, e->measured_, tol)
&& this->K_->equals(*e->K_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
return e && Base::equals(p, tol) && (interp_param_ == e->interp_param())
&& traits<Point2>::Equals(this->measured_, e->measured_, tol)
&& this->K_->equals(*e->K_, tol)
&& (this->throwCheirality_ == e->throwCheirality_)
&& (this->verboseCheirality_ == e->verboseCheirality_)
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|| (body_P_sensor_ && e->body_P_sensor_
&& body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(const Pose3& pose_a, const Pose3& pose_b, const Point3& point,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none, boost::optional<Matrix&> H3 = boost::none) const {
/// Evaluate error h(x)-z and optionally derivatives
Vector evaluateError(const Pose3& pose_a, const Pose3& pose_b, const Point3& point,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const {
Pose3 pose;
try {
Pose3 pose = interpolate<Pose3>(pose_a, pose_b, interp_param_, H1, H2);
gtsam::Matrix Hprj;
//pose = interpolate(pose_a, pose_b, interp_param_, H1, H2);
pose = interpolate<Pose3>(pose_a, pose_b, interp_param_, H1, H2);
try {
if(body_P_sensor_) {
if(H1 && H2) {
gtsam::Matrix H0;
PinholeCamera<Cal3_S2> camera(pose.compose(*body_P_sensor_, H0), *K_);
Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) - measured_);
*H1 = Hprj * H0 * (*H1);
*H2 = Hprj * H0 * (*H2);
return reprojectionError;
} else {
PinholeCamera<Cal3_S2> camera(pose.compose(*body_P_sensor_), *K_);
return camera.project(point, Hprj, H3, boost::none) - measured_;
}
} else {
PinholeCamera<Cal3_S2> camera(pose, *K_);
if (body_P_sensor_) {
if (H1 || H2 || H3) {
gtsam::Matrix HbodySensor;
PinholeCamera<Cal3_S2> camera(pose.compose(*body_P_sensor_, HbodySensor), *K_);
Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) - measured_);
if (H1) *H1 = Hprj * (*H1);
if (H2) *H2 = Hprj * (*H2);
if (H1)
*H1 = Hprj * HbodySensor * (*H1);
if (H2)
*H2 = Hprj * HbodySensor * (*H2);
return reprojectionError;
} else {
PinholeCamera<Cal3_S2> camera(pose.compose(*body_P_sensor_), *K_);
return camera.project(point) - measured_;
}
} catch( CheiralityException& e) {
if (H1) *H1 = Matrix::Zero(2,6);
if (H2) *H2 = Matrix::Zero(2,6);
if (H3) *H3 = Matrix::Zero(2,3);
if (verboseCheirality_)
std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->key2()) <<
" moved behind camera " << DefaultKeyFormatter(this->key1()) << std::endl;
if (throwCheirality_)
throw CheiralityException(this->key2());
} else {
PinholeCamera<Cal3_S2> camera(pose, *K_);
Point2 reprojectionError(camera.project(point, Hprj, H3, boost::none) - measured_);
if (H1)
*H1 = Hprj * (*H1);
if (H2)
*H2 = Hprj * (*H2);
return reprojectionError;
}
return Vector2::Constant(2.0 * K_->fx());
} catch (CheiralityException& e) {
if (H1)
*H1 = Matrix::Zero(2, 6);
if (H2)
*H2 = Matrix::Zero(2, 6);
if (H3)
*H3 = Matrix::Zero(2, 3);
if (verboseCheirality_)
std::cout << e.what() << ": Landmark "
<< DefaultKeyFormatter(this->key2()) << " moved behind camera "
<< DefaultKeyFormatter(this->key1()) << std::endl;
if (throwCheirality_)
throw CheiralityException(this->key2());
}
return Vector2::Constant(2.0 * K_->fx());
}
/** return the measurement */
const Point2& measured() const {
return measured_;
}
/** return the measurement */
const Point2& measured() const {
return measured_;
}
/** return the calibration object */
inline const boost::shared_ptr<Cal3_S2> calibration() const {
return K_;
}
/** return the calibration object */
inline const boost::shared_ptr<Cal3_S2> calibration() const {
return K_;
}
/** returns the rolling shutter interp param*/
inline double interp_param() const {return interp_param_; }
/** returns the rolling shutter interp param*/
inline double interp_param() const {
return interp_param_;
}
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return verbosity */
inline bool verboseCheirality() const {
return verboseCheirality_;
}
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const {
return throwCheirality_;
}
private:
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(interp_param_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
}; // rolling shutter projection factor
} //namespace gtsam
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(interp_param_);
ar & BOOST_SERIALIZATION_NVP(K_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
// rolling shutter projection factor
}//namespace gtsam