Change and simplify tests using {}

release/4.3a0
Frank Dellaert 2024-10-22 13:50:08 -07:00
parent 2c9665fae6
commit 25f90701c7
2 changed files with 58 additions and 97 deletions

View File

@ -132,6 +132,14 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
explicit HybridGaussianFactorGraph(const CONTAINER& factors) explicit HybridGaussianFactorGraph(const CONTAINER& factors)
: Base(factors) {} : Base(factors) {}
/**
* Construct from an initializer lists of GaussianFactor shared pointers.
* Example:
* HybridGaussianFactorGraph graph = { factor1, factor2, factor3 };
*/
HybridGaussianFactorGraph(std::initializer_list<sharedFactor> factors)
: Base(factors) {}
/** /**
* Implicit copy/downcast constructor to override explicit template container * Implicit copy/downcast constructor to override explicit template container
* constructor. In BayesTree this is used for: * constructor. In BayesTree this is used for:

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file testHybridIncremental.cpp * @file testHybridGaussianISAM.cpp
* @brief Unit tests for incremental inference * @brief Unit tests for incremental inference
* @author Fan Jiang, Varun Agrawal, Frank Dellaert * @author Fan Jiang, Varun Agrawal, Frank Dellaert
* @date Jan 2021 * @date Jan 2021
@ -27,8 +27,6 @@
#include <gtsam/nonlinear/PriorFactor.h> #include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/sam/BearingRangeFactor.h> #include <gtsam/sam/BearingRangeFactor.h>
#include <numeric>
#include "Switching.h" #include "Switching.h"
// Include for test suite // Include for test suite
@ -36,77 +34,63 @@
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M; using symbol_shorthand::M;
using symbol_shorthand::W; using symbol_shorthand::W;
using symbol_shorthand::X; using symbol_shorthand::X;
using symbol_shorthand::Y; using symbol_shorthand::Y;
using symbol_shorthand::Z; using symbol_shorthand::Z;
/* ****************************************************************************/
namespace switching3 {
// ϕ(x0) ϕ(x0,x1,m0) ϕ(x1,x2,m1) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0) ϕ(m0,m1)
const Switching switching(3);
const HybridGaussianFactorGraph &lfg = switching.linearizedFactorGraph;
// First update graph: ϕ(x0) ϕ(x0,x1,m0) ϕ(m0)
const HybridGaussianFactorGraph graph1{lfg.at(0), lfg.at(1), lfg.at(5)};
// Second update graph: ϕ(x1,x2,m1) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0,m1)
const HybridGaussianFactorGraph graph2{lfg.at(2), lfg.at(3), lfg.at(4),
lfg.at(6)};
} // namespace switching3
/* ****************************************************************************/ /* ****************************************************************************/
// Test if we can perform elimination incrementally. // Test if we can perform elimination incrementally.
TEST(HybridGaussianElimination, IncrementalElimination) { TEST(HybridGaussianElimination, IncrementalElimination) {
Switching switching(3); using namespace switching3;
HybridGaussianISAM isam; HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph // Run first update step
// * * *
// | | |
// X0 -*- X1 -*- X2
// \*-M0-*/
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X0)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X0, X1 | M0)
graph1.push_back(switching.linearizedFactorGraph.at(2)); // P(X1, X2 | M1)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M0)
// Run update step
isam.update(graph1); isam.update(graph1);
// Check that after update we have 2 hybrid Bayes net nodes: // Check that after update we have 2 hybrid Bayes net nodes:
// P(X0 | X1, M0) and P(X1, X2 | M0, M1), P(M0, M1) // P(M0) and P(X0, X1 | M0)
EXPECT_LONGS_EQUAL(3, isam.size()); EXPECT_LONGS_EQUAL(2, isam.size());
EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector{X(0)}); EXPECT(isam[M(0)]->conditional()->frontals() == KeyVector({M(0)}));
EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({X(1), M(0)})); EXPECT(isam[M(0)]->conditional()->parents() == KeyVector());
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector({X(1), X(2)})); EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector({X(0), X(1)}));
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({M(0), M(1)})); EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({M(0)}));
/********************************************************/ /********************************************************/
// New factor graph for incremental update. // Run second update step
HybridGaussianFactorGraph graph2;
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X1)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X2)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M0, M1)
isam.update(graph2); isam.update(graph2);
// Check that after the second update we have // Check that after update we have 3 hybrid Bayes net nodes:
// 1 additional hybrid Bayes net node: // P(X1, X2 | M0, M1) P(X1, X2 | M0, M1)
// P(X1, X2 | M0, M1)
EXPECT_LONGS_EQUAL(3, isam.size()); EXPECT_LONGS_EQUAL(3, isam.size());
EXPECT(isam[X(2)]->conditional()->frontals() == KeyVector({X(1), X(2)})); EXPECT(isam[M(0)]->conditional()->frontals() == KeyVector({M(0), M(1)}));
EXPECT(isam[X(2)]->conditional()->parents() == KeyVector({M(0), M(1)})); EXPECT(isam[M(0)]->conditional()->parents() == KeyVector());
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector({X(1), X(2)}));
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({M(0), M(1)}));
EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector{X(0)});
EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({X(1), M(0)}));
} }
/* ****************************************************************************/ /* ****************************************************************************/
// Test if we can incrementally do the inference // Test if we can incrementally do the inference
TEST(HybridGaussianElimination, IncrementalInference) { TEST(HybridGaussianElimination, IncrementalInference) {
Switching switching(3); using namespace switching3;
HybridGaussianISAM isam; HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph
// * * *
// | | |
// X0 -*- X1 -*- X2
// | |
// *-M0 - * - M1
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X0)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X0, X1 | M0)
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X1)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M0)
// Run update step // Run update step
isam.update(graph1); isam.update(graph1);
@ -115,13 +99,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
EXPECT(discreteConditional_m0->keys() == KeyVector({M(0)})); EXPECT(discreteConditional_m0->keys() == KeyVector({M(0)}));
/********************************************************/ /********************************************************/
// New factor graph for incremental update. // Second incremental update.
HybridGaussianFactorGraph graph2;
graph2.push_back(switching.linearizedFactorGraph.at(2)); // P(X1, X2 | M1)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X2)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M0, M1)
isam.update(graph2); isam.update(graph2);
/********************************************************/ /********************************************************/
@ -160,44 +138,19 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// The other discrete probabilities on M(2) are calculated the same way // The other discrete probabilities on M(2) are calculated the same way
const Ordering discreteOrdering{M(0), M(1)}; const Ordering discreteOrdering{M(0), M(1)};
HybridBayesTree::shared_ptr discreteBayesTree = HybridBayesTree::shared_ptr discreteBayesTree =
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal( expectedRemainingGraph->eliminateMultifrontal(discreteOrdering);
discreteOrdering);
DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0;
DiscreteConditional decisionTree =
*(*discreteBayesTree)[M(1)]->conditional()->asDiscrete();
double m00_prob = decisionTree(m00);
auto discreteConditional = isam[M(1)]->conditional()->asDiscrete();
// Test the probability values with regression tests. // Test the probability values with regression tests.
DiscreteValues assignment; auto discrete = isam[M(1)]->conditional()->asDiscrete();
EXPECT(assert_equal(0.0952922, m00_prob, 1e-5)); EXPECT(assert_equal(0.095292, (*discrete)({{M(0), 0}, {M(1), 0}}), 1e-5));
assignment[M(0)] = 0; EXPECT(assert_equal(0.282758, (*discrete)({{M(0), 1}, {M(1), 0}}), 1e-5));
assignment[M(1)] = 0; EXPECT(assert_equal(0.314175, (*discrete)({{M(0), 0}, {M(1), 1}}), 1e-5));
EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5)); EXPECT(assert_equal(0.307775, (*discrete)({{M(0), 1}, {M(1), 1}}), 1e-5));
assignment[M(0)] = 1;
assignment[M(1)] = 0;
EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 0;
assignment[M(1)] = 1;
EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 1;
assignment[M(1)] = 1;
EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
// Check if the clique conditional generated from incremental elimination // Check that the clique conditional generated from incremental elimination
// matches that of batch elimination. // matches that of batch elimination.
auto expectedChordal = auto expectedConditional = (*discreteBayesTree)[M(1)]->conditional();
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(); auto actualConditional = isam[M(1)]->conditional();
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
isam[M(1)]->conditional()->inner());
// Account for the probability terms from evaluating continuous FGs
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
auto expectedConditional =
std::make_shared<DecisionTreeFactor>(discrete_keys, probs);
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6)); EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
} }
@ -227,7 +180,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
} }
// Now we calculate the actual factors using full elimination // Now we calculate the actual factors using full elimination
const auto [unprunedHybridBayesTree, unprunedRemainingGraph] = const auto [unPrunedHybridBayesTree, unPrunedRemainingGraph] =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering); switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
size_t maxNrLeaves = 5; size_t maxNrLeaves = 5;
@ -236,7 +189,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
incrementalHybrid.prune(maxNrLeaves); incrementalHybrid.prune(maxNrLeaves);
/* /*
unpruned factor is: unPruned factor is:
Choice(m3) Choice(m3)
0 Choice(m2) 0 Choice(m2)
0 0 Choice(m1) 0 0 Choice(m1)
@ -282,8 +235,8 @@ TEST(HybridGaussianElimination, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning // Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions. // bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>( auto &unPrunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner()); unPrunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>( auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
incrementalHybrid[X(3)]->conditional()->inner()); incrementalHybrid[X(3)]->conditional()->inner());
@ -298,7 +251,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
EXPECT(lastDensity(assignment) == nullptr); EXPECT(lastDensity(assignment) == nullptr);
} else { } else {
CHECK(lastDensity(assignment)); CHECK(lastDensity(assignment));
EXPECT(assert_equal(*unprunedLastDensity(assignment), EXPECT(assert_equal(*unPrunedLastDensity(assignment),
*lastDensity(assignment))); *lastDensity(assignment)));
} }
} }
@ -306,7 +259,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
/* ****************************************************************************/ /* ****************************************************************************/
// Test approximate inference with an additional pruning step. // Test approximate inference with an additional pruning step.
TEST(HybridGaussianElimination, Incremental_approximate) { TEST(HybridGaussianElimination, IncrementalApproximate) {
Switching switching(5); Switching switching(5);
HybridGaussianISAM incrementalHybrid; HybridGaussianISAM incrementalHybrid;
HybridGaussianFactorGraph graph1; HybridGaussianFactorGraph graph1;
@ -330,7 +283,7 @@ TEST(HybridGaussianElimination, Incremental_approximate) {
incrementalHybrid.prune(maxComponents); incrementalHybrid.prune(maxComponents);
// Check if we have a bayes tree with 4 hybrid nodes, // Check if we have a bayes tree with 4 hybrid nodes,
// each with 2, 4, 8, and 5 (pruned) leaves respetively. // each with 2, 4, 8, and 5 (pruned) leaves respectively.
EXPECT_LONGS_EQUAL(4, incrementalHybrid.size()); EXPECT_LONGS_EQUAL(4, incrementalHybrid.size());
EXPECT_LONGS_EQUAL( EXPECT_LONGS_EQUAL(
2, incrementalHybrid[X(0)]->conditional()->asHybrid()->nrComponents()); 2, incrementalHybrid[X(0)]->conditional()->asHybrid()->nrComponents());