Fix createPoses

release/4.3a0
Frank Dellaert 2024-10-28 08:55:49 -07:00
parent d48b1fc840
commit 26a3728d80
6 changed files with 52 additions and 20 deletions

View File

@ -56,7 +56,7 @@ std::vector<Point3> createPoints() {
/**
* Create a set of ground-truth poses
* Default values give a circular trajectory, radius 30 at pi/4 intervals,
* Default values give a circular trajectory, radius 30 at pi/4 intervals,
* always facing the circle center
*/
std::vector<Pose3> createPoses(

View File

@ -62,7 +62,7 @@ def main():
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
poses = SFMdata.createPoses()
# Create a factor graph
graph = NonlinearFactorGraph()

View File

@ -3,14 +3,14 @@ A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
# pylint: disable=invalid-name, E1101
from typing import List
import numpy as np
import gtsam
from gtsam import Cal3_S2, Point3, Pose3
from gtsam import Point3, Pose3, Rot3
def createPoints() -> List[Point3]:
@ -28,16 +28,49 @@ def createPoints() -> List[Point3]:
return points
def createPoses(K: Cal3_S2) -> List[Pose3]:
"""Generate a set of ground-truth camera poses arranged in a circle about the origin."""
radius = 40.0
height = 10.0
angles = np.linspace(0, 2 * np.pi, 8, endpoint=False)
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
poses = []
for theta in angles:
position = gtsam.Point3(radius * np.cos(theta), radius * np.sin(theta), height)
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
poses.append(camera.pose())
_M_PI_2 = np.pi / 2
_M_PI_4 = np.pi / 4
def createPoses(
init: Pose3 = Pose3(Rot3.Ypr(_M_PI_2, 0, -_M_PI_2), Point3(30, 0, 0)),
delta: Pose3 = Pose3(
Rot3.Ypr(0, -_M_PI_4, 0),
Point3(np.sin(_M_PI_4) * 30, 0, 30 * (1 - np.sin(_M_PI_4))),
),
steps: int = 8,
) -> List[Pose3]:
"""
Create a set of ground-truth poses
Default values give a circular trajectory, radius 30 at pi/4 intervals,
always facing the circle center
"""
poses = [init]
for _ in range(1, steps):
poses.append(poses[-1].compose(delta))
return poses
def posesOnCircle(num_cameras=8, R=30):
"""Create regularly spaced poses with specified radius and number of cameras."""
theta = 2 * np.pi / num_cameras
# Initial pose at angle 0, position (R, 0, 0), facing the center with Y-axis pointing down
init_rotation = Rot3.Ypr(_M_PI_2, 0, -_M_PI_2)
init_position = np.array([R, 0, 0])
init = Pose3(init_rotation, init_position)
# Delta rotation: rotate by -theta around Z-axis (counterclockwise movement)
delta_rotation = Rot3.Ypr(0, -theta, 0)
# Delta translation in world frame
delta_translation_world = np.array([R * (np.cos(theta) - 1), R * np.sin(theta), 0])
# Transform delta translation to local frame of the camera
delta_translation_local = init.rotation().unrotate(delta_translation_world)
# Define delta pose
delta = Pose3(delta_rotation, delta_translation_local)
# Generate poses
return createPoses(init, delta, num_cameras)

View File

@ -31,8 +31,7 @@ def get_data() -> Tuple[gtsam.Values, List[gtsam.BinaryMeasurementUnit3]]:
that lie on a circle and face the center. The poses of 8 cameras are obtained from SFMdata
and the unit translations directions between some camera pairs are computed from their
global translations. """
fx, fy, s, u0, v0 = 50.0, 50.0, 0.0, 50.0, 50.0
wTc_list = SFMdata.createPoses(gtsam.Cal3_S2(fx, fy, s, u0, v0))
wTc_list = SFMdata.createPoses()
# Rotations of the cameras in the world frame.
wRc_values = gtsam.Values()
# Normalized translation directions from camera i to camera j

View File

@ -73,7 +73,7 @@ def visual_ISAM2_example():
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
poses = SFMdata.createPoses()
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
# to maintain proper linearization and efficient variable ordering, iSAM2

View File

@ -36,7 +36,7 @@ def main():
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
poses = SFMdata.createPoses()
# Create a NonlinearISAM object which will relinearize and reorder the variables
# every "reorderInterval" updates