Formatting and comments

release/4.3a0
Frank Dellaert 2011-09-03 04:48:06 +00:00
parent b614f6bf42
commit 23ef1cf084
2 changed files with 141 additions and 120 deletions

View File

@ -19,7 +19,6 @@
#pragma once
#include <gtsam/nonlinear/ExtendedKalmanFilter.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianSequentialSolver.h>
#include <gtsam/linear/GaussianBayesNet.h>
@ -27,120 +26,142 @@
namespace gtsam {
// Function to compare Ordering entries by value instead of by key
bool compareOrderingValues(const Ordering::value_type& i, const Ordering::value_type& j) {
return i.second < j.second;
}
// Function to compare Ordering entries by value instead of by key
bool compareOrderingValues(const Ordering::value_type& i,
const Ordering::value_type& j) {
return i.second < j.second;
}
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::solve_(const GaussianFactorGraph& linearFactorGraph,
const Ordering& ordering, const VALUES& linearizationPoints, const KEY& lastKey, JacobianFactor::shared_ptr& newPrior) const {
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::solve_(
const GaussianFactorGraph& linearFactorGraph, const Ordering& ordering,
const VALUES& linearizationPoints, const KEY& lastKey,
JacobianFactor::shared_ptr& newPrior) const {
// Extract the Index of the provided last key
gtsam::Index lastIndex = ordering.at(lastKey);
// Extract the Index of the provided last key
gtsam::Index lastIndex = ordering.at(lastKey);
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver(linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver.eliminate();
// Solve the linear factor graph, converting it into a linear Bayes Network
// P(x0,x1) = P(x0|x1)*P(x1)
GaussianSequentialSolver solver(linearFactorGraph);
GaussianBayesNet::shared_ptr linearBayesNet = solver.eliminate();
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
T x = linearizationPoints[lastKey].expmap(result[lastIndex]);
// Extract the current estimate of x1,P1 from the Bayes Network
VectorValues result = optimize(*linearBayesNet);
T x = linearizationPoints[lastKey].expmap(result[lastIndex]);
// Create a Jacobian Factor from the root node of the produced Bayes Net. This will act as a prior for the next iteration.
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg = linearBayesNet->back();
assert(cg->nrFrontals() == 1);
assert(cg->nrParents() == 0);
// TODO: Find a way to create the correct Jacobian Factor in a single pass
JacobianFactor tmpPrior = JacobianFactor(*cg);
newPrior = JacobianFactor::shared_ptr(
new JacobianFactor(0, tmpPrior.getA(tmpPrior.begin()), tmpPrior.getb() - tmpPrior.getA(tmpPrior.begin()) * result[lastIndex], tmpPrior.get_model()));
// Create a Jacobian Factor from the root node of the produced Bayes Net.
// This will act as a prior for the next iteration.
// The linearization point of this prior must be moved to the new estimate of x,
// and the key/index needs to be reset to 0, the first key in the next iteration.
const GaussianConditional::shared_ptr& cg = linearBayesNet->back();
assert(cg->nrFrontals() == 1);
assert(cg->nrParents() == 0);
// TODO: Find a way to create the correct Jacobian Factor in a single pass
JacobianFactor tmpPrior = JacobianFactor(*cg);
newPrior = JacobianFactor::shared_ptr(
new JacobianFactor(
0,
tmpPrior.getA(tmpPrior.begin()),
tmpPrior.getb()
- tmpPrior.getA(tmpPrior.begin()) * result[lastIndex],
tmpPrior.get_model()));
return x;
}
return x;
}
/* ************************************************************************* */
template<class VALUES, class KEY>
ExtendedKalmanFilter<VALUES, KEY>::ExtendedKalmanFilter(T x_initial, noiseModel::Gaussian::shared_ptr P_initial) {
/* ************************************************************************* */
template<class VALUES, class KEY>
ExtendedKalmanFilter<VALUES, KEY>::ExtendedKalmanFilter(T x_initial,
noiseModel::Gaussian::shared_ptr P_initial) {
// Set the initial linearization point to the provided mean
x_ = x_initial;
// Set the initial linearization point to the provided mean
x_ = x_initial;
// Create a Jacobian Prior Factor directly P_initial. Since x0 is set to the provided mean, the b vector in the prior will be zero
priorFactor_ = JacobianFactor::shared_ptr(new JacobianFactor(0, P_initial->R(), Vector::Zero(x_initial.dim()), noiseModel::Unit::Create(P_initial->dim())));
}
;
// Create a Jacobian Prior Factor directly P_initial.
// Since x0 is set to the provided mean, the b vector in the prior will be zero
// TODO Frank asks: is there a reason why noiseModel is not simply P_initial ?
priorFactor_ = JacobianFactor::shared_ptr(
new JacobianFactor(0, P_initial->R(), Vector::Zero(x_initial.dim()),
noiseModel::Unit::Create(P_initial->dim())));
}
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::predict(const MotionFactor& motionFactor) {
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::predict(
const MotionFactor& motionFactor) {
// TODO: This implementation largely ignores the actual factor symbols. Calling predict() then update() with drastically
// different keys will still compute as if a common key-set was used
// TODO: This implementation largely ignores the actual factor symbols.
// Calling predict() then update() with drastically
// different keys will still compute as if a common key-set was used
// Create Keys
KEY x0 = motionFactor.key1();
KEY x1 = motionFactor.key2();
// Create Keys
KEY x0 = motionFactor.key1();
KEY x1 = motionFactor.key2();
// Create an elimination ordering
Ordering ordering;
ordering.insert(x0, 0);
ordering.insert(x1, 1);
// Create an elimination ordering
Ordering ordering;
ordering.insert(x0, 0);
ordering.insert(x1, 1);
// Create a set of linearization points
VALUES linearizationPoints;
linearizationPoints.insert(x0, x_);
linearizationPoints.insert(x1, x_);
// Create a set of linearization points
VALUES linearizationPoints;
linearizationPoints.insert(x0, x_);
linearizationPoints.insert(x1, x_); // TODO should this really be x_ ?
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Add in the prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Add in previous posterior as prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Linearize motion model and add it to the Kalman Filter graph
linearFactorGraph.push_back(motionFactor.linearize(linearizationPoints, ordering));
// Linearize motion model and add it to the Kalman Filter graph
linearFactorGraph.push_back(
motionFactor.linearize(linearizationPoints, ordering));
// Solve the factor graph and update the current state estimate and the prior factor for the next iteration
x_ = solve_(linearFactorGraph, ordering, linearizationPoints, x1, priorFactor_);
// Solve the factor graph and update the current state estimate
// and the posterior for the next iteration.
x_ = solve_(linearFactorGraph, ordering, linearizationPoints, x1, priorFactor_);
return x_;
}
return x_;
}
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::update(const MeasurementFactor& measurementFactor) {
/* ************************************************************************* */
template<class VALUES, class KEY>
typename ExtendedKalmanFilter<VALUES, KEY>::T ExtendedKalmanFilter<VALUES, KEY>::update(
const MeasurementFactor& measurementFactor) {
// TODO: This implementation largely ignores the actual factor symbols. Calling predict() then update() with drastically
// different keys will still compute as if a common key-set was used
// TODO: This implementation largely ignores the actual factor symbols.
// Calling predict() then update() with drastically
// different keys will still compute as if a common key-set was used
// Create Keys
KEY x0 = measurementFactor.key();
// Create Keys
KEY x0 = measurementFactor.key();
// Create an elimination ordering
Ordering ordering;
ordering.insert(x0, 0);
// Create an elimination ordering
Ordering ordering;
ordering.insert(x0, 0);
// Create a set of linearization points
VALUES linearizationPoints;
linearizationPoints.insert(x0, x_);
// Create a set of linearization points
VALUES linearizationPoints;
linearizationPoints.insert(x0, x_);
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Create a Gaussian Factor Graph
GaussianFactorGraph linearFactorGraph;
// Add in the prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Add in the prior on the first state
linearFactorGraph.push_back(priorFactor_);
// Linearize measurement factor and add it to the Kalman Filter graph
linearFactorGraph.push_back(measurementFactor.linearize(linearizationPoints, ordering));
// Linearize measurement factor and add it to the Kalman Filter graph
linearFactorGraph.push_back(
measurementFactor.linearize(linearizationPoints, ordering));
// Solve the factor graph and update the current state estimate and the prior factor for the next iteration
x_ = solve_(linearFactorGraph, ordering, linearizationPoints, x0, priorFactor_);
// Solve the factor graph and update the current state estimate
// and the prior factor for the next iteration
x_ = solve_(linearFactorGraph, ordering, linearizationPoints, x0, priorFactor_);
return x_;
}
return x_;
}
} // namespace gtsam

View File

@ -24,44 +24,44 @@
namespace gtsam {
/**
* This is a generic Extended Kalman Filter class implemented using nonlinear factors. GTSAM
* basically does SRIF with LDL to solve the filter problem, making this an efficient, numerically
* stable Kalman Filter implementation.
*
* The Kalman Filter relies on two models: a motion model that predicts the next state using
* the current state, and a measurement model that predicts the measurement value at a given
* state. Because these two models are situation-dependent, base classes for each have been
* provided above, from which the user must derive a class and incorporate the actual modeling
* equations. A pointer to an instance of each of these classes must be given to the Kalman
* Filter at creation, allowing the Kalman Filter to create factors as needed.
*
* The Kalman Filter class provides a "predict" function and an "update" function to perform
* these steps independently, as well as a "predictAndUpdate" that combines both steps for some
* computational savings.
*/
/**
* This is a generic Extended Kalman Filter class implemented using nonlinear factors. GTSAM
* basically does SRIF with LDL to solve the filter problem, making this an efficient, numerically
* stable Kalman Filter implementation.
*
* The Kalman Filter relies on two models: a motion model that predicts the next state using
* the current state, and a measurement model that predicts the measurement value at a given
* state. Because these two models are situation-dependent, base classes for each have been
* provided above, from which the user must derive a class and incorporate the actual modeling
* equations.
*
* The class provides a "predict" and "update" function to perform these steps independently.
* TODO: a "predictAndUpdate" that combines both steps for some computational savings.
*/
template<class VALUES, class KEY>
class ExtendedKalmanFilter {
public:
template<class VALUES, class KEY>
class ExtendedKalmanFilter {
public:
typedef boost::shared_ptr<ExtendedKalmanFilter<VALUES, KEY> > shared_ptr;
typedef typename KEY::Value T;
typedef NonlinearFactor2<VALUES, KEY, KEY> MotionFactor;
typedef NonlinearFactor1<VALUES, KEY> MeasurementFactor;
typedef boost::shared_ptr<ExtendedKalmanFilter<VALUES, KEY> > shared_ptr;
typedef typename KEY::Value T;
typedef NonlinearFactor2<VALUES, KEY, KEY> MotionFactor;
typedef NonlinearFactor1<VALUES, KEY> MeasurementFactor;
protected:
JacobianFactor::shared_ptr priorFactor_;
T x_;
protected:
T x_; // linearization point
JacobianFactor::shared_ptr priorFactor_; // density
T solve_(const GaussianFactorGraph& linearFactorGraph, const Ordering& ordering, const VALUES& linearizationPoints, const KEY& x,
JacobianFactor::shared_ptr& newPrior) const;
T solve_(const GaussianFactorGraph& linearFactorGraph,
const Ordering& ordering, const VALUES& linearizationPoints,
const KEY& x, JacobianFactor::shared_ptr& newPrior) const;
public:
ExtendedKalmanFilter(T x_initial, noiseModel::Gaussian::shared_ptr P_initial);
public:
ExtendedKalmanFilter(T x_initial,
noiseModel::Gaussian::shared_ptr P_initial);
T predict(const MotionFactor& motionFactor);
T update(const MeasurementFactor& measurementFactor);
};
T predict(const MotionFactor& motionFactor);
T update(const MeasurementFactor& measurementFactor);
};
} // namespace