Change and simplify tests using {}

release/4.3a0
Frank Dellaert 2024-10-22 13:50:08 -07:00
parent 2c9665fae6
commit 25f90701c7
2 changed files with 58 additions and 97 deletions

View File

@ -132,6 +132,14 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
explicit HybridGaussianFactorGraph(const CONTAINER& factors)
: Base(factors) {}
/**
* Construct from an initializer lists of GaussianFactor shared pointers.
* Example:
* HybridGaussianFactorGraph graph = { factor1, factor2, factor3 };
*/
HybridGaussianFactorGraph(std::initializer_list<sharedFactor> factors)
: Base(factors) {}
/**
* Implicit copy/downcast constructor to override explicit template container
* constructor. In BayesTree this is used for:

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file testHybridIncremental.cpp
* @file testHybridGaussianISAM.cpp
* @brief Unit tests for incremental inference
* @author Fan Jiang, Varun Agrawal, Frank Dellaert
* @date Jan 2021
@ -27,8 +27,6 @@
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <numeric>
#include "Switching.h"
// Include for test suite
@ -36,77 +34,63 @@
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::W;
using symbol_shorthand::X;
using symbol_shorthand::Y;
using symbol_shorthand::Z;
/* ****************************************************************************/
namespace switching3 {
// ϕ(x0) ϕ(x0,x1,m0) ϕ(x1,x2,m1) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0) ϕ(m0,m1)
const Switching switching(3);
const HybridGaussianFactorGraph &lfg = switching.linearizedFactorGraph;
// First update graph: ϕ(x0) ϕ(x0,x1,m0) ϕ(m0)
const HybridGaussianFactorGraph graph1{lfg.at(0), lfg.at(1), lfg.at(5)};
// Second update graph: ϕ(x1,x2,m1) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0,m1)
const HybridGaussianFactorGraph graph2{lfg.at(2), lfg.at(3), lfg.at(4),
lfg.at(6)};
} // namespace switching3
/* ****************************************************************************/
// Test if we can perform elimination incrementally.
TEST(HybridGaussianElimination, IncrementalElimination) {
Switching switching(3);
using namespace switching3;
HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph
// * * *
// | | |
// X0 -*- X1 -*- X2
// \*-M0-*/
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X0)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X0, X1 | M0)
graph1.push_back(switching.linearizedFactorGraph.at(2)); // P(X1, X2 | M1)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M0)
// Run update step
// Run first update step
isam.update(graph1);
// Check that after update we have 2 hybrid Bayes net nodes:
// P(X0 | X1, M0) and P(X1, X2 | M0, M1), P(M0, M1)
EXPECT_LONGS_EQUAL(3, isam.size());
EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector{X(0)});
EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({X(1), M(0)}));
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector({X(1), X(2)}));
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({M(0), M(1)}));
// P(M0) and P(X0, X1 | M0)
EXPECT_LONGS_EQUAL(2, isam.size());
EXPECT(isam[M(0)]->conditional()->frontals() == KeyVector({M(0)}));
EXPECT(isam[M(0)]->conditional()->parents() == KeyVector());
EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector({X(0), X(1)}));
EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({M(0)}));
/********************************************************/
// New factor graph for incremental update.
HybridGaussianFactorGraph graph2;
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X1)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X2)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M0, M1)
// Run second update step
isam.update(graph2);
// Check that after the second update we have
// 1 additional hybrid Bayes net node:
// P(X1, X2 | M0, M1)
// Check that after update we have 3 hybrid Bayes net nodes:
// P(X1, X2 | M0, M1) P(X1, X2 | M0, M1)
EXPECT_LONGS_EQUAL(3, isam.size());
EXPECT(isam[X(2)]->conditional()->frontals() == KeyVector({X(1), X(2)}));
EXPECT(isam[X(2)]->conditional()->parents() == KeyVector({M(0), M(1)}));
EXPECT(isam[M(0)]->conditional()->frontals() == KeyVector({M(0), M(1)}));
EXPECT(isam[M(0)]->conditional()->parents() == KeyVector());
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector({X(1), X(2)}));
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({M(0), M(1)}));
EXPECT(isam[X(0)]->conditional()->frontals() == KeyVector{X(0)});
EXPECT(isam[X(0)]->conditional()->parents() == KeyVector({X(1), M(0)}));
}
/* ****************************************************************************/
// Test if we can incrementally do the inference
TEST(HybridGaussianElimination, IncrementalInference) {
Switching switching(3);
using namespace switching3;
HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph
// * * *
// | | |
// X0 -*- X1 -*- X2
// | |
// *-M0 - * - M1
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X0)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X0, X1 | M0)
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X1)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M0)
// Run update step
isam.update(graph1);
@ -115,13 +99,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
EXPECT(discreteConditional_m0->keys() == KeyVector({M(0)}));
/********************************************************/
// New factor graph for incremental update.
HybridGaussianFactorGraph graph2;
graph2.push_back(switching.linearizedFactorGraph.at(2)); // P(X1, X2 | M1)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X2)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M0, M1)
// Second incremental update.
isam.update(graph2);
/********************************************************/
@ -160,44 +138,19 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// The other discrete probabilities on M(2) are calculated the same way
const Ordering discreteOrdering{M(0), M(1)};
HybridBayesTree::shared_ptr discreteBayesTree =
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
discreteOrdering);
DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0;
DiscreteConditional decisionTree =
*(*discreteBayesTree)[M(1)]->conditional()->asDiscrete();
double m00_prob = decisionTree(m00);
auto discreteConditional = isam[M(1)]->conditional()->asDiscrete();
expectedRemainingGraph->eliminateMultifrontal(discreteOrdering);
// Test the probability values with regression tests.
DiscreteValues assignment;
EXPECT(assert_equal(0.0952922, m00_prob, 1e-5));
assignment[M(0)] = 0;
assignment[M(1)] = 0;
EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 1;
assignment[M(1)] = 0;
EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 0;
assignment[M(1)] = 1;
EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
assignment[M(0)] = 1;
assignment[M(1)] = 1;
EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
auto discrete = isam[M(1)]->conditional()->asDiscrete();
EXPECT(assert_equal(0.095292, (*discrete)({{M(0), 0}, {M(1), 0}}), 1e-5));
EXPECT(assert_equal(0.282758, (*discrete)({{M(0), 1}, {M(1), 0}}), 1e-5));
EXPECT(assert_equal(0.314175, (*discrete)({{M(0), 0}, {M(1), 1}}), 1e-5));
EXPECT(assert_equal(0.307775, (*discrete)({{M(0), 1}, {M(1), 1}}), 1e-5));
// Check if the clique conditional generated from incremental elimination
// Check that the clique conditional generated from incremental elimination
// matches that of batch elimination.
auto expectedChordal =
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal();
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
isam[M(1)]->conditional()->inner());
// Account for the probability terms from evaluating continuous FGs
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
auto expectedConditional =
std::make_shared<DecisionTreeFactor>(discrete_keys, probs);
auto expectedConditional = (*discreteBayesTree)[M(1)]->conditional();
auto actualConditional = isam[M(1)]->conditional();
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
}
@ -227,7 +180,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
}
// Now we calculate the actual factors using full elimination
const auto [unprunedHybridBayesTree, unprunedRemainingGraph] =
const auto [unPrunedHybridBayesTree, unPrunedRemainingGraph] =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
size_t maxNrLeaves = 5;
@ -236,7 +189,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
incrementalHybrid.prune(maxNrLeaves);
/*
unpruned factor is:
unPruned factor is:
Choice(m3)
0 Choice(m2)
0 0 Choice(m1)
@ -282,8 +235,8 @@ TEST(HybridGaussianElimination, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &unPrunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unPrunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
incrementalHybrid[X(3)]->conditional()->inner());
@ -298,7 +251,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
EXPECT(lastDensity(assignment) == nullptr);
} else {
CHECK(lastDensity(assignment));
EXPECT(assert_equal(*unprunedLastDensity(assignment),
EXPECT(assert_equal(*unPrunedLastDensity(assignment),
*lastDensity(assignment)));
}
}
@ -306,7 +259,7 @@ TEST(HybridGaussianElimination, Approx_inference) {
/* ****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridGaussianElimination, Incremental_approximate) {
TEST(HybridGaussianElimination, IncrementalApproximate) {
Switching switching(5);
HybridGaussianISAM incrementalHybrid;
HybridGaussianFactorGraph graph1;
@ -330,7 +283,7 @@ TEST(HybridGaussianElimination, Incremental_approximate) {
incrementalHybrid.prune(maxComponents);
// Check if we have a bayes tree with 4 hybrid nodes,
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
// each with 2, 4, 8, and 5 (pruned) leaves respectively.
EXPECT_LONGS_EQUAL(4, incrementalHybrid.size());
EXPECT_LONGS_EQUAL(
2, incrementalHybrid[X(0)]->conditional()->asHybrid()->nrComponents());