Fixed covariances by dividing by dt or dt22, so the right-hand nosiy measurement is indeed used with the correct noise model
parent
8a31243761
commit
2440b63e32
|
|
@ -76,21 +76,21 @@ PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
|
|||
GaussianFactorGraph graph;
|
||||
|
||||
// theta(1) = (correctedOmega - bias_delta) * dt
|
||||
// => theta(1) + bias_delta * dt = correctedOmega * dt
|
||||
graph.add<Terms>({{T(k_ + 1), I_3x3}, {kBiasKey, omega_H_bias * dt}},
|
||||
correctedOmega * dt, discreteGyroscopeNoiseModel(dt));
|
||||
// => theta(1)/dt + bias_delta = correctedOmega
|
||||
auto I_dt = I_3x3 / dt;
|
||||
graph.add<Terms>({{T(k_ + 1), I_dt}, {kBiasKey, omega_H_bias}},
|
||||
correctedOmega, discreteGyroscopeNoiseModel(dt));
|
||||
|
||||
// pose(1) = (correctedAcc - bias_delta) * dt^2/2
|
||||
// => pose(1) + bias_delta * dt^2/2 = correctedAcc * dt^2/2
|
||||
double dt22 = 0.5 * dt * dt;
|
||||
// pose(1) = (correctedAcc - bias_delta) * dt22
|
||||
// => pose(1) / dt22 + bias_delta = correctedAcc
|
||||
auto accModel = discreteAccelerometerNoiseModel(dt);
|
||||
graph.add<Terms>({{P(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt22}},
|
||||
correctedAcc * dt22, accModel);
|
||||
graph.add<Terms>({{P(k_ + 1), I_dt * (2.0 / dt)}, {kBiasKey, acc_H_bias}},
|
||||
correctedAcc, accModel);
|
||||
|
||||
// vel(1) = (correctedAcc - bias_delta) * dt
|
||||
// => vel(1) + bias_delta * dt = correctedAcc * dt
|
||||
graph.add<Terms>({{V(k_ + 1), I_3x3}, {kBiasKey, acc_H_bias * dt}},
|
||||
correctedAcc * dt, accModel);
|
||||
// => vel(1)/dt + bias_delta = correctedAcc
|
||||
graph.add<Terms>({{V(k_ + 1), I_dt}, {kBiasKey, acc_H_bias}}, correctedAcc,
|
||||
accModel);
|
||||
|
||||
// eliminate all but biases
|
||||
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
|
||||
|
|
@ -116,27 +116,27 @@ PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
|
|||
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
|
||||
|
||||
// theta(k+1) = theta(k) + inverse(H)*(correctedOmega - bias_delta) dt
|
||||
// => H*theta(k+1) - H*theta(k) + bias_delta dt = (measuredOmega - bias) dt
|
||||
Matrix3 H = Rot3::ExpmapDerivative(theta_k);
|
||||
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias * dt}},
|
||||
correctedOmega * dt, discreteGyroscopeNoiseModel(dt));
|
||||
// => H*theta(k+1)/dt - H*theta(k)/dt + bias_delta = (measuredOmega - bias)
|
||||
Matrix3 H = Rot3::ExpmapDerivative(theta_k) / dt;
|
||||
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias}},
|
||||
correctedOmega, discreteGyroscopeNoiseModel(dt));
|
||||
|
||||
// pos(k+1) = pos(k) + vel(k) dt + Rk*(correctedAcc - bias_delta) dt^2/2
|
||||
// => Rkt*pos(k+1) - Rkt*pos(k) - Rkt*vel(k) dt + bias_delta dt^2/2
|
||||
// = correctedAcc dt^2/2
|
||||
double dt22 = 0.5 * dt * dt;
|
||||
// pos(k+1) = pos(k) + vel(k) dt + Rk*(correctedAcc - bias_delta) dt22
|
||||
// => Rkt*pos(k+1)/dt22 - Rkt*pos(k)/dt22 - Rkt*vel(k) dt/dt22 + bias_delta
|
||||
// = correctedAcc
|
||||
auto accModel = discreteAccelerometerNoiseModel(dt);
|
||||
graph.add<Terms>({{P(k_ + 1), Rkt},
|
||||
{P(k_), -Rkt},
|
||||
{V(k_), -Rkt * dt},
|
||||
{kBiasKey, acc_H_bias * dt22}},
|
||||
correctedAcc * dt22, accModel);
|
||||
graph.add<Terms>({{P(k_ + 1), Rkt / dt22},
|
||||
{P(k_), -Rkt / dt22},
|
||||
{V(k_), -Rkt * (2.0 / dt)},
|
||||
{kBiasKey, acc_H_bias}},
|
||||
correctedAcc, accModel);
|
||||
|
||||
// vel(k+1) = vel(k) + Rk*(correctedAcc - bias_delta) dt
|
||||
// => Rkt*vel(k+1) - Rkt*vel(k) + bias_delta dt = correctedAcc * dt
|
||||
// => Rkt*vel(k+1)/dt - Rkt*vel(k)/dt + bias_delta = correctedAcc
|
||||
graph.add<Terms>(
|
||||
{{V(k_ + 1), Rkt}, {V(k_), -Rkt}, {kBiasKey, acc_H_bias * dt}},
|
||||
correctedAcc * dt, accModel);
|
||||
{{V(k_ + 1), Rkt / dt}, {V(k_), -Rkt / dt}, {kBiasKey, acc_H_bias}},
|
||||
correctedAcc, accModel);
|
||||
|
||||
// eliminate all but biases
|
||||
// TODO(frank): does not seem to eliminate in order I want. What gives?
|
||||
|
|
@ -257,8 +257,7 @@ Matrix9 ScenarioRunner::estimateCovariance(
|
|||
Matrix9 Q;
|
||||
Q.setZero();
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
Vector9 xi = samples.col(i);
|
||||
xi -= sampleMean;
|
||||
Vector9 xi = samples.col(i) - sampleMean;
|
||||
Q += xi * xi.transpose();
|
||||
}
|
||||
|
||||
|
|
@ -279,8 +278,7 @@ Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
|
|||
Matrix6 Q;
|
||||
Q.setZero();
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
Vector6 xi = samples.col(i);
|
||||
xi -= sampleMean;
|
||||
Vector6 xi = samples.col(i) - sampleMean;
|
||||
Q += xi * xi.transpose();
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ TEST(ScenarioRunner, Spin) {
|
|||
|
||||
auto p = defaultParams();
|
||||
ScenarioRunner runner(&scenario, p, kDt);
|
||||
const double T = kDt; // seconds
|
||||
const double T = 2 * kDt; // seconds
|
||||
|
||||
auto pim = runner.integrate(T);
|
||||
EXPECT(assert_equal(scenario.pose(T), runner.predict(pim).pose(), 1e-9));
|
||||
|
|
@ -59,15 +59,17 @@ TEST(ScenarioRunner, Spin) {
|
|||
EXPECT(assert_equal(p->gyroscopeCovariance / kDt,
|
||||
pim.discreteGyroscopeNoiseModel(kDt)->covariance()));
|
||||
|
||||
#ifdef SANITY_CHECK_SAMPLER
|
||||
// Check sampled noise is kosher
|
||||
Matrix6 expected;
|
||||
expected << p->accelerometerCovariance / kDt, Z_3x3, //
|
||||
Z_3x3, p->gyroscopeCovariance / kDt;
|
||||
Matrix6 actual = runner.estimateNoiseCovariance(10000);
|
||||
Matrix6 actual = runner.estimateNoiseCovariance(100000);
|
||||
EXPECT(assert_equal(expected, actual, 1e-2));
|
||||
#endif
|
||||
|
||||
// Check calculated covariance against Monte Carlo estimate
|
||||
Matrix9 estimatedCov = runner.estimateCovariance(T);
|
||||
Matrix9 estimatedCov = runner.estimateCovariance(T, 1000);
|
||||
EXPECT(assert_equal(estimatedCov, pim.preintMeasCov(), 1e-5));
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue