Enabled DogLeg unit test and made DogLeg verbose printing controlled by a flag
parent
5670e255ca
commit
26dd292872
|
@ -9,33 +9,33 @@
|
|||
namespace gtsam {
|
||||
/* ************************************************************************* */
|
||||
VectorValues DoglegOptimizerImpl::ComputeDoglegPoint(
|
||||
double Delta, const VectorValues& x_u, const VectorValues& x_n) {
|
||||
double Delta, const VectorValues& x_u, const VectorValues& x_n, const bool verbose) {
|
||||
|
||||
// Get magnitude of each update and find out which segment Delta falls in
|
||||
assert(Delta >= 0.0);
|
||||
double DeltaSq = Delta*Delta;
|
||||
double x_u_norm_sq = x_u.vector().squaredNorm();
|
||||
double x_n_norm_sq = x_n.vector().squaredNorm();
|
||||
cout << "Steepest descent magnitude " << sqrt(x_u_norm_sq) << ", Newton's method magnitude " << sqrt(x_n_norm_sq) << endl;
|
||||
if(verbose) cout << "Steepest descent magnitude " << sqrt(x_u_norm_sq) << ", Newton's method magnitude " << sqrt(x_n_norm_sq) << endl;
|
||||
if(DeltaSq < x_u_norm_sq) {
|
||||
// Trust region is smaller than steepest descent update
|
||||
VectorValues x_d = VectorValues::SameStructure(x_u);
|
||||
x_d.vector() = x_u.vector() * sqrt(DeltaSq / x_u_norm_sq);
|
||||
cout << "In steepest descent region with fraction " << sqrt(DeltaSq / x_u_norm_sq) << " of steepest descent magnitude" << endl;
|
||||
if(verbose) cout << "In steepest descent region with fraction " << sqrt(DeltaSq / x_u_norm_sq) << " of steepest descent magnitude" << endl;
|
||||
return x_d;
|
||||
} else if(DeltaSq < x_n_norm_sq) {
|
||||
// Trust region boundary is between steepest descent point and Newton's method point
|
||||
return ComputeBlend(Delta, x_u, x_n);
|
||||
} else {
|
||||
assert(DeltaSq >= x_n_norm_sq);
|
||||
cout << "In pure Newton's method region" << endl;
|
||||
if(verbose) cout << "In pure Newton's method region" << endl;
|
||||
// Trust region is larger than Newton's method point
|
||||
return x_n;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues DoglegOptimizerImpl::ComputeBlend(double Delta, const VectorValues& x_u, const VectorValues& x_n) {
|
||||
VectorValues DoglegOptimizerImpl::ComputeBlend(double Delta, const VectorValues& x_u, const VectorValues& x_n, const bool verbose) {
|
||||
|
||||
// See doc/trustregion.lyx or doc/trustregion.pdf
|
||||
|
||||
|
@ -64,7 +64,7 @@ VectorValues DoglegOptimizerImpl::ComputeBlend(double Delta, const VectorValues&
|
|||
}
|
||||
|
||||
// Compute blended point
|
||||
cout << "In blend region with fraction " << tau << " of Newton's method point" << endl;
|
||||
if(verbose) cout << "In blend region with fraction " << tau << " of Newton's method point" << endl;
|
||||
VectorValues blend = VectorValues::SameStructure(x_u);
|
||||
blend.vector() = (1. - tau) * x_u.vector() + tau * x_n.vector();
|
||||
return blend;
|
||||
|
|
|
@ -75,7 +75,7 @@ struct DoglegOptimizerImpl {
|
|||
template<class M, class F, class VALUES>
|
||||
static IterationResult Iterate(
|
||||
double Delta, TrustRegionAdaptationMode mode, const M& Rd,
|
||||
const F& f, const VALUES& x0, const Ordering& ordering, double f_error);
|
||||
const F& f, const VALUES& x0, const Ordering& ordering, const double f_error, const bool verbose=false);
|
||||
|
||||
/**
|
||||
* Compute the dogleg point given a trust region radius \f$ \Delta \f$. The
|
||||
|
@ -98,7 +98,7 @@ struct DoglegOptimizerImpl {
|
|||
* @param bayesNet The Bayes' net \f$ (R,d) \f$ as described above.
|
||||
* @return The dogleg point \f$ \delta x_d \f$
|
||||
*/
|
||||
static VectorValues ComputeDoglegPoint(double Delta, const VectorValues& x_u, const VectorValues& x_n);
|
||||
static VectorValues ComputeDoglegPoint(double Delta, const VectorValues& x_u, const VectorValues& x_n, const bool verbose=false);
|
||||
|
||||
/** Compute the minimizer \f$ \delta x_u \f$ of the line search along the gradient direction \f$ g \f$ of
|
||||
* the function
|
||||
|
@ -132,7 +132,7 @@ struct DoglegOptimizerImpl {
|
|||
* @param xu Steepest descent minimizer
|
||||
* @param xn Newton's method minimizer
|
||||
*/
|
||||
static VectorValues ComputeBlend(double Delta, const VectorValues& x_u, const VectorValues& x_n);
|
||||
static VectorValues ComputeBlend(double Delta, const VectorValues& x_u, const VectorValues& x_n, const bool verbose=false);
|
||||
};
|
||||
|
||||
|
||||
|
@ -140,7 +140,7 @@ struct DoglegOptimizerImpl {
|
|||
template<class M, class F, class VALUES>
|
||||
typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
||||
double Delta, TrustRegionAdaptationMode mode, const M& Rd,
|
||||
const F& f, const VALUES& x0, const Ordering& ordering, double f_error) {
|
||||
const F& f, const VALUES& x0, const Ordering& ordering, const double f_error, const bool verbose) {
|
||||
|
||||
// Compute steepest descent and Newton's method points
|
||||
VectorValues dx_u = ComputeSteepestDescentPoint(Rd);
|
||||
|
@ -156,7 +156,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
// Compute dog leg point
|
||||
result.dx_d = ComputeDoglegPoint(Delta, dx_u, dx_n);
|
||||
|
||||
cout << "Delta = " << Delta << ", dx_d_norm = " << result.dx_d.vector().norm() << endl;
|
||||
if(verbose) cout << "Delta = " << Delta << ", dx_d_norm = " << result.dx_d.vector().norm() << endl;
|
||||
|
||||
// Compute expmapped solution
|
||||
const VALUES x_d(x0.expmap(result.dx_d, ordering));
|
||||
|
@ -167,8 +167,8 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
// Compute decrease in M
|
||||
const double new_M_error = jfg.error(result.dx_d);
|
||||
|
||||
cout << "f error: " << f_error << " -> " << result.f_error << endl;
|
||||
cout << "M error: " << M_error << " -> " << new_M_error << endl;
|
||||
if(verbose) cout << "f error: " << f_error << " -> " << result.f_error << endl;
|
||||
if(verbose) cout << "M error: " << M_error << " -> " << new_M_error << endl;
|
||||
|
||||
// Compute gain ratio. Here we take advantage of the invariant that the
|
||||
// Bayes' net error at zero is equal to the nonlinear error
|
||||
|
@ -176,7 +176,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
0.5 :
|
||||
(f_error - result.f_error) / (M_error - new_M_error);
|
||||
|
||||
cout << "rho = " << rho << endl;
|
||||
if(verbose) cout << "rho = " << rho << endl;
|
||||
|
||||
if(rho >= 0.75) {
|
||||
// M agrees very well with f, so try to increase lambda
|
||||
|
|
|
@ -14,8 +14,7 @@ check_PROGRAMS += testGraph
|
|||
check_PROGRAMS += testInference
|
||||
check_PROGRAMS += testGaussianJunctionTree
|
||||
check_PROGRAMS += testNonlinearEquality testNonlinearFactor testNonlinearFactorGraph
|
||||
check_PROGRAMS += testNonlinearOptimizer
|
||||
# check_PROGRAMS += testDoglegOptimizer # Uses debugging prints so commented out in SVN
|
||||
check_PROGRAMS += testNonlinearOptimizer testDoglegOptimizer
|
||||
check_PROGRAMS += testSymbolicBayesNet testSymbolicFactorGraph
|
||||
check_PROGRAMS += testTupleValues
|
||||
check_PROGRAMS += testNonlinearISAM
|
||||
|
|
Loading…
Reference in New Issue