Fixed both C++ and python examples
parent
1d214d4529
commit
264a240094
|
@ -31,24 +31,6 @@ def vector3(x, y, z):
|
|||
return np.array([x, y, z], dtype=np.float)
|
||||
|
||||
|
||||
def create_poses(angular_velocity=np.pi,
|
||||
delta_t=0.01, radius=30.0):
|
||||
"""Create the set of ground-truth poses."""
|
||||
poses = []
|
||||
theta = 0.0
|
||||
up = gtsam.Point3(0, 0, 1)
|
||||
target = gtsam.Point3(0, 0, 0)
|
||||
for i in range(80):
|
||||
position = gtsam.Point3(radius * math.cos(theta),
|
||||
radius * math.sin(theta), 0.0)
|
||||
camera = gtsam.SimpleCamera.Lookat(
|
||||
position, target, up, gtsam.Cal3_S2())
|
||||
poses.append(camera.pose())
|
||||
theta += delta_t * angular_velocity
|
||||
|
||||
return poses
|
||||
|
||||
|
||||
def ISAM2_plot(values, fignum=0):
|
||||
"""Plot poses."""
|
||||
fig = plt.figure(fignum)
|
||||
|
@ -77,8 +59,9 @@ def ISAM2_plot(values, fignum=0):
|
|||
# IMU preintegration parameters
|
||||
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
|
||||
g = 9.81
|
||||
I = np.eye(3)
|
||||
n_gravity = vector3(0, 0, -g)
|
||||
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
|
||||
I = np.eye(3)
|
||||
PARAMS.setAccelerometerCovariance(I * 0.1)
|
||||
PARAMS.setGyroscopeCovariance(I * 0.1)
|
||||
PARAMS.setIntegrationCovariance(I * 0.1)
|
||||
|
@ -86,16 +69,29 @@ PARAMS.setUse2ndOrderCoriolis(False)
|
|||
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
|
||||
|
||||
BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
|
||||
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
|
||||
gtsam.Point3(0.05, -0.10, 0.20))
|
||||
|
||||
|
||||
def IMU_example():
|
||||
"""Run iSAM 2 example with IMU factor."""
|
||||
|
||||
# Start with a camera on x-axis looking at origin
|
||||
radius = 30
|
||||
up = gtsam.Point3(0, 0, 1)
|
||||
target = gtsam.Point3(0, 0, 0)
|
||||
position = gtsam.Point3(radius, 0, 0)
|
||||
camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
|
||||
pose_0 = camera.pose()
|
||||
|
||||
# Create the set of ground-truth landmarks and poses
|
||||
angular_velocity = math.radians(180) # rad/sec
|
||||
delta_t = 1.0/18 # makes for 10 degrees per step
|
||||
radius = 30
|
||||
acceleration = radius * angular_velocity**2
|
||||
poses = create_poses(angular_velocity, delta_t, radius)
|
||||
|
||||
angular_velocity_vector = vector3(0, -angular_velocity, 0)
|
||||
linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
|
||||
scenario = gtsam.ConstantTwistScenario(
|
||||
angular_velocity_vector, linear_velocity_vector, pose_0)
|
||||
|
||||
# Create a factor graph
|
||||
newgraph = gtsam.NonlinearFactorGraph()
|
||||
|
@ -111,7 +107,7 @@ def IMU_example():
|
|||
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
|
||||
newgraph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], noise))
|
||||
newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))
|
||||
|
||||
# Add imu priors
|
||||
biasKey = gtsam.symbol(ord('b'), 0)
|
||||
|
@ -123,22 +119,23 @@ def IMU_example():
|
|||
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
|
||||
|
||||
# Calculate with correct initial velocity
|
||||
velocity = vector3(0, angular_velocity * radius, 0)
|
||||
velprior = gtsam.PriorFactorVector(V(0), velocity, velnoise)
|
||||
n_velocity = vector3(0, angular_velocity * radius, 0)
|
||||
velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
|
||||
newgraph.push_back(velprior)
|
||||
initialEstimate.insert(V(0), velocity)
|
||||
initialEstimate.insert(V(0), n_velocity)
|
||||
|
||||
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
|
||||
|
||||
# Simulate poses and imu measurements, adding them to the factor graph
|
||||
for i, pose_i in enumerate(poses):
|
||||
delta = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
|
||||
gtsam.Point3(0.05, -0.10, 0.20))
|
||||
for i in range(80):
|
||||
t = i * delta_t # simulation time
|
||||
if i == 0: # First time add two poses
|
||||
initialEstimate.insert(X(0), poses[0].compose(delta))
|
||||
initialEstimate.insert(X(1), poses[1].compose(delta))
|
||||
pose_1 = scenario.pose(delta_t)
|
||||
initialEstimate.insert(X(0), pose_0.compose(DELTA))
|
||||
initialEstimate.insert(X(1), pose_1.compose(DELTA))
|
||||
elif i >= 2: # Add more poses as necessary
|
||||
initialEstimate.insert(X(i), pose_i.compose(delta))
|
||||
pose_i = scenario.pose(t)
|
||||
initialEstimate.insert(X(i), pose_i.compose(DELTA))
|
||||
|
||||
if i > 0:
|
||||
# Add Bias variables periodically
|
||||
|
@ -150,11 +147,10 @@ def IMU_example():
|
|||
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
|
||||
|
||||
# Predict acceleration and gyro measurements in (actual) body frame
|
||||
nRb = pose_i.rotation().matrix()
|
||||
nRb = scenario.rotation(t).matrix()
|
||||
bRn = np.transpose(nRb)
|
||||
measuredAcc = - np.dot(bRn, vector3(0, 0, -g)) + \
|
||||
vector3(0, 0, acceleration) # in body
|
||||
measuredOmega = np.dot(bRn, vector3(0, 0, angular_velocity))
|
||||
measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
|
||||
measuredOmega = scenario.omega_b(t)
|
||||
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
|
||||
|
||||
# Add Imu Factor
|
||||
|
@ -162,8 +158,8 @@ def IMU_example():
|
|||
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
|
||||
newgraph.add(imufac)
|
||||
|
||||
# insert new velocity
|
||||
initialEstimate.insert(V(i), velocity)
|
||||
# insert new velocity, which is wrong
|
||||
initialEstimate.insert(V(i), n_velocity)
|
||||
accum.resetIntegration()
|
||||
|
||||
# Incremental solution
|
||||
|
|
|
@ -3,42 +3,51 @@
|
|||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/navigation/ImuBias.h>
|
||||
#include <gtsam/navigation/ImuFactor.h>
|
||||
#include <gtsam/navigation/Scenario.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#define GTSAM4
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
vector<Pose3> createPoses() {
|
||||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses;
|
||||
double radius = 30.0, theta = 0.0;
|
||||
Point3 up(0, 0, 1), target(0, 0, 0);
|
||||
for (size_t i = 0; i < 80; ++i, theta += 2 * M_PI / 8) {
|
||||
Point3 position(radius * cos(theta), radius * sin(theta), 0.0);
|
||||
SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
|
||||
poses.push_back(camera.pose());
|
||||
}
|
||||
return poses;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
// Shorthand for velocity and pose variables
|
||||
using symbol_shorthand::V;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Create the set of ground-truth landmarks and poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
const double kGravity = 9.81;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
auto params = PreintegrationParams::MakeSharedU(kGravity);
|
||||
params->setAccelerometerCovariance(I_3x3 * 0.1);
|
||||
params->setGyroscopeCovariance(I_3x3 * 0.1);
|
||||
params->setIntegrationCovariance(I_3x3 * 0.1);
|
||||
params->setUse2ndOrderCoriolis(false);
|
||||
params->setOmegaCoriolis(Vector3(0, 0, 0));
|
||||
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
|
||||
// Start with a camera on x-axis looking at origin
|
||||
double radius = 30;
|
||||
const Point3 up(0, 0, 1), target(0, 0, 0);
|
||||
const Point3 position(radius, 0, 0);
|
||||
const SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
|
||||
const auto pose_0 = camera.pose();
|
||||
|
||||
// Now, create a constant-twist scenario that makes the camera orbit the
|
||||
// origin
|
||||
double angular_velocity = M_PI, // rad/sec
|
||||
delta_t = 1.0 / 18; // makes for 10 degrees per step
|
||||
Vector3 angular_velocity_vector(0, -angular_velocity, 0);
|
||||
Vector3 linear_velocity_vector(radius * angular_velocity, 0, 0);
|
||||
auto scenario = ConstantTwistScenario(angular_velocity_vector,
|
||||
linear_velocity_vector, pose_0);
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph newgraph, totalgraph;
|
||||
NonlinearFactorGraph newgraph;
|
||||
|
||||
// Create (incremental) ISAM2 solver
|
||||
ISAM2 isam;
|
||||
|
@ -51,8 +60,7 @@ int main(int argc, char* argv[]) {
|
|||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
auto noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
newgraph.push_back(PriorFactor<Pose3>(X(0), poses[0], noise));
|
||||
totalgraph.push_back(PriorFactor<Pose3>(X(0), poses[0], noise));
|
||||
newgraph.push_back(PriorFactor<Pose3>(X(0), pose_0, noise));
|
||||
|
||||
// Add imu priors
|
||||
Key biasKey = Symbol('b', 0);
|
||||
|
@ -60,65 +68,29 @@ int main(int argc, char* argv[]) {
|
|||
PriorFactor<imuBias::ConstantBias> biasprior(biasKey, imuBias::ConstantBias(),
|
||||
biasnoise);
|
||||
newgraph.push_back(biasprior);
|
||||
totalgraph.push_back(biasprior);
|
||||
initialEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
totalEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
auto velnoise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
|
||||
|
||||
Vector gravity(3), zero(3), velocity(3);
|
||||
gravity << 0, 0, -9.8;
|
||||
zero << 0, 0, 0;
|
||||
velocity << 0, 0, 0;
|
||||
#ifdef GTSAM4
|
||||
PriorFactor<Vector> velprior(V(0), zero, velnoise);
|
||||
#else
|
||||
PriorFactor<LieVector> velprior(V(0), zero, velnoise);
|
||||
#endif
|
||||
Vector n_velocity(3);
|
||||
n_velocity << 0, angular_velocity * radius, 0;
|
||||
PriorFactor<Vector> velprior(V(0), n_velocity, velnoise);
|
||||
newgraph.push_back(velprior);
|
||||
totalgraph.push_back(velprior);
|
||||
|
||||
#ifdef GTSAM4
|
||||
initialEstimate.insert(V(0), zero);
|
||||
totalEstimate.insert(V(0), zero);
|
||||
#else
|
||||
initialEstimate.insert(V(0), LieVector(zero));
|
||||
totalEstimate.insert(V(0), LieVector(zero));
|
||||
#endif
|
||||
initialEstimate.insert(V(0), n_velocity);
|
||||
|
||||
Matrix3 I;
|
||||
I << 1, 0, 0, 0, 1, 0, 0, 0, 1;
|
||||
Matrix3 accCov = I * 0.1;
|
||||
Matrix3 gyroCov = I * 0.1;
|
||||
Matrix3 intCov = I * 0.1;
|
||||
bool secOrder = false;
|
||||
#ifdef GTSAM4
|
||||
// IMU preintegrator
|
||||
PreintegratedImuMeasurements accum(PreintegrationParams::MakeSharedD());
|
||||
accum.params()->setAccelerometerCovariance(accCov);
|
||||
accum.params()->setGyroscopeCovariance(gyroCov);
|
||||
accum.params()->setIntegrationCovariance(intCov);
|
||||
accum.params()->setUse2ndOrderCoriolis(secOrder);
|
||||
accum.params()->setOmegaCoriolis(Vector3(0, 0, 0));
|
||||
#else
|
||||
ImuFactor::PreintegratedMeasurements accum(imuBias::ConstantBias(), accCov,
|
||||
gyroCov, intCov, secOrder);
|
||||
#endif
|
||||
PreintegratedImuMeasurements accum(params);
|
||||
|
||||
// Simulate poses and imu measurements, adding them to the factor graph
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
#ifdef GTSAM4
|
||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
#else
|
||||
Pose3 delta(Rot3::ypr(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
#endif
|
||||
for (size_t i = 0; i < 36; ++i) {
|
||||
double t = i * delta_t;
|
||||
if (i == 0) { // First time add two poses
|
||||
initialEstimate.insert(X(0), poses[0].compose(delta));
|
||||
initialEstimate.insert(X(1), poses[1].compose(delta));
|
||||
totalEstimate.insert(X(0), poses[0].compose(delta));
|
||||
totalEstimate.insert(X(1), poses[1].compose(delta));
|
||||
auto pose_1 = scenario.pose(delta_t);
|
||||
initialEstimate.insert(X(0), pose_0.compose(delta));
|
||||
initialEstimate.insert(X(1), pose_1.compose(delta));
|
||||
} else if (i >= 2) { // Add more poses as necessary
|
||||
initialEstimate.insert(X(i), poses[i].compose(delta));
|
||||
totalEstimate.insert(X(i), poses[i].compose(delta));
|
||||
auto pose_i = scenario.pose(t);
|
||||
initialEstimate.insert(X(i), pose_i.compose(delta));
|
||||
}
|
||||
|
||||
if (i > 0) {
|
||||
|
@ -135,44 +107,30 @@ int main(int argc, char* argv[]) {
|
|||
auto f = boost::make_shared<BetweenFactor<imuBias::ConstantBias> >(
|
||||
b1, b2, imuBias::ConstantBias(), cov);
|
||||
newgraph.add(f);
|
||||
totalgraph.add(f);
|
||||
initialEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
totalEstimate.insert(biasKey, imuBias::ConstantBias());
|
||||
}
|
||||
// Add Imu Factor
|
||||
accum.integrateMeasurement(gravity, zero, 0.5);
|
||||
#ifdef GTSAM4
|
||||
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum);
|
||||
#else
|
||||
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum, gravity,
|
||||
zero);
|
||||
#endif
|
||||
newgraph.add(imufac);
|
||||
totalgraph.add(imufac);
|
||||
// Predict acceleration and gyro measurements in (actual) body frame
|
||||
auto measuredAcc = scenario.acceleration_b(t) -
|
||||
scenario.rotation(t).transpose() * params->n_gravity;
|
||||
auto measuredOmega = scenario.omega_b(t);
|
||||
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t);
|
||||
|
||||
// insert new velocity
|
||||
#ifdef GTSAM4
|
||||
initialEstimate.insert(V(i), velocity);
|
||||
totalEstimate.insert(V(i), velocity);
|
||||
#else
|
||||
initialEstimate.insert(V(i), LieVector(velocity));
|
||||
totalEstimate.insert(V(i), LieVector(velocity));
|
||||
#endif
|
||||
// Add Imu Factor
|
||||
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum);
|
||||
newgraph.add(imufac);
|
||||
|
||||
// insert new velocity, which is wrong
|
||||
initialEstimate.insert(V(i), n_velocity);
|
||||
accum.resetIntegration();
|
||||
}
|
||||
|
||||
// Batch solution
|
||||
ISAM2 isam_full;
|
||||
isam_full.update(totalgraph, totalEstimate);
|
||||
result = isam_full.calculateEstimate();
|
||||
|
||||
// Incremental solution
|
||||
isam.update(newgraph, initialEstimate);
|
||||
result = isam.calculateEstimate();
|
||||
newgraph = NonlinearFactorGraph();
|
||||
initialEstimate.clear();
|
||||
}
|
||||
|
||||
GTSAM_PRINT(result);
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue