Added AggregateReadings class and local functors.h header. Implemented the derivative of ExpmapDerivative correction.

release/4.3a0
Frank Dellaert 2016-01-02 11:23:52 -08:00
parent 9a26f8508e
commit 242a387ef1
9 changed files with 740 additions and 350 deletions

View File

@ -0,0 +1,209 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AggregateImuReadings.cpp
* @brief Integrates IMU readings on the NavState tangent space
* @author Frank Dellaert
*/
#include <gtsam/navigation/AggregateImuReadings.h>
#include <gtsam/navigation/functors.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <boost/assign/std/list.hpp>
#include <cmath>
using namespace std;
using namespace boost::assign;
namespace gtsam {
using symbol_shorthand::T; // for theta
using symbol_shorthand::P; // for position
using symbol_shorthand::V; // for velocity
static const Symbol kBiasKey('B', 0);
SharedDiagonal AggregateImuReadings::discreteAccelerometerNoiseModel(
double dt) const {
return noiseModel::Diagonal::Sigmas(accelerometerNoiseModel_->sigmas() /
std::sqrt(dt));
}
SharedDiagonal AggregateImuReadings::discreteGyroscopeNoiseModel(
double dt) const {
return noiseModel::Diagonal::Sigmas(gyroscopeNoiseModel_->sigmas() /
std::sqrt(dt));
}
NonlinearFactorGraph AggregateImuReadings::createGraph(
const Vector3_& theta_, const Vector3_& pos_, const Vector3_& vel_,
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) const {
NonlinearFactorGraph graph;
Expression<Bias> bias_(kBiasKey);
Vector3_ theta_plus_(T(k_ + 1)), pos_plus_(P(k_ + 1)), vel_plus_(V(k_ + 1));
Vector3_ omega_(PredictAngularVelocity(dt), theta_, theta_plus_);
Vector3_ measuredOmega_(boost::bind(&Bias::correctGyroscope, _1, _2, _3, _4),
bias_, omega_);
auto gyroModel = discreteGyroscopeNoiseModel(dt);
graph.addExpressionFactor(gyroModel, measuredOmega, measuredOmega_);
Vector3_ averageVelocity_(averageVelocity, vel_, vel_plus_);
Vector3_ defect_(PositionDefect(dt), pos_, pos_plus_, averageVelocity_);
static const auto constrModel = noiseModel::Constrained::All(3);
static const Vector3 kZero(Vector3::Zero());
graph.addExpressionFactor(constrModel, kZero, defect_);
Vector3_ acc_(PredictAcceleration(dt), vel_, vel_plus_, theta_);
Vector3_ measuredAcc_(
boost::bind(&Bias::correctAccelerometer, _1, _2, _3, _4), bias_, acc_);
auto accModel = discreteAccelerometerNoiseModel(dt);
graph.addExpressionFactor(accModel, measuredAcc, measuredAcc_);
return graph;
}
AggregateImuReadings::SharedBayesNet AggregateImuReadings::initPosterior(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
static const Vector3 kZero(Vector3::Zero());
static const Vector3_ zero_(kZero);
// We create a factor graph and then compute P(zeta|bias)
auto graph = createGraph(zero_, zero_, zero_, measuredAcc, measuredOmega, dt);
// These values are exact the first time
values.insert<Vector3>(T(k_ + 1), measuredOmega * dt);
values.insert<Vector3>(P(k_ + 1), measuredAcc * (0.5 * dt * dt));
values.insert<Vector3>(V(k_ + 1), measuredAcc * dt);
values.insert<Bias>(kBiasKey, estimatedBias_);
auto linear_graph = graph.linearize(values);
// eliminate all but biases
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
Ordering keys = list_of(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
return linear_graph->eliminatePartialSequential(keys, EliminateQR).first;
}
AggregateImuReadings::SharedBayesNet AggregateImuReadings::integrateCorrected(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
static const Vector3 kZero(Vector3::Zero());
static const auto constrModel = noiseModel::Constrained::All(3);
// We create a factor graph and then compute P(zeta|bias)
auto graph = createGraph(Vector3_(T(k_)), Vector3_(P(k_)), Vector3_(V(k_)),
measuredAcc, measuredOmega, dt);
// Get current estimates
const Vector3 theta = values.at<Vector3>(T(k_));
const Vector3 pos = values.at<Vector3>(P(k_));
const Vector3 vel = values.at<Vector3>(V(k_));
// Calculate exact solution: means we do not have to update values
// TODO(frank): Expmap and ExpmapDerivative are called again :-(
const Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
Matrix3 H;
const Rot3 R = Rot3::Expmap(theta, H);
const Vector3 theta_plus = theta + H.inverse() * correctedOmega * dt;
const Vector3 vel_plus = vel + R.rotate(correctedAcc) * dt;
const Vector3 vel_avg = 0.5 * (vel + vel_plus);
const Vector3 pos_plus = pos + vel_avg * dt;
// Add those values to estimate and linearize around them
values.insert<Vector3>(T(k_ + 1), theta_plus);
values.insert<Vector3>(P(k_ + 1), pos_plus);
values.insert<Vector3>(V(k_ + 1), vel_plus);
auto linear_graph = graph.linearize(values);
// add previous posterior
for (const auto& conditional : *posterior_k_)
linear_graph->add(boost::static_pointer_cast<GaussianFactor>(conditional));
// eliminate all but biases
// TODO(frank): does not seem to eliminate in order I want. What gives?
Ordering keys = list_of(T(k_))(P(k_))(V(k_))(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
SharedBayesNet bayesNet =
linear_graph->eliminatePartialSequential(keys, EliminateQR).first;
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
// We marginalize zeta(k) by removing the conditionals on zeta(k)
// TODO(frank): could use erase(begin, begin+3) if order above was correct
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
for (const auto& conditional : *bayesNet) {
Symbol symbol(conditional->front());
if (symbol.index() > k_) marginal->push_back(conditional);
}
return marginal;
}
void AggregateImuReadings::integrateMeasurement(const Vector3& measuredAcc,
const Vector3& measuredOmega,
double dt) {
typedef map<Key, Matrix> Terms;
// Handle first time differently
if (k_ == 0)
posterior_k_ = initPosterior(measuredAcc, measuredOmega, dt);
else
posterior_k_ = integrateCorrected(measuredAcc, measuredOmega, dt);
// increment counter and time
k_ += 1;
deltaTij_ += dt;
}
NavState AggregateImuReadings::predict(const NavState& state_i,
const Bias& bias_i,
OptionalJacobian<9, 9> H1,
OptionalJacobian<9, 6> H2) const {
// TODO(frank): handle bias
// Get current estimates
Vector3 theta = values.at<Vector3>(T(k_));
Vector3 pos = values.at<Vector3>(P(k_));
Vector3 vel = values.at<Vector3>(V(k_));
// Correct for initial velocity and gravity
Rot3 Ri = state_i.attitude();
Matrix3 Rit = Ri.transpose();
Vector3 gt = deltaTij_ * p_->n_gravity;
pos += Rit * (state_i.velocity() * deltaTij_ + 0.5 * deltaTij_ * gt);
vel += Rit * gt;
// Convert local coordinates to manifold near state_i
Vector9 zeta;
zeta << theta, pos, vel;
return state_i.retract(zeta);
}
SharedGaussian AggregateImuReadings::noiseModel() const {
Matrix RS;
Vector d;
boost::tie(RS, d) = posterior_k_->matrix();
// R'*R = A'*A = inv(Cov)
// TODO(frank): think of a faster way - implement in noiseModel
return noiseModel::Gaussian::SqrtInformation(RS.block<9, 9>(0, 0), false);
}
Matrix9 AggregateImuReadings::preintMeasCov() const {
return noiseModel()->covariance();
}
} // namespace gtsam

View File

@ -0,0 +1,120 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AggregateImuReadings.h
* @brief Integrates IMU readings on the NavState tangent space
* @author Frank Dellaert
*/
#pragma once
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/linear/NoiseModel.h>
namespace gtsam {
class NonlinearFactorGraph;
template <typename T>
class Expression;
typedef Expression<Vector3> Vector3_;
// Convert covariance to diagonal noise model, if possible, otherwise throw
static noiseModel::Diagonal::shared_ptr Diagonal(const Matrix& covariance) {
bool smart = true;
auto model = noiseModel::Gaussian::Covariance(covariance, smart);
auto diagonal = boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonal)
throw std::invalid_argument("ScenarioRunner::Diagonal: not a diagonal");
return diagonal;
}
class GaussianBayesNet;
/**
* Class that integrates state estimate on the manifold.
* We integrate zeta = [theta, position, velocity]
* See ImuFactor.lyx for the relevant math.
*/
class AggregateImuReadings {
public:
typedef imuBias::ConstantBias Bias;
typedef ImuFactor::PreintegratedMeasurements::Params Params;
typedef boost::shared_ptr<GaussianBayesNet> SharedBayesNet;
private:
const boost::shared_ptr<Params> p_;
const SharedDiagonal accelerometerNoiseModel_, gyroscopeNoiseModel_;
const Bias estimatedBias_;
size_t k_; ///< index/count of measurements integrated
double deltaTij_; ///< sum of time increments
/// posterior on current iterate, stored as a Bayes net
/// P(delta_zeta|estimatedBias_delta):
SharedBayesNet posterior_k_;
/// Current estimate of zeta_k
Values values;
public:
AggregateImuReadings(const boost::shared_ptr<Params>& p,
const Bias& estimatedBias = Bias())
: p_(p),
accelerometerNoiseModel_(Diagonal(p->accelerometerCovariance)),
gyroscopeNoiseModel_(Diagonal(p->gyroscopeCovariance)),
estimatedBias_(estimatedBias),
k_(0),
deltaTij_(0.0) {}
// We obtain discrete-time noise models by dividing the continuous-time
// covariances by dt:
SharedDiagonal discreteAccelerometerNoiseModel(double dt) const;
SharedDiagonal discreteGyroscopeNoiseModel(double dt) const;
/**
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame)
* @param measuredOmega Measured angular velocity (in body frame)
* @param dt Time interval between this and the last IMU measurement
*/
void integrateMeasurement(const Vector3& measuredAcc,
const Vector3& measuredOmega, double dt);
/// Predict state at time j
NavState predict(const NavState& state_i, const Bias& estimatedBias_i,
OptionalJacobian<9, 9> H1 = boost::none,
OptionalJacobian<9, 6> H2 = boost::none) const;
/// Return Gaussian noise model on prediction
SharedGaussian noiseModel() const;
/// @deprecated: Explicitly calculate covariance
Matrix9 preintMeasCov() const;
private:
NonlinearFactorGraph createGraph(const Vector3_& theta_,
const Vector3_& pose_, const Vector3_& vel_,
const Vector3& measuredAcc,
const Vector3& measuredOmega,
double dt) const;
// initialize posterior with first (corrected) IMU measurement
SharedBayesNet initPosterior(const Vector3& measuredAcc,
const Vector3& measuredOmega, double dt);
// integrate
SharedBayesNet integrateCorrected(const Vector3& measuredAcc,
const Vector3& measuredOmega, double dt);
};
} // namespace gtsam

View File

@ -78,19 +78,19 @@ public:
/** Correct an accelerometer measurement using this bias model, and optionally compute Jacobians */ /** Correct an accelerometer measurement using this bias model, and optionally compute Jacobians */
Vector3 correctAccelerometer(const Vector3& measurement, Vector3 correctAccelerometer(const Vector3& measurement,
OptionalJacobian<3, 6> H = boost::none) const { OptionalJacobian<3, 6> H1 = boost::none,
if (H) { OptionalJacobian<3, 3> H2 = boost::none) const {
(*H) << -I_3x3, Z_3x3; if (H1) (*H1) << -I_3x3, Z_3x3;
} if (H2) (*H2) << I_3x3;
return measurement - biasAcc_; return measurement - biasAcc_;
} }
/** Correct a gyroscope measurement using this bias model, and optionally compute Jacobians */ /** Correct a gyroscope measurement using this bias model, and optionally compute Jacobians */
Vector3 correctGyroscope(const Vector3& measurement, Vector3 correctGyroscope(const Vector3& measurement,
OptionalJacobian<3, 6> H = boost::none) const { OptionalJacobian<3, 6> H1 = boost::none,
if (H) { OptionalJacobian<3, 3> H2 = boost::none) const {
(*H) << Z_3x3, -I_3x3; if (H1) (*H1) << Z_3x3, -I_3x3;
} if (H2) (*H2) << I_3x3;
return measurement - biasGyro_; return measurement - biasGyro_;
} }

View File

@ -16,12 +16,6 @@
*/ */
#include <gtsam/navigation/ScenarioRunner.h> #include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <boost/assign/std/list.hpp>
#include <cmath> #include <cmath>
using namespace std; using namespace std;
@ -29,194 +23,13 @@ using namespace boost::assign;
namespace gtsam { namespace gtsam {
using symbol_shorthand::T; // for theta
using symbol_shorthand::P; // for position
using symbol_shorthand::V; // for velocity
static const Symbol kBiasKey('B', 0);
static const Matrix36 acc_H_bias = (Matrix36() << I_3x3, Z_3x3).finished();
static const Matrix36 omega_H_bias = (Matrix36() << Z_3x3, I_3x3).finished();
Vector9 PreintegratedMeasurements2::currentEstimate() const {
VectorValues biasValues;
biasValues.insert(kBiasKey, estimatedBias_.vector());
VectorValues zetaValues = posterior_k_->optimize(biasValues);
Vector9 zeta;
zeta << zetaValues.at(T(k_)), zetaValues.at(P(k_)), zetaValues.at(V(k_));
return zeta;
}
Vector3 PreintegratedMeasurements2::currentTheta() const {
// TODO(frank): make faster version theta = inv(R)*d
VectorValues biasValues;
biasValues.insert(kBiasKey, estimatedBias_.vector());
VectorValues zetaValues = posterior_k_->optimize(biasValues);
return zetaValues.at(T(k_));
}
SharedDiagonal PreintegratedMeasurements2::discreteAccelerometerNoiseModel(
double dt) const {
return noiseModel::Diagonal::Sigmas(accelerometerNoiseModel_->sigmas() /
std::sqrt(dt));
}
SharedDiagonal PreintegratedMeasurements2::discreteGyroscopeNoiseModel(
double dt) const {
return noiseModel::Diagonal::Sigmas(gyroscopeNoiseModel_->sigmas() /
std::sqrt(dt));
}
PreintegratedMeasurements2::SharedBayesNet
PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
const Vector3& correctedOmega,
double dt) const {
typedef map<Key, Matrix> Terms;
// We create a factor graph and then compute P(zeta|bias)
GaussianFactorGraph graph;
// theta(1) = (correctedOmega - bias_delta) * dt
// => theta(1)/dt + bias_delta = correctedOmega
auto I_dt = I_3x3 / dt;
graph.add<Terms>({{T(k_ + 1), I_dt}, {kBiasKey, omega_H_bias}},
correctedOmega, discreteGyroscopeNoiseModel(dt));
// pose(1) = (correctedAcc - bias_delta) * dt22
// => pose(1) / dt22 + bias_delta = correctedAcc
auto accModel = discreteAccelerometerNoiseModel(dt);
graph.add<Terms>({{P(k_ + 1), I_dt * (2.0 / dt)}, {kBiasKey, acc_H_bias}},
correctedAcc, accModel);
// vel(1) = (correctedAcc - bias_delta) * dt
// => vel(1)/dt + bias_delta = correctedAcc
graph.add<Terms>({{V(k_ + 1), I_dt}, {kBiasKey, acc_H_bias}}, correctedAcc,
accModel);
// eliminate all but biases
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
Ordering keys = list_of(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
return graph.eliminatePartialSequential(keys, EliminateQR).first;
}
PreintegratedMeasurements2::SharedBayesNet
PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
const Vector3& correctedOmega,
double dt) const {
typedef map<Key, Matrix> Terms;
GaussianFactorGraph graph;
// estimate current theta from posterior
Vector3 theta_k = currentTheta();
Rot3 Rk = Rot3::Expmap(theta_k);
Matrix3 Rkt = Rk.transpose();
// add previous posterior
for (const auto& conditional : *posterior_k_)
graph.add(boost::static_pointer_cast<GaussianFactor>(conditional));
// theta(k+1) = theta(k) + inverse(H)*(correctedOmega - bias_delta) dt
// => H*theta(k+1)/dt - H*theta(k)/dt + bias_delta = (measuredOmega - bias)
Matrix3 H = Rot3::ExpmapDerivative(theta_k) / dt;
graph.add<Terms>({{T(k_ + 1), H}, {T(k_), -H}, {kBiasKey, omega_H_bias}},
correctedOmega, discreteGyroscopeNoiseModel(dt));
double dt22 = 0.5 * dt * dt;
// pos(k+1) = pos(k) + vel(k) dt + Rk*(correctedAcc - bias_delta) dt22
// => Rkt*pos(k+1)/dt22 - Rkt*pos(k)/dt22 - Rkt*vel(k) dt/dt22 + bias_delta
// = correctedAcc
auto accModel = discreteAccelerometerNoiseModel(dt);
graph.add<Terms>({{P(k_ + 1), Rkt / dt22},
{P(k_), -Rkt / dt22},
{V(k_), -Rkt * (2.0 / dt)},
{kBiasKey, acc_H_bias}},
correctedAcc, accModel);
// vel(k+1) = vel(k) + Rk*(correctedAcc - bias_delta) dt
// => Rkt*vel(k+1)/dt - Rkt*vel(k)/dt + bias_delta = correctedAcc
graph.add<Terms>(
{{V(k_ + 1), Rkt / dt}, {V(k_), -Rkt / dt}, {kBiasKey, acc_H_bias}},
correctedAcc, accModel);
// eliminate all but biases
// TODO(frank): does not seem to eliminate in order I want. What gives?
Ordering keys = list_of(T(k_))(P(k_))(V(k_))(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
SharedBayesNet bayesNet =
graph.eliminatePartialSequential(keys, EliminateQR).first;
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
// We marginalize zeta(k) by removing the conditionals on zeta(k)
// TODO(frank): could use erase(begin, begin+3) if order above was correct
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
for (const auto& conditional : *bayesNet) {
Symbol symbol(conditional->front());
if (symbol.index() > k_) marginal->push_back(conditional);
}
return marginal;
}
void PreintegratedMeasurements2::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
typedef map<Key, Matrix> Terms;
// Correct measurements by subtracting bias
Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
// Handle first time differently
if (k_ == 0)
posterior_k_ = initPosterior(correctedAcc, correctedOmega, dt);
else
posterior_k_ = integrateCorrected(correctedAcc, correctedOmega, dt);
// increment counter and time
k_ += 1;
deltaTij_ += dt;
}
NavState PreintegratedMeasurements2::predict(
const NavState& state_i, const imuBias::ConstantBias& bias_i,
OptionalJacobian<9, 9> H1, OptionalJacobian<9, 6> H2) const {
// Get mean of current posterior on zeta
// TODO(frank): handle bias
Vector9 zeta = currentEstimate();
// Correct for initial velocity and gravity
Rot3 Ri = state_i.attitude();
Matrix3 Rit = Ri.transpose();
Vector3 gt = deltaTij_ * p_->n_gravity;
zeta.segment<3>(3) +=
Rit * (state_i.velocity() * deltaTij_ + 0.5 * deltaTij_ * gt);
zeta.segment<3>(6) += Rit * gt;
// Convert local coordinates to manifold near state_i
return state_i.retract(zeta);
}
SharedGaussian PreintegratedMeasurements2::noiseModel() const {
Matrix RS;
Vector d;
boost::tie(RS, d) = posterior_k_->matrix();
// R'*R = A'*A = inv(Cov)
// TODO(frank): think of a faster way - implement in noiseModel
return noiseModel::Gaussian::SqrtInformation(RS.block<9, 9>(0, 0), false);
}
Matrix9 PreintegratedMeasurements2::preintMeasCov() const {
return noiseModel()->covariance();
}
////////////////////////////////////////////////////////////////////////////////////////////
static double intNoiseVar = 0.0000001; static double intNoiseVar = 0.0000001;
static const Matrix3 kIntegrationErrorCovariance = intNoiseVar * I_3x3; static const Matrix3 kIntegrationErrorCovariance = intNoiseVar * I_3x3;
PreintegratedMeasurements2 ScenarioRunner::integrate( AggregateImuReadings ScenarioRunner::integrate(double T,
double T, const imuBias::ConstantBias& estimatedBias, const Bias& estimatedBias,
bool corrupted) const { bool corrupted) const {
PreintegratedMeasurements2 pim(p_, estimatedBias); AggregateImuReadings pim(p_, estimatedBias);
const double dt = imuSampleTime(); const double dt = imuSampleTime();
const size_t nrSteps = T / dt; const size_t nrSteps = T / dt;
@ -231,15 +44,14 @@ PreintegratedMeasurements2 ScenarioRunner::integrate(
return pim; return pim;
} }
NavState ScenarioRunner::predict( NavState ScenarioRunner::predict(const AggregateImuReadings& pim,
const PreintegratedMeasurements2& pim, const Bias& estimatedBias) const {
const imuBias::ConstantBias& estimatedBias) const {
const NavState state_i(scenario_->pose(0), scenario_->velocity_n(0)); const NavState state_i(scenario_->pose(0), scenario_->velocity_n(0));
return pim.predict(state_i, estimatedBias); return pim.predict(state_i, estimatedBias);
} }
Matrix9 ScenarioRunner::estimateCovariance( Matrix9 ScenarioRunner::estimateCovariance(double T, size_t N,
double T, size_t N, const imuBias::ConstantBias& estimatedBias) const { const Bias& estimatedBias) const {
// Get predict prediction from ground truth measurements // Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T)); NavState prediction = predict(integrate(T));

View File

@ -16,126 +16,38 @@
*/ */
#pragma once #pragma once
#include <gtsam/navigation/ImuFactor.h> #include <gtsam/navigation/AggregateImuReadings.h>
#include <gtsam/navigation/Scenario.h> #include <gtsam/navigation/Scenario.h>
#include <gtsam/linear/Sampler.h> #include <gtsam/linear/Sampler.h>
namespace gtsam { namespace gtsam {
// Convert covariance to diagonal noise model, if possible, otherwise throw
static noiseModel::Diagonal::shared_ptr Diagonal(const Matrix& covariance) {
bool smart = true;
auto model = noiseModel::Gaussian::Covariance(covariance, smart);
auto diagonal = boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonal)
throw std::invalid_argument("ScenarioRunner::Diagonal: not a diagonal");
return diagonal;
}
class GaussianBayesNet;
/**
* Class that integrates state estimate on the manifold.
* We integrate zeta = [theta, position, velocity]
* See ImuFactor.lyx for the relevant math.
*/
class PreintegratedMeasurements2 {
public:
typedef ImuFactor::PreintegratedMeasurements::Params Params;
typedef boost::shared_ptr<GaussianBayesNet> SharedBayesNet;
private:
const boost::shared_ptr<Params> p_;
const SharedDiagonal accelerometerNoiseModel_, gyroscopeNoiseModel_;
const imuBias::ConstantBias estimatedBias_;
size_t k_; ///< index/count of measurements integrated
double deltaTij_; ///< sum of time increments
/// posterior on current iterate, stored as a Bayes net P(zeta|bias_delta):
SharedBayesNet posterior_k_;
public:
PreintegratedMeasurements2(
const boost::shared_ptr<Params>& p,
const imuBias::ConstantBias& estimatedBias = imuBias::ConstantBias())
: p_(p),
accelerometerNoiseModel_(Diagonal(p->accelerometerCovariance)),
gyroscopeNoiseModel_(Diagonal(p->gyroscopeCovariance)),
estimatedBias_(estimatedBias),
k_(0),
deltaTij_(0.0) {}
SharedDiagonal discreteAccelerometerNoiseModel(double dt) const;
SharedDiagonal discreteGyroscopeNoiseModel(double dt) const;
/**
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame)
* @param measuredOmega Measured angular velocity (in body frame)
* @param dt Time interval between this and the last IMU measurement
*/
void integrateMeasurement(const Vector3& measuredAcc,
const Vector3& measuredOmega, double dt);
/// Predict state at time j
NavState predict(const NavState& state_i, const imuBias::ConstantBias& bias_i,
OptionalJacobian<9, 9> H1 = boost::none,
OptionalJacobian<9, 6> H2 = boost::none) const;
/// Return Gaussian noise model on prediction
SharedGaussian noiseModel() const;
/// @deprecated: Explicitly calculate covariance
Matrix9 preintMeasCov() const;
private:
// estimate zeta given estimated biases
// calculates conditional mean of P(zeta|bias_delta)
Vector9 currentEstimate() const;
// estimate theta given estimated biases
Vector3 currentTheta() const;
// We obtain discrete-time noise models by dividing the continuous-time
// covariances by dt:
// initialize posterior with first (corrected) IMU measurement
SharedBayesNet initPosterior(const Vector3& correctedAcc,
const Vector3& correctedOmega, double dt) const;
// integrate
SharedBayesNet integrateCorrected(const Vector3& correctedAcc,
const Vector3& correctedOmega,
double dt) const;
};
/* /*
* Simple class to test navigation scenarios. * Simple class to test navigation scenarios.
* Takes a trajectory scenario as input, and can generate IMU measurements * Takes a trajectory scenario as input, and can generate IMU measurements
*/ */
class ScenarioRunner { class ScenarioRunner {
public: public:
typedef boost::shared_ptr<PreintegratedMeasurements2::Params> SharedParams; typedef imuBias::ConstantBias Bias;
typedef boost::shared_ptr<AggregateImuReadings::Params> SharedParams;
private: private:
const Scenario* scenario_; const Scenario* scenario_;
const SharedParams p_; const SharedParams p_;
const double imuSampleTime_, sqrt_dt_; const double imuSampleTime_, sqrt_dt_;
const imuBias::ConstantBias bias_; const Bias estimatedBias_;
// Create two samplers for acceleration and omega noise // Create two samplers for acceleration and omega noise
mutable Sampler gyroSampler_, accSampler_; mutable Sampler gyroSampler_, accSampler_;
public: public:
ScenarioRunner(const Scenario* scenario, const SharedParams& p, ScenarioRunner(const Scenario* scenario, const SharedParams& p,
double imuSampleTime = 1.0 / 100.0, double imuSampleTime = 1.0 / 100.0, const Bias& bias = Bias())
const imuBias::ConstantBias& bias = imuBias::ConstantBias())
: scenario_(scenario), : scenario_(scenario),
p_(p), p_(p),
imuSampleTime_(imuSampleTime), imuSampleTime_(imuSampleTime),
sqrt_dt_(std::sqrt(imuSampleTime)), sqrt_dt_(std::sqrt(imuSampleTime)),
bias_(bias), estimatedBias_(bias),
// NOTE(duy): random seeds that work well: // NOTE(duy): random seeds that work well:
gyroSampler_(Diagonal(p->gyroscopeCovariance), 10), gyroSampler_(Diagonal(p->gyroscopeCovariance), 10),
accSampler_(Diagonal(p->accelerometerCovariance), 29284) {} accSampler_(Diagonal(p->accelerometerCovariance), 29284) {}
@ -155,31 +67,27 @@ class ScenarioRunner {
// versions corrupted by bias and noise // versions corrupted by bias and noise
Vector3 measured_omega_b(double t) const { Vector3 measured_omega_b(double t) const {
return actual_omega_b(t) + bias_.gyroscope() + return actual_omega_b(t) + estimatedBias_.gyroscope() +
gyroSampler_.sample() / sqrt_dt_; gyroSampler_.sample() / sqrt_dt_;
} }
Vector3 measured_specific_force_b(double t) const { Vector3 measured_specific_force_b(double t) const {
return actual_specific_force_b(t) + bias_.accelerometer() + return actual_specific_force_b(t) + estimatedBias_.accelerometer() +
accSampler_.sample() / sqrt_dt_; accSampler_.sample() / sqrt_dt_;
} }
const double& imuSampleTime() const { return imuSampleTime_; } const double& imuSampleTime() const { return imuSampleTime_; }
/// Integrate measurements for T seconds into a PIM /// Integrate measurements for T seconds into a PIM
PreintegratedMeasurements2 integrate( AggregateImuReadings integrate(double T, const Bias& estimatedBias = Bias(),
double T, bool corrupted = false) const;
const imuBias::ConstantBias& estimatedBias = imuBias::ConstantBias(),
bool corrupted = false) const;
/// Predict predict given a PIM /// Predict predict given a PIM
NavState predict(const PreintegratedMeasurements2& pim, NavState predict(const AggregateImuReadings& pim,
const imuBias::ConstantBias& estimatedBias = const Bias& estimatedBias = Bias()) const;
imuBias::ConstantBias()) const;
/// Compute a Monte Carlo estimate of the predict covariance using N samples /// Compute a Monte Carlo estimate of the predict covariance using N samples
Matrix9 estimateCovariance(double T, size_t N = 1000, Matrix9 estimateCovariance(double T, size_t N = 1000,
const imuBias::ConstantBias& estimatedBias = const Bias& estimatedBias = Bias()) const;
imuBias::ConstantBias()) const;
/// Estimate covariance of sampled noise for sanity-check /// Estimate covariance of sampled noise for sanity-check
Matrix6 estimateNoiseCovariance(size_t N = 1000) const; Matrix6 estimateNoiseCovariance(size_t N = 1000) const;

154
gtsam/navigation/functors.h Normal file
View File

@ -0,0 +1,154 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file functors.h
* @brief Functors for use in Navigation factors
* @author Frank Dellaert
*/
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/OptionalJacobian.h>
#include <cmath>
namespace gtsam {
// Implement Rot3::ExpmapDerivative(omega) * theta, with derivatives
static Vector3 correctWithExpmapDerivative(
const Vector3& omega, const Vector3& theta,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) {
using std::sin;
const double angle2 = omega.dot(omega); // rotation angle, squared
if (angle2 <= std::numeric_limits<double>::epsilon()) {
if (H1) *H1 = 0.5 * skewSymmetric(theta);
if (H2) *H2 = I_3x3;
return theta;
}
const double angle = std::sqrt(angle2); // rotation angle
const double s1 = sin(angle) / angle;
const double s2 = sin(angle / 2.0);
const double a = 2.0 * s2 * s2 / angle2;
const double b = (1.0 - s1) / angle2;
const Vector3 omega_x_theta = omega.cross(theta);
const Vector3 yt = a * omega_x_theta;
const Matrix3 W = skewSymmetric(omega);
const Vector3 omega_x_omega_x_theta = omega.cross(omega_x_theta);
const Vector3 yyt = b * omega_x_omega_x_theta;
if (H1) {
Matrix13 omega_t = omega.transpose();
const Matrix3 T = skewSymmetric(theta);
const double Da = (s1 - 2.0 * a) / angle2;
const double Db = (3.0 * s1 - cos(angle) - 2.0) / angle2 / angle2;
*H1 = (-Da * omega_x_theta + Db * omega_x_omega_x_theta) * omega_t + a * T -
b * skewSymmetric(omega_x_theta) - b * W * T;
}
if (H2) *H2 = I_3x3 - a* W + b* W* W;
return theta - yt + yyt;
}
// theta(k+1) = theta(k) + inverse(H)*omega dt
// omega = (H/dt_)*(theta(k+1) - H*theta(k))
// TODO(frank): make linear expression
class PredictAngularVelocity {
private:
double dt_;
public:
typedef Vector3 result_type;
PredictAngularVelocity(double dt) : dt_(dt) {}
Vector3 operator()(const Vector3& theta, const Vector3& theta_plus,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) const {
// TODO(frank): take into account derivative of ExpmapDerivative
const Vector3 predicted = (theta_plus - theta) / dt_;
Matrix3 D_c_t, D_c_p;
const Vector3 corrected =
correctWithExpmapDerivative(theta, predicted, D_c_t, D_c_p);
if (H1) *H1 = D_c_t - D_c_p / dt_;
if (H2) *H2 = D_c_p / dt_;
return corrected;
}
};
// TODO(frank): make linear expression
static Vector3 averageVelocity(const Vector3& vel, const Vector3& vel_plus,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none) {
// TODO(frank): take into account derivative of ExpmapDerivative
if (H1) *H1 = 0.5 * I_3x3;
if (H2) *H2 = 0.5 * I_3x3;
return 0.5 * (vel + vel_plus);
}
// pos(k+1) = pos(k) + average_velocity * dt
// TODO(frank): make linear expression
class PositionDefect {
private:
double dt_;
public:
typedef Vector3 result_type;
PositionDefect(double dt) : dt_(dt) {}
Vector3 operator()(const Vector3& pos, const Vector3& pos_plus,
const Vector3& average_velocity,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none,
OptionalJacobian<3, 3> H3 = boost::none) const {
// TODO(frank): take into account derivative of ExpmapDerivative
if (H1) *H1 = I_3x3;
if (H2) *H2 = -I_3x3;
if (H3) *H3 = I_3x3* dt_;
return (pos + average_velocity * dt_) - pos_plus;
}
};
// vel(k+1) = vel(k) + Rk * acc * dt
// acc = Rkt * [vel(k+1) - vel(k)]/dt
// TODO(frank): take in Rot3
class PredictAcceleration {
private:
double dt_;
public:
typedef Vector3 result_type;
PredictAcceleration(double dt) : dt_(dt) {}
Vector3 operator()(const Vector3& vel, const Vector3& vel_plus,
const Vector3& theta,
OptionalJacobian<3, 3> H1 = boost::none,
OptionalJacobian<3, 3> H2 = boost::none,
OptionalJacobian<3, 3> H3 = boost::none) const {
Matrix3 D_R_theta;
// TODO(frank): D_R_theta is ExpmapDerivative (computed again)
Rot3 nRb = Rot3::Expmap(theta, D_R_theta);
Vector3 n_acc = (vel_plus - vel) / dt_;
Matrix3 D_b_R, D_b_n;
Vector3 b_acc = nRb.unrotate(n_acc, D_b_R, D_b_n);
if (H1) *H1 = -D_b_n / dt_;
if (H2) *H2 = D_b_n / dt_;
if (H3) *H3 = D_b_R* D_R_theta;
return b_acc;
}
};
} // namespace gtsam

View File

@ -0,0 +1,165 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testInertialNavFactor.cpp
* @brief Unit test for the InertialNavFactor
* @author Frank Dellaert
*/
#include <gtsam/navigation/functors.h>
#include <gtsam/navigation/AggregateImuReadings.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
using namespace std;
using namespace gtsam;
static const double kDt = 0.1;
/* ************************************************************************* */
TEST(AggregateImuReadings, CorrectWithExpmapDerivative1) {
Matrix aH1, aH2;
boost::function<Vector3(const Vector3&, const Vector3&)> f = boost::bind(
correctWithExpmapDerivative, _1, _2, boost::none, boost::none);
for (Vector3 omega : {Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)}) {
for (Vector3 theta :
{Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)}) {
Vector3 expected = Rot3::ExpmapDerivative(omega) * theta;
EXPECT(assert_equal(expected, correctWithExpmapDerivative(omega, theta)));
EXPECT(assert_equal(expected,
correctWithExpmapDerivative(omega, theta, aH1, aH2)));
EXPECT(assert_equal(numericalDerivative21(f, omega, theta), aH1));
EXPECT(assert_equal(numericalDerivative22(f, omega, theta), aH2));
}
}
}
/* ************************************************************************* */
TEST(AggregateImuReadings, CorrectWithExpmapDerivative2) {
Matrix aH1, aH2;
boost::function<Vector3(const Vector3&, const Vector3&)> f = boost::bind(
correctWithExpmapDerivative, _1, _2, boost::none, boost::none);
const Vector3 omega(0, 0, 0);
for (Vector3 theta : {Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)}) {
Vector3 expected = Rot3::ExpmapDerivative(omega) * theta;
EXPECT(assert_equal(expected, correctWithExpmapDerivative(omega, theta)));
EXPECT(assert_equal(expected,
correctWithExpmapDerivative(omega, theta, aH1, aH2)));
EXPECT(assert_equal(numericalDerivative21(f, omega, theta), aH1));
EXPECT(assert_equal(numericalDerivative22(f, omega, theta), aH2));
}
}
/* ************************************************************************* */
TEST(AggregateImuReadings, CorrectWithExpmapDerivative3) {
Matrix aH1, aH2;
boost::function<Vector3(const Vector3&, const Vector3&)> f = boost::bind(
correctWithExpmapDerivative, _1, _2, boost::none, boost::none);
const Vector3 omega(0.1, 0.2, 0.3), theta(0.4, 0.3, 0.2);
Vector3 expected = Rot3::ExpmapDerivative(omega) * theta;
EXPECT(assert_equal(expected, correctWithExpmapDerivative(omega, theta)));
EXPECT(assert_equal(expected,
correctWithExpmapDerivative(omega, theta, aH1, aH2)));
EXPECT(assert_equal(numericalDerivative21(f, omega, theta), aH1));
EXPECT(assert_equal(numericalDerivative22(f, omega, theta), aH2));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, PredictAngularVelocity1) {
Matrix aH1, aH2;
PredictAngularVelocity functor(kDt);
boost::function<Vector3(const Vector3&, const Vector3&)> f =
boost::bind(functor, _1, _2, boost::none, boost::none);
const Vector3 theta(0, 0, 0), theta_plus(0.4, 0.3, 0.2);
EXPECT(assert_equal(Vector3(4, 3, 2), functor(theta, theta_plus, aH1, aH2)));
EXPECT(assert_equal(numericalDerivative21(f, theta, theta_plus), aH1));
EXPECT(assert_equal(numericalDerivative22(f, theta, theta_plus), aH2));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, PredictAngularVelocity2) {
Matrix aH1, aH2;
PredictAngularVelocity functor(kDt);
boost::function<Vector3(const Vector3&, const Vector3&)> f =
boost::bind(functor, _1, _2, boost::none, boost::none);
const Vector3 theta(0.1, 0.2, 0.3), theta_plus(0.4, 0.3, 0.2);
EXPECT(
assert_equal(Vector3(Rot3::ExpmapDerivative(theta) * Vector3(3, 1, -1)),
functor(theta, theta_plus, aH1, aH2), 1e-5));
EXPECT(assert_equal(numericalDerivative21(f, theta, theta_plus), aH1));
EXPECT(assert_equal(numericalDerivative22(f, theta, theta_plus), aH2));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, AverageVelocity) {
Matrix aH1, aH2;
boost::function<Vector3(const Vector3&, const Vector3&)> f =
boost::bind(averageVelocity, _1, _2, boost::none, boost::none);
const Vector3 v(1, 2, 3), v_plus(3, 2, 1);
EXPECT(assert_equal(Vector3(2, 2, 2), averageVelocity(v, v_plus, aH1, aH2)));
EXPECT(assert_equal(numericalDerivative21(f, v, v_plus), aH1));
EXPECT(assert_equal(numericalDerivative22(f, v, v_plus), aH2));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, PositionDefect) {
Matrix aH1, aH2, aH3;
PositionDefect functor(kDt);
boost::function<Vector3(const Vector3&, const Vector3&, const Vector3&)> f =
boost::bind(functor, _1, _2, _3, boost::none, boost::none, boost::none);
const Vector3 pos(1, 2, 3), pos_plus(2, 4, 6);
const Vector3 avg(10, 20, 30);
EXPECT(assert_equal(Vector3(0, 0, 0),
functor(pos, pos_plus, avg, aH1, aH2, aH3)));
EXPECT(assert_equal(numericalDerivative31(f, pos, pos_plus, avg), aH1));
EXPECT(assert_equal(numericalDerivative32(f, pos, pos_plus, avg), aH2));
EXPECT(assert_equal(numericalDerivative33(f, pos, pos_plus, avg), aH3));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, PredictAcceleration1) {
Matrix aH1, aH2, aH3;
PredictAcceleration functor(kDt);
boost::function<Vector3(const Vector3&, const Vector3&, const Vector3&)> f =
boost::bind(functor, _1, _2, _3, boost::none, boost::none, boost::none);
const Vector3 vel(1, 2, 3), vel_plus(2, 4, 6);
const Vector3 theta(0, 0, 0);
EXPECT(assert_equal(Vector3(10, 20, 30),
functor(vel, vel_plus, theta, aH1, aH2, aH3)));
EXPECT(assert_equal(numericalDerivative31(f, vel, vel_plus, theta), aH1));
EXPECT(assert_equal(numericalDerivative32(f, vel, vel_plus, theta), aH2));
EXPECT(assert_equal(numericalDerivative33(f, vel, vel_plus, theta), aH3));
}
/* ************************************************************************* */
TEST(AggregateImuReadings, PredictAcceleration2) {
Matrix aH1, aH2, aH3;
PredictAcceleration functor(kDt);
boost::function<Vector3(const Vector3&, const Vector3&, const Vector3&)> f =
boost::bind(functor, _1, _2, _3, boost::none, boost::none, boost::none);
const Vector3 vel(1, 2, 3), vel_plus(2, 4, 6);
const Vector3 theta(0.1, 0.2, 0.3);
EXPECT(assert_equal(Vector3(10, 20, 30),
functor(vel, vel_plus, theta, aH1, aH2, aH3)));
EXPECT(assert_equal(numericalDerivative31(f, vel, vel_plus, theta), aH1));
EXPECT(assert_equal(numericalDerivative32(f, vel, vel_plus, theta), aH2));
EXPECT(assert_equal(numericalDerivative33(f, vel, vel_plus, theta), aH3));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -16,113 +16,135 @@
*/ */
#include <gtsam/navigation/ImuBias.h> #include <gtsam/navigation/ImuBias.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
typedef imuBias::ConstantBias Bias;
Vector biasAcc1(Vector3(0.2, -0.1, 0)); Vector biasAcc1(Vector3(0.2, -0.1, 0));
Vector biasGyro1(Vector3(0.1, -0.3, -0.2)); Vector biasGyro1(Vector3(0.1, -0.3, -0.2));
imuBias::ConstantBias bias1(biasAcc1, biasGyro1); Bias bias1(biasAcc1, biasGyro1);
Vector biasAcc2(Vector3(0.1, 0.2, 0.04)); Vector biasAcc2(Vector3(0.1, 0.2, 0.04));
Vector biasGyro2(Vector3(-0.002, 0.005, 0.03)); Vector biasGyro2(Vector3(-0.002, 0.005, 0.03));
imuBias::ConstantBias bias2(biasAcc2, biasGyro2); Bias bias2(biasAcc2, biasGyro2);
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, Constructor) { TEST(ImuBias, Constructor) {
// Default Constructor // Default Constructor
imuBias::ConstantBias bias1; Bias bias1;
// Acc + Gyro Constructor // Acc + Gyro Constructor
imuBias::ConstantBias bias2(biasAcc2, biasGyro2); Bias bias2(biasAcc2, biasGyro2);
// Copy Constructor // Copy Constructor
imuBias::ConstantBias bias3(bias2); Bias bias3(bias2);
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, inverse) { TEST(ImuBias, inverse) {
imuBias::ConstantBias biasActual = bias1.inverse(); Bias biasActual = bias1.inverse();
imuBias::ConstantBias biasExpected = imuBias::ConstantBias(-biasAcc1, Bias biasExpected = Bias(-biasAcc1, -biasGyro1);
-biasGyro1);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, compose) { TEST(ImuBias, compose) {
imuBias::ConstantBias biasActual = bias2.compose(bias1); Bias biasActual = bias2.compose(bias1);
imuBias::ConstantBias biasExpected = imuBias::ConstantBias( Bias biasExpected = Bias(biasAcc1 + biasAcc2, biasGyro1 + biasGyro2);
biasAcc1 + biasAcc2, biasGyro1 + biasGyro2);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, between) { TEST(ImuBias, between) {
// p.between(q) == q - p // p.between(q) == q - p
imuBias::ConstantBias biasActual = bias2.between(bias1); Bias biasActual = bias2.between(bias1);
imuBias::ConstantBias biasExpected = imuBias::ConstantBias( Bias biasExpected = Bias(biasAcc1 - biasAcc2, biasGyro1 - biasGyro2);
biasAcc1 - biasAcc2, biasGyro1 - biasGyro2);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, localCoordinates) { TEST(ImuBias, localCoordinates) {
Vector deltaActual = Vector(bias2.localCoordinates(bias1)); Vector deltaActual = Vector(bias2.localCoordinates(bias1));
Vector deltaExpected = (imuBias::ConstantBias(biasAcc1 - biasAcc2, Vector deltaExpected =
biasGyro1 - biasGyro2)).vector(); (Bias(biasAcc1 - biasAcc2, biasGyro1 - biasGyro2)).vector();
EXPECT(assert_equal(deltaExpected, deltaActual)); EXPECT(assert_equal(deltaExpected, deltaActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, retract) { TEST(ImuBias, retract) {
Vector6 delta; Vector6 delta;
delta << 0.1, 0.2, -0.3, 0.1, -0.1, 0.2; delta << 0.1, 0.2, -0.3, 0.1, -0.1, 0.2;
imuBias::ConstantBias biasActual = bias2.retract(delta); Bias biasActual = bias2.retract(delta);
imuBias::ConstantBias biasExpected = imuBias::ConstantBias( Bias biasExpected = Bias(biasAcc2 + delta.block<3, 1>(0, 0),
biasAcc2 + delta.block<3, 1>(0, 0), biasGyro2 + delta.block<3, 1>(3, 0)); biasGyro2 + delta.block<3, 1>(3, 0));
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, Logmap) { TEST(ImuBias, Logmap) {
Vector deltaActual = bias2.Logmap(bias1); Vector deltaActual = bias2.Logmap(bias1);
Vector deltaExpected = bias1.vector(); Vector deltaExpected = bias1.vector();
EXPECT(assert_equal(deltaExpected, deltaActual)); EXPECT(assert_equal(deltaExpected, deltaActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, Expmap) { TEST(ImuBias, Expmap) {
Vector6 delta; Vector6 delta;
delta << 0.1, 0.2, -0.3, 0.1, -0.1, 0.2; delta << 0.1, 0.2, -0.3, 0.1, -0.1, 0.2;
imuBias::ConstantBias biasActual = bias2.Expmap(delta); Bias biasActual = bias2.Expmap(delta);
imuBias::ConstantBias biasExpected = imuBias::ConstantBias(delta); Bias biasExpected = Bias(delta);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, operatorSub) { TEST(ImuBias, operatorSub) {
imuBias::ConstantBias biasActual = -bias1; Bias biasActual = -bias1;
imuBias::ConstantBias biasExpected(-biasAcc1, -biasGyro1); Bias biasExpected(-biasAcc1, -biasGyro1);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, operatorAdd) { TEST(ImuBias, operatorAdd) {
imuBias::ConstantBias biasActual = bias2 + bias1; Bias biasActual = bias2 + bias1;
imuBias::ConstantBias biasExpected(biasAcc2 + biasAcc1, Bias biasExpected(biasAcc2 + biasAcc1, biasGyro2 + biasGyro1);
biasGyro2 + biasGyro1);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST( ImuBias, operatorSubB) { TEST(ImuBias, operatorSubB) {
imuBias::ConstantBias biasActual = bias2 - bias1; Bias biasActual = bias2 - bias1;
imuBias::ConstantBias biasExpected(biasAcc2 - biasAcc1, Bias biasExpected(biasAcc2 - biasAcc1, biasGyro2 - biasGyro1);
biasGyro2 - biasGyro1);
EXPECT(assert_equal(biasExpected, biasActual)); EXPECT(assert_equal(biasExpected, biasActual));
} }
/* ************************************************************************* */
TEST(ImuBias, Correct1) {
Matrix aH1, aH2;
const Vector3 measurement(1, 2, 3);
boost::function<Vector3(const Bias&, const Vector3&)> f = boost::bind(
&Bias::correctAccelerometer, _1, _2, boost::none, boost::none);
bias1.correctAccelerometer(measurement, aH1, aH2);
EXPECT(assert_equal(numericalDerivative21(f, bias1, measurement), aH1));
EXPECT(assert_equal(numericalDerivative22(f, bias1, measurement), aH2));
}
/* ************************************************************************* */
TEST(ImuBias, Correct2) {
Matrix aH1, aH2;
const Vector3 measurement(1, 2, 3);
boost::function<Vector3(const Bias&, const Vector3&)> f =
boost::bind(&Bias::correctGyroscope, _1, _2, boost::none, boost::none);
bias1.correctGyroscope(measurement, aH1, aH2);
EXPECT(assert_equal(numericalDerivative21(f, bias1, measurement), aH1));
EXPECT(assert_equal(numericalDerivative22(f, bias1, measurement), aH2));
}
/* ************************************************************************* */ /* ************************************************************************* */
int main() { int main() {
TestResult tr; TestResult tr;

View File

@ -31,7 +31,7 @@ static const Vector3 kAccBias(0.2, 0, 0), kRotBias(0.1, 0, 0.3);
static const imuBias::ConstantBias kNonZeroBias(kAccBias, kRotBias); static const imuBias::ConstantBias kNonZeroBias(kAccBias, kRotBias);
// Create default parameters with Z-down and above noise parameters // Create default parameters with Z-down and above noise parameters
static boost::shared_ptr<PreintegratedMeasurements2::Params> defaultParams() { static boost::shared_ptr<AggregateImuReadings::Params> defaultParams() {
auto p = PreintegratedImuMeasurements::Params::MakeSharedD(10); auto p = PreintegratedImuMeasurements::Params::MakeSharedD(10);
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3; p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3; p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;