Merge remote-tracking branch 'svn/branches/incremental_dogleg_points_to_merge' into trunk
Conflicts: .cproject gtsam/linear/GaussianBayesTree-inl.h gtsam/linear/GaussianBayesTree.cpp gtsam/linear/GaussianBayesTree.h gtsam/nonlinear/DoglegOptimizerImpl.h gtsam/nonlinear/GaussianISAM2-inl.h gtsam/nonlinear/GaussianISAM2.cpp gtsam/nonlinear/GaussianISAM2.h gtsam/nonlinear/ISAM2-impl.cpp gtsam/nonlinear/ISAM2-inl.h gtsam/nonlinear/ISAM2.hrelease/4.3a0
commit
22ebe16a31
|
@ -25,7 +25,8 @@
|
|||
using namespace gtsam;
|
||||
using namespace std;
|
||||
|
||||
struct EliminationTreeTester {
|
||||
class EliminationTreeTester {
|
||||
public:
|
||||
// build hardcoded tree
|
||||
static SymbolicEliminationTree::shared_ptr buildHardcodedTree(const SymbolicFactorGraph& fg) {
|
||||
|
||||
|
|
|
@ -25,4 +25,17 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
template<class BAYESTREE>
|
||||
void optimizeInPlace(const typename BAYESTREE::sharedClique& clique, VectorValues& result) {
|
||||
// parents are assumed to already be solved and available in result
|
||||
clique->conditional()->solveInPlace(result);
|
||||
|
||||
// starting from the root, call optimize on each conditional
|
||||
BOOST_FOREACH(const typename BAYESTREE::sharedClique& child, clique->children_)
|
||||
optimizeInPlace<BAYESTREE>(child, result);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -23,22 +23,15 @@
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
void optimizeInPlace(const boost::shared_ptr<BayesTreeClique<GaussianConditional> >& clique, VectorValues& result) {
|
||||
// parents are assumed to already be solved and available in result
|
||||
clique->conditional()->solveInPlace(result);
|
||||
|
||||
// starting from the root, call optimize on each conditional
|
||||
BOOST_FOREACH(const boost::shared_ptr<BayesTreeClique<GaussianConditional> >& child, clique->children_)
|
||||
optimizeInPlace(child, result);
|
||||
}
|
||||
VectorValues optimize(const GaussianBayesTree& bayesTree) {
|
||||
VectorValues result = *allocateVectorValues(bayesTree);
|
||||
optimizeInPlace(bayesTree, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues optimize(const GaussianBayesTree& bayesTree) {
|
||||
VectorValues result = *allocateVectorValues(bayesTree);
|
||||
internal::optimizeInPlace(bayesTree.root(), result);
|
||||
return result;
|
||||
void optimizeInPlace(const GaussianBayesTree& bayesTree, VectorValues& result) {
|
||||
internal::optimizeInPlace<GaussianBayesTree>(bayesTree.root(), result);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -77,11 +70,6 @@ void optimizeGradientSearchInPlace(const GaussianBayesTree& Rd, VectorValues& gr
|
|||
toc(4, "Compute point");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void optimizeInPlace(const GaussianBayesTree& bayesTree, VectorValues& result) {
|
||||
internal::optimizeInPlace(bayesTree.root(), result);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues gradient(const GaussianBayesTree& bayesTree, const VectorValues& x0) {
|
||||
return gradient(FactorGraph<JacobianFactor>(bayesTree), x0);
|
||||
|
|
|
@ -34,7 +34,8 @@ VectorValues optimize(const GaussianBayesTree& bayesTree);
|
|||
void optimizeInPlace(const GaussianBayesTree& clique, VectorValues& result);
|
||||
|
||||
namespace internal {
|
||||
void optimizeInPlace(const boost::shared_ptr<BayesTreeClique<GaussianConditional> >& clique, VectorValues& result);
|
||||
template<class BAYESTREE>
|
||||
void optimizeInPlace(const typename BAYESTREE::sharedClique& clique, VectorValues& result);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -27,42 +27,6 @@ using namespace std;
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Helper function used only in this file - extracts vectors with variable indices
|
||||
// in the first and last iterators, and concatenates them in that order into the
|
||||
// output.
|
||||
template<class VALUES, typename ITERATOR>
|
||||
static Vector extractVectorValuesSlices(const VALUES& values, ITERATOR first, ITERATOR last) {
|
||||
// Find total dimensionality
|
||||
int dim = 0;
|
||||
for(ITERATOR j = first; j != last; ++j)
|
||||
dim += values[*j].rows();
|
||||
|
||||
// Copy vectors
|
||||
Vector ret(dim);
|
||||
int varStart = 0;
|
||||
for(ITERATOR j = first; j != last; ++j) {
|
||||
ret.segment(varStart, values[*j].rows()) = values[*j];
|
||||
varStart += values[*j].rows();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Helper function used only in this file - writes to the variables in values
|
||||
// with indices iterated over by first and last, interpreting vector as the
|
||||
// concatenated vectors to write.
|
||||
template<class VECTOR, class VALUES, typename ITERATOR>
|
||||
static void writeVectorValuesSlices(const VECTOR& vector, VALUES& values, ITERATOR first, ITERATOR last) {
|
||||
// Copy vectors
|
||||
int varStart = 0;
|
||||
for(ITERATOR j = first; j != last; ++j) {
|
||||
values[*j] = vector.segment(varStart, values[*j].rows());
|
||||
varStart += values[*j].rows();
|
||||
}
|
||||
assert(varStart == vector.rows());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianConditional::GaussianConditional() : rsd_(matrix_) {}
|
||||
|
||||
|
@ -230,7 +194,7 @@ inline static void doSolveInPlace(const GaussianConditional& conditional, VALUES
|
|||
|
||||
static const bool debug = false;
|
||||
if(debug) conditional.print("Solving conditional in place");
|
||||
Vector xS = extractVectorValuesSlices(x, conditional.beginParents(), conditional.endParents());
|
||||
Vector xS = internal::extractVectorValuesSlices(x, conditional.beginParents(), conditional.endParents());
|
||||
xS = conditional.get_d() - conditional.get_S() * xS;
|
||||
Vector soln = conditional.permutation().transpose() *
|
||||
conditional.get_R().triangularView<Eigen::Upper>().solve(xS);
|
||||
|
@ -238,7 +202,7 @@ inline static void doSolveInPlace(const GaussianConditional& conditional, VALUES
|
|||
gtsam::print(Matrix(conditional.get_R()), "Calling backSubstituteUpper on ");
|
||||
gtsam::print(soln, "full back-substitution solution: ");
|
||||
}
|
||||
writeVectorValuesSlices(soln, x, conditional.beginFrontals(), conditional.endFrontals());
|
||||
internal::writeVectorValuesSlices(soln, x, conditional.beginFrontals(), conditional.endFrontals());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -253,7 +217,7 @@ void GaussianConditional::solveInPlace(Permuted<VectorValues>& x) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
void GaussianConditional::solveTransposeInPlace(VectorValues& gy) const {
|
||||
Vector frontalVec = extractVectorValuesSlices(gy, beginFrontals(), endFrontals());
|
||||
Vector frontalVec = internal::extractVectorValuesSlices(gy, beginFrontals(), endFrontals());
|
||||
// TODO: verify permutation
|
||||
frontalVec = permutation_ * gtsam::backSubstituteUpper(frontalVec,Matrix(get_R()));
|
||||
GaussianConditional::const_iterator it;
|
||||
|
@ -261,14 +225,14 @@ void GaussianConditional::solveTransposeInPlace(VectorValues& gy) const {
|
|||
const Index i = *it;
|
||||
transposeMultiplyAdd(-1.0,get_S(it),frontalVec,gy[i]);
|
||||
}
|
||||
writeVectorValuesSlices(frontalVec, gy, beginFrontals(), endFrontals());
|
||||
internal::writeVectorValuesSlices(frontalVec, gy, beginFrontals(), endFrontals());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void GaussianConditional::scaleFrontalsBySigma(VectorValues& gy) const {
|
||||
Vector frontalVec = extractVectorValuesSlices(gy, beginFrontals(), endFrontals());
|
||||
Vector frontalVec = internal::extractVectorValuesSlices(gy, beginFrontals(), endFrontals());
|
||||
frontalVec = emul(frontalVec, get_sigmas());
|
||||
writeVectorValuesSlices(frontalVec, gy, beginFrontals(), endFrontals());
|
||||
internal::writeVectorValuesSlices(frontalVec, gy, beginFrontals(), endFrontals());
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -31,7 +31,7 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
struct SharedDiagonal;
|
||||
class SharedDiagonal;
|
||||
|
||||
/** return A*x-b
|
||||
* \todo Make this a member function - affects SubgraphPreconditioner */
|
||||
|
|
|
@ -50,7 +50,7 @@ namespace gtsam {
|
|||
|
||||
// back-substitution
|
||||
tic(3, "back-substitute");
|
||||
internal::optimizeInPlace(rootClique, result);
|
||||
internal::optimizeInPlace<GaussianBayesTree>(rootClique, result);
|
||||
toc(3, "back-substitute");
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -33,7 +33,7 @@ namespace gtsam {
|
|||
|
||||
// Forward declarations
|
||||
class JacobianFactor;
|
||||
struct SharedDiagonal;
|
||||
class SharedDiagonal;
|
||||
class GaussianConditional;
|
||||
template<class C> class BayesNet;
|
||||
|
||||
|
|
|
@ -42,20 +42,20 @@ using namespace boost::lambda;
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
inline void JacobianFactor::assertInvariants() const {
|
||||
#ifndef NDEBUG
|
||||
void JacobianFactor::assertInvariants() const {
|
||||
#ifndef NDEBUG
|
||||
GaussianFactor::assertInvariants(); // The base class checks for unique keys
|
||||
assert((size() == 0 && Ab_.rows() == 0 && Ab_.nBlocks() == 0) || size()+1 == Ab_.nBlocks());
|
||||
assert(firstNonzeroBlocks_.size() == Ab_.rows());
|
||||
for(size_t i=0; i<firstNonzeroBlocks_.size(); ++i)
|
||||
assert(firstNonzeroBlocks_[i] < Ab_.nBlocks());
|
||||
#endif
|
||||
|
||||
// Check for non-finite values
|
||||
for(size_t i=0; i<Ab_.rows(); ++i)
|
||||
for(size_t j=0; j<Ab_.cols(); ++j)
|
||||
if(isnan(matrix_(i,j)))
|
||||
throw invalid_argument("JacobianFactor contains NaN matrix entries.");
|
||||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
struct SharedDiagonal; // forward declare
|
||||
class SharedDiagonal; // forward declare
|
||||
|
||||
/// All noise models live in the noiseModel namespace
|
||||
namespace noiseModel {
|
||||
|
|
|
@ -25,7 +25,8 @@ namespace gtsam { // note, deliberately not in noiseModel namespace
|
|||
// A useful convenience class to refer to a shared Diagonal model
|
||||
// There are (somewhat dangerous) constructors from Vector and pair<size_t,double>
|
||||
// that call Sigmas and Sigma, respectively.
|
||||
struct SharedDiagonal: public noiseModel::Diagonal::shared_ptr {
|
||||
class SharedDiagonal: public noiseModel::Diagonal::shared_ptr {
|
||||
public:
|
||||
SharedDiagonal() {
|
||||
}
|
||||
SharedDiagonal(const noiseModel::Diagonal::shared_ptr& p) :
|
||||
|
|
|
@ -27,7 +27,8 @@ namespace gtsam { // note, deliberately not in noiseModel namespace
|
|||
* A useful convenience class to refer to a shared Gaussian model
|
||||
* Also needed to make noise models in matlab
|
||||
*/
|
||||
struct SharedGaussian: public SharedNoiseModel {
|
||||
class SharedGaussian: public SharedNoiseModel {
|
||||
public:
|
||||
|
||||
typedef SharedNoiseModel Base;
|
||||
|
||||
|
|
|
@ -156,3 +156,22 @@ void VectorValues::operator+=(const VectorValues& c) {
|
|||
assert(this->hasSameStructure(c));
|
||||
this->values_ += c.values_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues& VectorValues::operator=(const Permuted<VectorValues>& rhs) {
|
||||
if(this->size() != rhs.size())
|
||||
throw std::invalid_argument("VectorValues assignment from Permuted<VectorValues> requires pre-allocation, see documentation.");
|
||||
for(size_t j=0; j<this->size(); ++j) {
|
||||
if(exists(j)) {
|
||||
SubVector& l(this->at(j));
|
||||
const SubVector& r(rhs[j]);
|
||||
if(l.rows() != r.rows())
|
||||
throw std::invalid_argument("VectorValues assignment from Permuted<VectorValues> requires pre-allocation, see documentation.");
|
||||
l = r;
|
||||
} else {
|
||||
if(rhs.container().exists(rhs.permutation()[j]))
|
||||
throw std::invalid_argument("VectorValues assignment from Permuted<VectorValues> requires pre-allocation, see documentation.");
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/types.h>
|
||||
#include <gtsam/inference/Permutation.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/shared_ptr.hpp>
|
||||
|
@ -177,7 +178,7 @@ namespace gtsam {
|
|||
|
||||
/** Construct from a container of variable dimensions (in variable order), without initializing any values. */
|
||||
template<class CONTAINER>
|
||||
VectorValues(const CONTAINER& dimensions) { append(dimensions); }
|
||||
explicit VectorValues(const CONTAINER& dimensions) { append(dimensions); }
|
||||
|
||||
/** Construct to hold nVars vectors of varDim dimension each. */
|
||||
VectorValues(Index nVars, size_t varDim) { resize(nVars, varDim); }
|
||||
|
@ -273,6 +274,11 @@ namespace gtsam {
|
|||
*/
|
||||
void operator+=(const VectorValues& c);
|
||||
|
||||
/** Assignment operator from Permuted<VectorValues>, requires the dimensions
|
||||
* of the assignee to already be properly pre-allocated.
|
||||
*/
|
||||
VectorValues& operator=(const Permuted<VectorValues>& rhs);
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
@ -402,4 +408,42 @@ namespace gtsam {
|
|||
#endif
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
/* ************************************************************************* */
|
||||
// Helper function, extracts vectors with variable indices
|
||||
// in the first and last iterators, and concatenates them in that order into the
|
||||
// output.
|
||||
template<class VALUES, typename ITERATOR>
|
||||
Vector extractVectorValuesSlices(const VALUES& values, ITERATOR first, ITERATOR last) {
|
||||
// Find total dimensionality
|
||||
int dim = 0;
|
||||
for(ITERATOR j = first; j != last; ++j)
|
||||
dim += values[*j].rows();
|
||||
|
||||
// Copy vectors
|
||||
Vector ret(dim);
|
||||
int varStart = 0;
|
||||
for(ITERATOR j = first; j != last; ++j) {
|
||||
ret.segment(varStart, values[*j].rows()) = values[*j];
|
||||
varStart += values[*j].rows();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Helper function, writes to the variables in values
|
||||
// with indices iterated over by first and last, interpreting vector as the
|
||||
// concatenated vectors to write.
|
||||
template<class VECTOR, class VALUES, typename ITERATOR>
|
||||
void writeVectorValuesSlices(const VECTOR& vector, VALUES& values, ITERATOR first, ITERATOR last) {
|
||||
// Copy vectors
|
||||
int varStart = 0;
|
||||
for(ITERATOR j = first; j != last; ++j) {
|
||||
values[*j] = vector.segment(varStart, values[*j].rows());
|
||||
varStart += values[*j].rows();
|
||||
}
|
||||
assert(varStart == vector.rows());
|
||||
}
|
||||
}
|
||||
|
||||
} // \namespace gtsam
|
||||
|
|
|
@ -135,12 +135,18 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
const F& f, const VALUES& x0, const Ordering& ordering, const double f_error, const bool verbose) {
|
||||
|
||||
// Compute steepest descent and Newton's method points
|
||||
tic(0, "Steepest Descent");
|
||||
VectorValues dx_u = optimizeGradientSearch(Rd);
|
||||
toc(0, "Steepest Descent");
|
||||
tic(1, "optimize");
|
||||
VectorValues dx_n = optimize(Rd);
|
||||
toc(1, "optimize");
|
||||
tic(0, "optimizeGradientSearch");
|
||||
tic(0, "allocateVectorValues");
|
||||
VectorValues dx_u = *allocateVectorValues(Rd);
|
||||
toc(0, "allocateVectorValues");
|
||||
tic(1, "optimizeGradientSearchInPlace");
|
||||
optimizeGradientSearchInPlace(Rd, dx_u);
|
||||
toc(1, "optimizeGradientSearchInPlace");
|
||||
toc(0, "optimizeGradientSearch");
|
||||
tic(1, "optimizeInPlace");
|
||||
VectorValues dx_n(VectorValues::SameStructure(dx_u));
|
||||
optimizeInPlace(Rd, dx_n);
|
||||
toc(1, "optimizeInPlace");
|
||||
tic(2, "jfg error");
|
||||
const GaussianFactorGraph jfg(Rd);
|
||||
const double M_error = jfg.error(VectorValues::Zero(dx_u));
|
||||
|
@ -177,6 +183,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
if(verbose) cout << "f error: " << f_error << " -> " << result.f_error << endl;
|
||||
if(verbose) cout << "M error: " << M_error << " -> " << new_M_error << endl;
|
||||
|
||||
tic(7, "adjust Delta");
|
||||
// Compute gain ratio. Here we take advantage of the invariant that the
|
||||
// Bayes' net error at zero is equal to the nonlinear error
|
||||
const double rho = fabs(M_error - new_M_error) < 1e-15 ?
|
||||
|
@ -186,7 +193,6 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
if(verbose) cout << "rho = " << rho << endl;
|
||||
|
||||
if(rho >= 0.75) {
|
||||
tic(7, "Rho >= 0.75");
|
||||
// M agrees very well with f, so try to increase lambda
|
||||
const double dx_d_norm = result.dx_d.vector().norm();
|
||||
const double newDelta = std::max(Delta, 3.0 * dx_d_norm); // Compute new Delta
|
||||
|
@ -204,14 +210,12 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
assert(false); }
|
||||
|
||||
Delta = newDelta; // Update Delta from new Delta
|
||||
toc(7, "Rho >= 0.75");
|
||||
|
||||
} else if(0.75 > rho && rho >= 0.25) {
|
||||
// M agrees so-so with f, keep the same Delta
|
||||
stay = false;
|
||||
|
||||
} else if(0.25 > rho && rho >= 0.0) {
|
||||
tic(8, "0.25 > Rho >= 0.75");
|
||||
// M does not agree well with f, decrease Delta until it does
|
||||
double newDelta;
|
||||
if(Delta > 1e-5)
|
||||
|
@ -227,11 +231,8 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
assert(false); }
|
||||
|
||||
Delta = newDelta; // Update Delta from new Delta
|
||||
toc(8, "0.25 > Rho >= 0.75");
|
||||
}
|
||||
|
||||
else {
|
||||
tic(9, "Rho < 0");
|
||||
} else {
|
||||
// f actually increased, so keep decreasing Delta until f does not decrease
|
||||
assert(0.0 > rho);
|
||||
if(Delta > 1e-5) {
|
||||
|
@ -242,8 +243,8 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
if(verbose) cout << "Warning: Dog leg stopping because cannot decrease error with minimum Delta" << endl;
|
||||
stay = false;
|
||||
}
|
||||
toc(9, "Rho < 0");
|
||||
}
|
||||
toc(7, "adjust Delta");
|
||||
}
|
||||
|
||||
// dx_d and f_error have already been filled in during the loop
|
||||
|
|
|
@ -1,176 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussianISAM2
|
||||
* @brief Full non-linear ISAM
|
||||
* @author Michael Kaess
|
||||
*/
|
||||
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
template<class CLIQUE>
|
||||
void optimizeWildfire(const boost::shared_ptr<CLIQUE>& clique, double threshold,
|
||||
vector<bool>& changed, const vector<bool>& replaced, Permuted<VectorValues>& delta, int& count) {
|
||||
// if none of the variables in this clique (frontal and separator!) changed
|
||||
// significantly, then by the running intersection property, none of the
|
||||
// cliques in the children need to be processed
|
||||
|
||||
// Are any clique variables part of the tree that has been redone?
|
||||
bool cliqueReplaced = replaced[(*clique)->frontals().front()];
|
||||
#ifndef NDEBUG
|
||||
BOOST_FOREACH(Index frontal, (*clique)->frontals()) {
|
||||
assert(cliqueReplaced == replaced[frontal]);
|
||||
}
|
||||
#endif
|
||||
|
||||
// If not redone, then has one of the separator variables changed significantly?
|
||||
bool recalculate = cliqueReplaced;
|
||||
if(!recalculate) {
|
||||
BOOST_FOREACH(Index parent, (*clique)->parents()) {
|
||||
if(changed[parent]) {
|
||||
recalculate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve clique if it was replaced, or if any parents were changed above the
|
||||
// threshold or themselves replaced.
|
||||
if(recalculate) {
|
||||
|
||||
// Temporary copy of the original values, to check how much they change
|
||||
vector<Vector> originalValues((*clique)->nrFrontals());
|
||||
GaussianConditional::const_iterator it;
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
originalValues[it - (*clique)->beginFrontals()] = delta[*it];
|
||||
}
|
||||
|
||||
// Back-substitute
|
||||
(*clique)->solveInPlace(delta);
|
||||
count += (*clique)->nrFrontals();
|
||||
|
||||
// Whether the values changed above a threshold, or always true if the
|
||||
// clique was replaced.
|
||||
bool valuesChanged = cliqueReplaced;
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
if(!valuesChanged) {
|
||||
const Vector& oldValue(originalValues[it - (*clique)->beginFrontals()]);
|
||||
const SubVector& newValue(delta[*it]);
|
||||
if((oldValue - newValue).lpNorm<Eigen::Infinity>() >= threshold) {
|
||||
valuesChanged = true;
|
||||
break;
|
||||
}
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
// If the values were above the threshold or this clique was replaced
|
||||
if(valuesChanged) {
|
||||
// Set changed flag for each frontal variable and leave the new values
|
||||
BOOST_FOREACH(Index frontal, (*clique)->frontals()) {
|
||||
changed[frontal] = true;
|
||||
}
|
||||
} else {
|
||||
// Replace with the old values
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
delta[*it] = originalValues[it - (*clique)->beginFrontals()];
|
||||
}
|
||||
}
|
||||
|
||||
// Recurse to children
|
||||
BOOST_FOREACH(const typename CLIQUE::shared_ptr& child, clique->children_) {
|
||||
optimizeWildfire(child, threshold, changed, replaced, delta, count);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CLIQUE>
|
||||
int optimizeWildfire(const boost::shared_ptr<CLIQUE>& root, double threshold, const vector<bool>& keys, Permuted<VectorValues>& delta) {
|
||||
vector<bool> changed(keys.size(), false);
|
||||
int count = 0;
|
||||
// starting from the root, call optimize on each conditional
|
||||
if(root)
|
||||
internal::optimizeWildfire(root, threshold, changed, keys, delta, count);
|
||||
return count;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH>
|
||||
VectorValues optimizeGradientSearch(const ISAM2<GaussianConditional, GRAPH>& isam) {
|
||||
tic(0, "Allocate VectorValues");
|
||||
VectorValues grad = *allocateVectorValues(isam);
|
||||
toc(0, "Allocate VectorValues");
|
||||
|
||||
optimizeGradientSearchInPlace(isam, grad);
|
||||
|
||||
return grad;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class GRAPH>
|
||||
void optimizeGradientSearchInPlace(const ISAM2<GaussianConditional, GRAPH>& Rd, VectorValues& grad) {
|
||||
tic(1, "Compute Gradient");
|
||||
// Compute gradient (call gradientAtZero function, which is defined for various linear systems)
|
||||
gradientAtZero(Rd, grad);
|
||||
double gradientSqNorm = grad.dot(grad);
|
||||
toc(1, "Compute Gradient");
|
||||
|
||||
tic(2, "Compute R*g");
|
||||
// Compute R * g
|
||||
FactorGraph<JacobianFactor> Rd_jfg(Rd);
|
||||
Errors Rg = Rd_jfg * grad;
|
||||
toc(2, "Compute R*g");
|
||||
|
||||
tic(3, "Compute minimizing step size");
|
||||
// Compute minimizing step size
|
||||
double step = -gradientSqNorm / dot(Rg, Rg);
|
||||
toc(3, "Compute minimizing step size");
|
||||
|
||||
tic(4, "Compute point");
|
||||
// Compute steepest descent point
|
||||
scal(step, grad);
|
||||
toc(4, "Compute point");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CLIQUE>
|
||||
void nnz_internal(const boost::shared_ptr<CLIQUE>& clique, int& result) {
|
||||
int dimR = (*clique)->dim();
|
||||
int dimSep = (*clique)->get_S().cols() - dimR;
|
||||
result += ((dimR+1)*dimR)/2 + dimSep*dimR;
|
||||
// traverse the children
|
||||
BOOST_FOREACH(const typename CLIQUE::shared_ptr& child, clique->children_) {
|
||||
nnz_internal(child, result);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CLIQUE>
|
||||
int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique) {
|
||||
int result = 0;
|
||||
// starting from the root, add up entries of frontal and conditional matrices of each conditional
|
||||
nnz_internal(clique, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
} /// namespace gtsam
|
|
@ -1,60 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussianISAM2
|
||||
* @brief Full non-linear ISAM
|
||||
* @author Michael Kaess
|
||||
*/
|
||||
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/nonlinear/GaussianISAM2.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues gradient(const BayesTree<GaussianConditional, ISAM2Clique<GaussianConditional> >& bayesTree, const VectorValues& x0) {
|
||||
return gradient(FactorGraph<JacobianFactor>(bayesTree), x0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static void gradientAtZeroTreeAdder(const boost::shared_ptr<ISAM2Clique<GaussianConditional> >& root, VectorValues& g) {
|
||||
// Loop through variables in each clique, adding contributions
|
||||
int variablePosition = 0;
|
||||
for(GaussianConditional::const_iterator jit = root->conditional()->begin(); jit != root->conditional()->end(); ++jit) {
|
||||
const int dim = root->conditional()->dim(jit);
|
||||
g[*jit] += root->gradientContribution().segment(variablePosition, dim);
|
||||
variablePosition += dim;
|
||||
}
|
||||
|
||||
// Recursively add contributions from children
|
||||
typedef boost::shared_ptr<ISAM2Clique<GaussianConditional> > sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& child, root->children()) {
|
||||
gradientAtZeroTreeAdder(child, g);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void gradientAtZero(const BayesTree<GaussianConditional, ISAM2Clique<GaussianConditional> >& bayesTree, VectorValues& g) {
|
||||
// Zero-out gradient
|
||||
g.setZero();
|
||||
|
||||
// Sum up contributions for each clique
|
||||
gradientAtZeroTreeAdder(bayesTree.root(), g);
|
||||
}
|
||||
|
||||
}
|
|
@ -1,153 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussianISAM
|
||||
* @brief Full non-linear ISAM.
|
||||
* @author Michael Kaess
|
||||
*/
|
||||
|
||||
// \callgraph
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @ingroup ISAM2
|
||||
* @brief The main ISAM2 class that is exposed to gtsam users, see ISAM2 for usage.
|
||||
*
|
||||
* This is a thin wrapper around an ISAM2 class templated on
|
||||
* GaussianConditional, and the values on which that GaussianISAM2 is
|
||||
* templated.
|
||||
*
|
||||
* @tparam VALUES The Values or TupleValues\Emph{N} that contains the
|
||||
* variables.
|
||||
* @tparam GRAPH The NonlinearFactorGraph structure to store factors. Defaults to standard NonlinearFactorGraph<VALUES>
|
||||
*/
|
||||
template <class GRAPH = NonlinearFactorGraph>
|
||||
class GaussianISAM2 : public ISAM2<GaussianConditional, GRAPH> {
|
||||
typedef ISAM2<GaussianConditional, GRAPH> Base;
|
||||
public:
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
GaussianISAM2(const ISAM2Params& params) : ISAM2<GaussianConditional, GRAPH>(params) {}
|
||||
|
||||
/** Create an empty ISAM2 instance using the default set of parameters (see ISAM2Params) */
|
||||
GaussianISAM2() : ISAM2<GaussianConditional, GRAPH>() {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
void cloneTo(boost::shared_ptr<GaussianISAM2>& newGaussianISAM2) const {
|
||||
boost::shared_ptr<Base> isam2 = boost::static_pointer_cast<Base>(newGaussianISAM2);
|
||||
Base::cloneTo(isam2);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
};
|
||||
|
||||
/** Get the linear delta for the ISAM2 object, unpermuted the delta returned by ISAM2::getDelta() */
|
||||
template<class GRAPH>
|
||||
VectorValues optimize(const ISAM2<GaussianConditional, GRAPH>& isam) {
|
||||
VectorValues delta = *allocateVectorValues(isam);
|
||||
internal::optimizeInPlace(isam.root(), delta);
|
||||
return delta;
|
||||
}
|
||||
|
||||
/// Optimize the BayesTree, starting from the root.
|
||||
/// @param replaced Needs to contain
|
||||
/// all variables that are contained in the top of the Bayes tree that has been
|
||||
/// redone.
|
||||
/// @param delta The current solution, an offset from the linearization
|
||||
/// point.
|
||||
/// @param threshold The maximum change against the PREVIOUS delta for
|
||||
/// non-replaced variables that can be ignored, ie. the old delta entry is kept
|
||||
/// and recursive backsubstitution might eventually stop if none of the changed
|
||||
/// variables are contained in the subtree.
|
||||
/// @return The number of variables that were solved for
|
||||
template<class CLIQUE>
|
||||
int optimizeWildfire(const boost::shared_ptr<CLIQUE>& root,
|
||||
double threshold, const std::vector<bool>& replaced, Permuted<VectorValues>& delta);
|
||||
|
||||
/**
|
||||
* Optimize along the gradient direction, with a closed-form computation to
|
||||
* perform the line search. The gradient is computed about \f$ \delta x=0 \f$.
|
||||
*
|
||||
* This function returns \f$ \delta x \f$ that minimizes a reparametrized
|
||||
* problem. The error function of a GaussianBayesNet is
|
||||
*
|
||||
* \f[ f(\delta x) = \frac{1}{2} |R \delta x - d|^2 = \frac{1}{2}d^T d - d^T R \delta x + \frac{1}{2} \delta x^T R^T R \delta x \f]
|
||||
*
|
||||
* with gradient and Hessian
|
||||
*
|
||||
* \f[ g(\delta x) = R^T(R\delta x - d), \qquad G(\delta x) = R^T R. \f]
|
||||
*
|
||||
* This function performs the line search in the direction of the
|
||||
* gradient evaluated at \f$ g = g(\delta x = 0) \f$ with step size
|
||||
* \f$ \alpha \f$ that minimizes \f$ f(\delta x = \alpha g) \f$:
|
||||
*
|
||||
* \f[ f(\alpha) = \frac{1}{2} d^T d + g^T \delta x + \frac{1}{2} \alpha^2 g^T G g \f]
|
||||
*
|
||||
* Optimizing by setting the derivative to zero yields
|
||||
* \f$ \hat \alpha = (-g^T g) / (g^T G g) \f$. For efficiency, this function
|
||||
* evaluates the denominator without computing the Hessian \f$ G \f$, returning
|
||||
*
|
||||
* \f[ \delta x = \hat\alpha g = \frac{-g^T g}{(R g)^T(R g)} \f]
|
||||
*/
|
||||
template<class GRAPH>
|
||||
VectorValues optimizeGradientSearch(const ISAM2<GaussianConditional, GRAPH>& isam);
|
||||
|
||||
/** In-place version of optimizeGradientSearch requiring pre-allocated VectorValues \c x */
|
||||
template<class GRAPH>
|
||||
void optimizeGradientSearchInPlace(const ISAM2<GaussianConditional, GRAPH>& isam, VectorValues& grad);
|
||||
|
||||
/// calculate the number of non-zero entries for the tree starting at clique (use root for complete matrix)
|
||||
template<class CLIQUE>
|
||||
int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique);
|
||||
|
||||
/**
|
||||
* Compute the gradient of the energy function,
|
||||
* \f$ \nabla_{x=x_0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$,
|
||||
* centered around \f$ x = x_0 \f$.
|
||||
* The gradient is \f$ R^T(Rx-d) \f$.
|
||||
* This specialized version is used with ISAM2, where each clique stores its
|
||||
* gradient contribution.
|
||||
* @param bayesTree The Gaussian Bayes Tree $(R,d)$
|
||||
* @param x0 The center about which to compute the gradient
|
||||
* @return The gradient as a VectorValues
|
||||
*/
|
||||
VectorValues gradient(const BayesTree<GaussianConditional, ISAM2Clique<GaussianConditional> >& bayesTree, const VectorValues& x0);
|
||||
|
||||
/**
|
||||
* Compute the gradient of the energy function,
|
||||
* \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$,
|
||||
* centered around zero.
|
||||
* The gradient about zero is \f$ -R^T d \f$. See also gradient(const GaussianBayesNet&, const VectorValues&).
|
||||
* This specialized version is used with ISAM2, where each clique stores its
|
||||
* gradient contribution.
|
||||
* @param bayesTree The Gaussian Bayes Tree $(R,d)$
|
||||
* @param [output] g A VectorValues to store the gradient, which must be preallocated, see allocateVectorValues
|
||||
* @return The gradient as a VectorValues
|
||||
*/
|
||||
void gradientAtZero(const BayesTree<GaussianConditional, ISAM2Clique<GaussianConditional> >& bayesTree, VectorValues& g);
|
||||
|
||||
}/// namespace gtsam
|
||||
|
||||
#include <gtsam/nonlinear/GaussianISAM2-inl.h>
|
|
@ -10,128 +10,21 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file ISAM2-impl-inl.h
|
||||
* @file ISAM2-impl.cpp
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
*/
|
||||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/ISAM2-impl.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
struct ISAM2<CONDITIONAL, GRAPH>::Impl {
|
||||
|
||||
typedef ISAM2<CONDITIONAL, GRAPH> ISAM2Type;
|
||||
|
||||
struct PartialSolveResult {
|
||||
typename ISAM2Type::sharedClique bayesTree;
|
||||
Permutation fullReordering;
|
||||
Permutation fullReorderingInverse;
|
||||
};
|
||||
|
||||
struct ReorderingMode {
|
||||
size_t nFullSystemVars;
|
||||
enum { /*AS_ADDED,*/ COLAMD } algorithm;
|
||||
enum { NO_CONSTRAINT, CONSTRAIN_LAST } constrain;
|
||||
boost::optional<const FastSet<Index>&> constrainedKeys;
|
||||
};
|
||||
|
||||
/**
|
||||
* Add new variables to the ISAM2 system.
|
||||
* @param newTheta Initial values for new variables
|
||||
* @param theta Current solution to be augmented with new initialization
|
||||
* @param delta Current linear delta to be augmented with zeros
|
||||
* @param ordering Current ordering to be augmented with new variables
|
||||
* @param nodes Current BayesTree::Nodes index to be augmented with slots for new variables
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
*/
|
||||
static void AddVariables(const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, vector<bool>& replacedKeys,
|
||||
Ordering& ordering, typename Base::Nodes& nodes, const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Extract the set of variable indices from a NonlinearFactorGraph. For each Symbol
|
||||
* in each NonlinearFactor, obtains the index by calling ordering[symbol].
|
||||
* @param ordering The current ordering from which to obtain the variable indices
|
||||
* @param factors The factors from which to extract the variables
|
||||
* @return The set of variables indices from the factors
|
||||
*/
|
||||
static FastSet<Index> IndicesFromFactors(const Ordering& ordering, const GRAPH& factors);
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to relinearizeThreshold.
|
||||
* Any variables in the VectorValues delta whose vector magnitude is greater than
|
||||
* or equal to relinearizeThreshold are returned.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater than or
|
||||
* equal to relinearizeThreshold
|
||||
*/
|
||||
static FastSet<Index> CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold, const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Recursively search this clique and its children for marked keys appearing
|
||||
* in the separator, and add the *frontal* keys of any cliques whose
|
||||
* separator contains any marked keys to the set \c keys. The purpose of
|
||||
* this is to discover the cliques that need to be redone due to information
|
||||
* propagating to them from cliques that directly contain factors being
|
||||
* relinearized.
|
||||
*
|
||||
* The original comment says this finds all variables directly connected to
|
||||
* the marked ones by measurements. Is this true, because it seems like this
|
||||
* would also pull in variables indirectly connected through other frontal or
|
||||
* separator variables?
|
||||
*
|
||||
* Alternatively could we trace up towards the root for each variable here?
|
||||
*/
|
||||
static void FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask);
|
||||
|
||||
/**
|
||||
* Apply expmap to the given values, but only for indices appearing in
|
||||
* \c markedRelinMask. Values are expmapped in-place.
|
||||
* \param [in][out] values The value to expmap in-place
|
||||
* \param delta The linear delta with which to expmap
|
||||
* \param ordering The ordering
|
||||
* \param mask Mask on linear indices, only \c true entries are expmapped
|
||||
* \param invalidateIfDebug If this is true, *and* NDEBUG is not defined,
|
||||
* expmapped deltas will be set to an invalid value (infinity) to catch bugs
|
||||
* where we might expmap something twice, or expmap it but then not
|
||||
* recalculate its delta.
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
*/
|
||||
static void ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
|
||||
const Ordering& ordering, const std::vector<bool>& mask,
|
||||
boost::optional<Permuted<VectorValues>&> invalidateIfDebug = boost::optional<Permuted<VectorValues>&>(),
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Reorder and eliminate factors. These factors form a subset of the full
|
||||
* problem, so along with the BayesTree we get a partial reordering of the
|
||||
* problem that needs to be applied to the other data in ISAM2, which is the
|
||||
* VariableIndex, the delta, the ordering, and the orphans (including cached
|
||||
* factors).
|
||||
* \param factors The factors to eliminate, representing part of the full
|
||||
* problem. This is permuted during use and so is cleared when this function
|
||||
* returns in order to invalidate it.
|
||||
* \param keys The set of indices used in \c factors.
|
||||
* \return The eliminated BayesTree and the permutation to be applied to the
|
||||
* rest of the ISAM2 data.
|
||||
*/
|
||||
static PartialSolveResult PartialSolve(GaussianFactorGraph& factors, const FastSet<Index>& keys,
|
||||
const ReorderingMode& reorderingMode);
|
||||
|
||||
static size_t UpdateDelta(const boost::shared_ptr<ISAM2Clique<CONDITIONAL> >& root, std::vector<bool>& replacedKeys, Permuted<VectorValues>& delta, double wildfireThreshold);
|
||||
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,GRAPH>::Impl::AddVariables(
|
||||
const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, vector<bool>& replacedKeys,
|
||||
Ordering& ordering,typename Base::Nodes& nodes, const KeyFormatter& keyFormatter) {
|
||||
void ISAM2::Impl::AddVariables(
|
||||
const Values& newTheta, Values& theta, Permuted<VectorValues>& delta,
|
||||
Permuted<VectorValues>& deltaNewton, Permuted<VectorValues>& deltaGradSearch, vector<bool>& replacedKeys,
|
||||
Ordering& ordering, Base::Nodes& nodes, const KeyFormatter& keyFormatter) {
|
||||
const bool debug = ISDEBUG("ISAM2 AddVariables");
|
||||
|
||||
theta.insert(newTheta);
|
||||
|
@ -145,10 +38,18 @@ void ISAM2<CONDITIONAL,GRAPH>::Impl::AddVariables(
|
|||
delta.container().append(dims);
|
||||
delta.container().vector().segment(originalDim, newDim).operator=(Vector::Zero(newDim));
|
||||
delta.permutation().resize(originalnVars + newTheta.size());
|
||||
deltaNewton.container().append(dims);
|
||||
deltaNewton.container().vector().segment(originalDim, newDim).operator=(Vector::Zero(newDim));
|
||||
deltaNewton.permutation().resize(originalnVars + newTheta.size());
|
||||
deltaGradSearch.container().append(dims);
|
||||
deltaGradSearch.container().vector().segment(originalDim, newDim).operator=(Vector::Zero(newDim));
|
||||
deltaGradSearch.permutation().resize(originalnVars + newTheta.size());
|
||||
{
|
||||
Index nextVar = originalnVars;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
|
||||
delta.permutation()[nextVar] = nextVar;
|
||||
deltaNewton.permutation()[nextVar] = nextVar;
|
||||
deltaGradSearch.permutation()[nextVar] = nextVar;
|
||||
ordering.insert(key_value.key, nextVar);
|
||||
if(debug) cout << "Adding variable " << keyFormatter(key_value.key) << " with order " << nextVar << endl;
|
||||
++ nextVar;
|
||||
|
@ -163,10 +64,9 @@ void ISAM2<CONDITIONAL,GRAPH>::Impl::AddVariables(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::IndicesFromFactors(const Ordering& ordering, const GRAPH& factors) {
|
||||
FastSet<Index> ISAM2::Impl::IndicesFromFactors(const Ordering& ordering, const NonlinearFactorGraph& factors) {
|
||||
FastSet<Index> indices;
|
||||
BOOST_FOREACH(const typename NonlinearFactor::shared_ptr& factor, factors) {
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors) {
|
||||
BOOST_FOREACH(Key key, factor->keys()) {
|
||||
indices.insert(ordering[key]);
|
||||
}
|
||||
|
@ -175,8 +75,7 @@ FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::IndicesFromFactors(const Ordering
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
FastSet<Index> ISAM2::Impl::CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold, const KeyFormatter& keyFormatter) {
|
||||
FastSet<Index> relinKeys;
|
||||
|
||||
|
@ -204,8 +103,7 @@ FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::CheckRelinearization(const Permut
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask) {
|
||||
void ISAM2::Impl::FindAll(ISAM2Clique::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask) {
|
||||
static const bool debug = false;
|
||||
// does the separator contain any of the variables?
|
||||
bool found = false;
|
||||
|
@ -219,14 +117,13 @@ void ISAM2<CONDITIONAL,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITIONAL>::
|
|||
if(debug) clique->print("Key(s) marked in clique ");
|
||||
if(debug) cout << "so marking key " << (*clique)->keys().front() << endl;
|
||||
}
|
||||
BOOST_FOREACH(const typename ISAM2Clique<CONDITIONAL>::shared_ptr& child, clique->children_) {
|
||||
BOOST_FOREACH(const ISAM2Clique::shared_ptr& child, clique->children_) {
|
||||
FindAll(child, keys, markedMask);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL, GRAPH>::Impl::ExpmapMasked(Values& values, const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
void ISAM2::Impl::ExpmapMasked(Values& values, const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
const vector<bool>& mask, boost::optional<Permuted<VectorValues>&> invalidateIfDebug, const KeyFormatter& keyFormatter) {
|
||||
// If debugging, invalidate if requested, otherwise do not invalidate.
|
||||
// Invalidating means setting expmapped entries to Inf, to trigger assertions
|
||||
|
@ -262,9 +159,8 @@ void ISAM2<CONDITIONAL, GRAPH>::Impl::ExpmapMasked(Values& values, const Permute
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
typename ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolveResult
|
||||
ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
|
||||
ISAM2::Impl::PartialSolveResult
|
||||
ISAM2::Impl::PartialSolve(GaussianFactorGraph& factors,
|
||||
const FastSet<Index>& keys, const ReorderingMode& reorderingMode) {
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
@ -340,14 +236,8 @@ ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
|
|||
|
||||
// eliminate into a Bayes net
|
||||
tic(7,"eliminate");
|
||||
JunctionTree<GaussianFactorGraph, typename ISAM2Type::Clique> jt(factors, affectedFactorsIndex);
|
||||
JunctionTree<GaussianFactorGraph, ISAM2::Clique> jt(factors, affectedFactorsIndex);
|
||||
result.bayesTree = jt.eliminate(EliminatePreferLDL);
|
||||
if(debug && result.bayesTree) {
|
||||
if(boost::dynamic_pointer_cast<ISAM2Clique<CONDITIONAL> >(result.bayesTree))
|
||||
cout << "Is an ISAM2 clique" << endl;
|
||||
cout << "Re-eliminated BT:\n";
|
||||
result.bayesTree->printTree("");
|
||||
}
|
||||
toc(7,"eliminate");
|
||||
|
||||
tic(8,"permute eliminated");
|
||||
|
@ -363,19 +253,18 @@ ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
|
|||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
inline static void optimizeInPlace(const boost::shared_ptr<ISAM2Clique<GaussianConditional> >& clique, VectorValues& result) {
|
||||
inline static void optimizeInPlace(const boost::shared_ptr<ISAM2Clique>& clique, VectorValues& result) {
|
||||
// parents are assumed to already be solved and available in result
|
||||
clique->conditional()->solveInPlace(result);
|
||||
|
||||
// starting from the root, call optimize on each conditional
|
||||
BOOST_FOREACH(const boost::shared_ptr<ISAM2Clique<GaussianConditional> >& child, clique->children_)
|
||||
BOOST_FOREACH(const boost::shared_ptr<ISAM2Clique>& child, clique->children_)
|
||||
optimizeInPlace(child, result);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
size_t ISAM2<CONDITIONAL,GRAPH>::Impl::UpdateDelta(const boost::shared_ptr<ISAM2Clique<CONDITIONAL> >& root, std::vector<bool>& replacedKeys, Permuted<VectorValues>& delta, double wildfireThreshold) {
|
||||
size_t ISAM2::Impl::UpdateDelta(const boost::shared_ptr<ISAM2Clique>& root, std::vector<bool>& replacedKeys, Permuted<VectorValues>& delta, double wildfireThreshold) {
|
||||
|
||||
size_t lastBacksubVariableCount;
|
||||
|
||||
|
@ -412,4 +301,76 @@ size_t ISAM2<CONDITIONAL,GRAPH>::Impl::UpdateDelta(const boost::shared_ptr<ISAM2
|
|||
return lastBacksubVariableCount;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace internal {
|
||||
void updateDoglegDeltas(const boost::shared_ptr<ISAM2Clique>& clique, std::vector<bool>& replacedKeys,
|
||||
const VectorValues& grad, Permuted<VectorValues>& deltaNewton, Permuted<VectorValues>& RgProd, size_t& varsUpdated) {
|
||||
|
||||
// Check if any frontal or separator keys were recalculated, if so, we need
|
||||
// update deltas and recurse to children, but if not, we do not need to
|
||||
// recurse further because of the running separator property.
|
||||
bool anyReplaced = false;
|
||||
BOOST_FOREACH(Index j, *clique->conditional()) {
|
||||
if(replacedKeys[j]) {
|
||||
anyReplaced = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(anyReplaced) {
|
||||
// Update the current variable
|
||||
// Get VectorValues slice corresponding to current variables
|
||||
Vector gR = internal::extractVectorValuesSlices(grad, (*clique)->beginFrontals(), (*clique)->endFrontals());
|
||||
Vector gS = internal::extractVectorValuesSlices(grad, (*clique)->beginParents(), (*clique)->endParents());
|
||||
|
||||
// Compute R*g and S*g for this clique
|
||||
Vector RSgProd = ((*clique)->get_R() * (*clique)->permutation().transpose()) * gR + (*clique)->get_S() * gS;
|
||||
|
||||
// Write into RgProd vector
|
||||
internal::writeVectorValuesSlices(RSgProd, RgProd, (*clique)->beginFrontals(), (*clique)->endFrontals());
|
||||
|
||||
// Now solve the part of the Newton's method point for this clique (back-substitution)
|
||||
//(*clique)->solveInPlace(deltaNewton);
|
||||
|
||||
varsUpdated += (*clique)->nrFrontals();
|
||||
|
||||
// Recurse to children
|
||||
BOOST_FOREACH(const ISAM2Clique::shared_ptr& child, clique->children()) {
|
||||
updateDoglegDeltas(child, replacedKeys, grad, deltaNewton, RgProd, varsUpdated); }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
size_t ISAM2::Impl::UpdateDoglegDeltas(const ISAM2& isam, double wildfireThreshold, std::vector<bool>& replacedKeys,
|
||||
Permuted<VectorValues>& deltaNewton, Permuted<VectorValues>& RgProd) {
|
||||
|
||||
// Get gradient
|
||||
VectorValues grad = *allocateVectorValues(isam);
|
||||
gradientAtZero(isam, grad);
|
||||
|
||||
// Update variables
|
||||
size_t varsUpdated = 0;
|
||||
internal::updateDoglegDeltas(isam.root(), replacedKeys, grad, deltaNewton, RgProd, varsUpdated);
|
||||
optimizeWildfire(isam.root(), wildfireThreshold, replacedKeys, deltaNewton);
|
||||
|
||||
#if 0
|
||||
VectorValues expected = *allocateVectorValues(isam);
|
||||
internal::optimizeInPlace<ISAM2>(isam.root(), expected);
|
||||
for(size_t j = 0; j<expected.size(); ++j)
|
||||
assert(equal_with_abs_tol(expected[j], deltaNewton[j], 1e-2));
|
||||
|
||||
FactorGraph<JacobianFactor> Rd_jfg(isam);
|
||||
Errors Rg = Rd_jfg * grad;
|
||||
double RgMagExpected = dot(Rg, Rg);
|
||||
double RgMagActual = RgProd.container().vector().squaredNorm();
|
||||
cout << fabs(RgMagExpected - RgMagActual) << endl;
|
||||
assert(fabs(RgMagExpected - RgMagActual) < (1e-8 * RgMagActual + 1e-4));
|
||||
#endif
|
||||
|
||||
replacedKeys.assign(replacedKeys.size(), false);
|
||||
|
||||
return varsUpdated;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,134 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file ISAM2-impl.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
struct ISAM2::Impl {
|
||||
|
||||
struct PartialSolveResult {
|
||||
ISAM2::sharedClique bayesTree;
|
||||
Permutation fullReordering;
|
||||
Permutation fullReorderingInverse;
|
||||
};
|
||||
|
||||
struct ReorderingMode {
|
||||
size_t nFullSystemVars;
|
||||
enum { /*AS_ADDED,*/ COLAMD } algorithm;
|
||||
enum { NO_CONSTRAINT, CONSTRAIN_LAST } constrain;
|
||||
boost::optional<const FastSet<Index>&> constrainedKeys;
|
||||
};
|
||||
|
||||
/**
|
||||
* Add new variables to the ISAM2 system.
|
||||
* @param newTheta Initial values for new variables
|
||||
* @param theta Current solution to be augmented with new initialization
|
||||
* @param delta Current linear delta to be augmented with zeros
|
||||
* @param ordering Current ordering to be augmented with new variables
|
||||
* @param nodes Current BayesTree::Nodes index to be augmented with slots for new variables
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
*/
|
||||
static void AddVariables(const Values& newTheta, Values& theta, Permuted<VectorValues>& delta,
|
||||
Permuted<VectorValues>& deltaNewton, Permuted<VectorValues>& deltaGradSearch, vector<bool>& replacedKeys,
|
||||
Ordering& ordering, Base::Nodes& nodes, const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Extract the set of variable indices from a NonlinearFactorGraph. For each Symbol
|
||||
* in each NonlinearFactor, obtains the index by calling ordering[symbol].
|
||||
* @param ordering The current ordering from which to obtain the variable indices
|
||||
* @param factors The factors from which to extract the variables
|
||||
* @return The set of variables indices from the factors
|
||||
*/
|
||||
static FastSet<Index> IndicesFromFactors(const Ordering& ordering, const NonlinearFactorGraph& factors);
|
||||
|
||||
/**
|
||||
* Find the set of variables to be relinearized according to relinearizeThreshold.
|
||||
* Any variables in the VectorValues delta whose vector magnitude is greater than
|
||||
* or equal to relinearizeThreshold are returned.
|
||||
* @param delta The linear delta to check against the threshold
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
* @return The set of variable indices in delta whose magnitude is greater than or
|
||||
* equal to relinearizeThreshold
|
||||
*/
|
||||
static FastSet<Index> CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering,
|
||||
const ISAM2Params::RelinearizationThreshold& relinearizeThreshold, const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Recursively search this clique and its children for marked keys appearing
|
||||
* in the separator, and add the *frontal* keys of any cliques whose
|
||||
* separator contains any marked keys to the set \c keys. The purpose of
|
||||
* this is to discover the cliques that need to be redone due to information
|
||||
* propagating to them from cliques that directly contain factors being
|
||||
* relinearized.
|
||||
*
|
||||
* The original comment says this finds all variables directly connected to
|
||||
* the marked ones by measurements. Is this true, because it seems like this
|
||||
* would also pull in variables indirectly connected through other frontal or
|
||||
* separator variables?
|
||||
*
|
||||
* Alternatively could we trace up towards the root for each variable here?
|
||||
*/
|
||||
static void FindAll(ISAM2Clique::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask);
|
||||
|
||||
/**
|
||||
* Apply expmap to the given values, but only for indices appearing in
|
||||
* \c markedRelinMask. Values are expmapped in-place.
|
||||
* \param [in][out] values The value to expmap in-place
|
||||
* \param delta The linear delta with which to expmap
|
||||
* \param ordering The ordering
|
||||
* \param mask Mask on linear indices, only \c true entries are expmapped
|
||||
* \param invalidateIfDebug If this is true, *and* NDEBUG is not defined,
|
||||
* expmapped deltas will be set to an invalid value (infinity) to catch bugs
|
||||
* where we might expmap something twice, or expmap it but then not
|
||||
* recalculate its delta.
|
||||
* @param keyFormatter Formatter for printing nonlinear keys during debugging
|
||||
*/
|
||||
static void ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
|
||||
const Ordering& ordering, const std::vector<bool>& mask,
|
||||
boost::optional<Permuted<VectorValues>&> invalidateIfDebug = boost::optional<Permuted<VectorValues>&>(),
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/**
|
||||
* Reorder and eliminate factors. These factors form a subset of the full
|
||||
* problem, so along with the BayesTree we get a partial reordering of the
|
||||
* problem that needs to be applied to the other data in ISAM2, which is the
|
||||
* VariableIndex, the delta, the ordering, and the orphans (including cached
|
||||
* factors).
|
||||
* \param factors The factors to eliminate, representing part of the full
|
||||
* problem. This is permuted during use and so is cleared when this function
|
||||
* returns in order to invalidate it.
|
||||
* \param keys The set of indices used in \c factors.
|
||||
* \return The eliminated BayesTree and the permutation to be applied to the
|
||||
* rest of the ISAM2 data.
|
||||
*/
|
||||
static PartialSolveResult PartialSolve(GaussianFactorGraph& factors, const FastSet<Index>& keys,
|
||||
const ReorderingMode& reorderingMode);
|
||||
|
||||
static size_t UpdateDelta(const boost::shared_ptr<ISAM2Clique>& root, std::vector<bool>& replacedKeys, Permuted<VectorValues>& delta, double wildfireThreshold);
|
||||
|
||||
static size_t UpdateDoglegDeltas(const ISAM2& isam, double wildfireThreshold, std::vector<bool>& replacedKeys,
|
||||
Permuted<VectorValues>& deltaNewton, Permuted<VectorValues>& RgProd);
|
||||
|
||||
};
|
||||
|
||||
}
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
@ -10,624 +10,144 @@
|
|||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file ISAM2-inl.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
* @file ISAM2-inl.h
|
||||
* @brief
|
||||
* @author Richard Roberts
|
||||
* @date Mar 16, 2012
|
||||
*/
|
||||
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
using namespace boost::assign;
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
#include <gtsam/inference/BayesTree-inl.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2-impl-inl.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
static const bool disableReordering = false;
|
||||
static const double batchThreshold = 0.65;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2<CONDITIONAL, GRAPH>::ISAM2(const ISAM2Params& params):
|
||||
delta_(Permutation(), deltaUnpermuted_), deltaUptodate_(true), params_(params) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2<CONDITIONAL, GRAPH>::ISAM2():
|
||||
delta_(Permutation(), deltaUnpermuted_), deltaUptodate_(true) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FastList<size_t> ISAM2<CONDITIONAL, GRAPH>::getAffectedFactors(const FastList<Index>& keys) const {
|
||||
static const bool debug = false;
|
||||
if(debug) cout << "Getting affected factors for ";
|
||||
if(debug) { BOOST_FOREACH(const Index key, keys) { cout << key << " "; } }
|
||||
if(debug) cout << endl;
|
||||
|
||||
FactorGraph<NonlinearFactor > allAffected;
|
||||
FastList<size_t> indices;
|
||||
BOOST_FOREACH(const Index key, keys) {
|
||||
// const list<size_t> l = nonlinearFactors_.factors(key);
|
||||
// indices.insert(indices.begin(), l.begin(), l.end());
|
||||
const VariableIndex::Factors& factors(variableIndex_[key]);
|
||||
BOOST_FOREACH(size_t factor, factors) {
|
||||
if(debug) cout << "Variable " << key << " affects factor " << factor << endl;
|
||||
indices.push_back(factor);
|
||||
}
|
||||
}
|
||||
indices.sort();
|
||||
indices.unique();
|
||||
if(debug) cout << "Affected factors are: ";
|
||||
if(debug) { BOOST_FOREACH(const size_t index, indices) { cout << index << " "; } }
|
||||
if(debug) cout << endl;
|
||||
return indices;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FactorGraph<GaussianFactor>::shared_ptr
|
||||
ISAM2<CONDITIONAL, GRAPH>::relinearizeAffectedFactors(const FastList<Index>& affectedKeys) const {
|
||||
|
||||
tic(1,"getAffectedFactors");
|
||||
FastList<size_t> candidates = getAffectedFactors(affectedKeys);
|
||||
toc(1,"getAffectedFactors");
|
||||
|
||||
GRAPH nonlinearAffectedFactors;
|
||||
|
||||
tic(2,"affectedKeysSet");
|
||||
// for fast lookup below
|
||||
FastSet<Index> affectedKeysSet;
|
||||
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
|
||||
toc(2,"affectedKeysSet");
|
||||
|
||||
tic(3,"check candidates");
|
||||
BOOST_FOREACH(size_t idx, candidates) {
|
||||
bool inside = true;
|
||||
BOOST_FOREACH(Key key, nonlinearFactors_[idx]->keys()) {
|
||||
Index var = ordering_[key];
|
||||
if (affectedKeysSet.find(var) == affectedKeysSet.end()) {
|
||||
inside = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (inside)
|
||||
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
|
||||
}
|
||||
toc(3,"check candidates");
|
||||
|
||||
tic(4,"linearize");
|
||||
FactorGraph<GaussianFactor>::shared_ptr linearized(nonlinearAffectedFactors.linearize(theta_, ordering_));
|
||||
toc(4,"linearize");
|
||||
return linearized;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// find intermediate (linearized) factors from cache that are passed into the affected area
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
FactorGraph<typename ISAM2<CONDITIONAL, GRAPH>::CacheFactor>
|
||||
ISAM2<CONDITIONAL, GRAPH>::getCachedBoundaryFactors(Cliques& orphans) {
|
||||
|
||||
static const bool debug = false;
|
||||
|
||||
FactorGraph<CacheFactor> cachedBoundary;
|
||||
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
// find the last variable that was eliminated
|
||||
Index key = (*orphan)->frontals().back();
|
||||
#ifndef NDEBUG
|
||||
// typename BayesNet<CONDITIONAL>::const_iterator it = orphan->end();
|
||||
// const CONDITIONAL& lastCONDITIONAL = **(--it);
|
||||
// typename CONDITIONAL::const_iterator keyit = lastCONDITIONAL.endParents();
|
||||
// const Index lastKey = *(--keyit);
|
||||
// assert(key == lastKey);
|
||||
#endif
|
||||
// retrieve the cached factor and add to boundary
|
||||
cachedBoundary.push_back(boost::dynamic_pointer_cast<CacheFactor>(orphan->cachedFactor()));
|
||||
if(debug) { cout << "Cached factor for variable " << key; orphan->cachedFactor()->print(""); }
|
||||
}
|
||||
|
||||
return cachedBoundary;
|
||||
}
|
||||
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
boost::shared_ptr<FastSet<Index> > ISAM2<CONDITIONAL, GRAPH>::recalculate(
|
||||
const FastSet<Index>& markedKeys, const FastVector<Index>& newKeys, const FactorGraph<GaussianFactor>::shared_ptr newFactors,
|
||||
const boost::optional<FastSet<Index> >& constrainKeys, ISAM2Result& result) {
|
||||
|
||||
// TODO: new factors are linearized twice, the newFactors passed in are not used.
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
||||
// Input: BayesTree(this), newFactors
|
||||
|
||||
//#define PRINT_STATS // figures for paper, disable for timing
|
||||
#ifdef PRINT_STATS
|
||||
static int counter = 0;
|
||||
int maxClique = 0;
|
||||
double avgClique = 0;
|
||||
int numCliques = 0;
|
||||
int nnzR = 0;
|
||||
if (counter>0) { // cannot call on empty tree
|
||||
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
|
||||
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
|
||||
maxClique = cstats.maxCONDITIONALSize;
|
||||
avgClique = cstats.avgCONDITIONALSize;
|
||||
numCliques = cdata.conditionalSizes.size();
|
||||
nnzR = calculate_nnz(this->root());
|
||||
}
|
||||
counter++;
|
||||
#endif
|
||||
|
||||
if(debug) {
|
||||
cout << "markedKeys: ";
|
||||
BOOST_FOREACH(const Index key, markedKeys) { cout << key << " "; }
|
||||
cout << endl;
|
||||
cout << "newKeys: ";
|
||||
BOOST_FOREACH(const Index key, newKeys) { cout << key << " "; }
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
// 1. Remove top of Bayes tree and convert to a factor graph:
|
||||
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
|
||||
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
|
||||
tic(1, "removetop");
|
||||
Cliques orphans;
|
||||
BayesNet<GaussianConditional> affectedBayesNet;
|
||||
this->removeTop(markedKeys, affectedBayesNet, orphans);
|
||||
toc(1, "removetop");
|
||||
|
||||
if(debug) affectedBayesNet.print("Removed top: ");
|
||||
if(debug) orphans.print("Orphans: ");
|
||||
|
||||
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
|
||||
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
|
||||
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
|
||||
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
|
||||
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
|
||||
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
|
||||
// in the cached_ values which again will be wrong]
|
||||
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
|
||||
|
||||
// BEGIN OF COPIED CODE
|
||||
|
||||
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
||||
tic(2,"affectedKeys");
|
||||
FastList<Index> affectedKeys = affectedBayesNet.ordering();
|
||||
toc(2,"affectedKeys");
|
||||
|
||||
if(affectedKeys.size() >= theta_.size() * batchThreshold) {
|
||||
|
||||
tic(3,"batch");
|
||||
|
||||
tic(0,"add keys");
|
||||
boost::shared_ptr<FastSet<Index> > affectedKeysSet(new FastSet<Index>());
|
||||
BOOST_FOREACH(const Ordering::value_type& key_index, ordering_) { affectedKeysSet->insert(key_index.second); }
|
||||
toc(0,"add keys");
|
||||
|
||||
tic(1,"reorder");
|
||||
tic(1,"CCOLAMD");
|
||||
// Do a batch step - reorder and relinearize all variables
|
||||
vector<int> cmember(theta_.size(), 0);
|
||||
FastSet<Index> constrainedKeysSet;
|
||||
if(constrainKeys)
|
||||
constrainedKeysSet = *constrainKeys;
|
||||
else
|
||||
constrainedKeysSet.insert(newKeys.begin(), newKeys.end());
|
||||
if(theta_.size() > constrainedKeysSet.size()) {
|
||||
BOOST_FOREACH(Index var, constrainedKeysSet) { cmember[var] = 1; }
|
||||
}
|
||||
Permutation::shared_ptr colamd(inference::PermutationCOLAMD_(variableIndex_, cmember));
|
||||
Permutation::shared_ptr colamdInverse(colamd->inverse());
|
||||
toc(1,"CCOLAMD");
|
||||
|
||||
// Reorder
|
||||
tic(2,"permute global variable index");
|
||||
variableIndex_.permute(*colamd);
|
||||
toc(2,"permute global variable index");
|
||||
tic(3,"permute delta");
|
||||
delta_.permute(*colamd);
|
||||
toc(3,"permute delta");
|
||||
tic(4,"permute ordering");
|
||||
ordering_.permuteWithInverse(*colamdInverse);
|
||||
toc(4,"permute ordering");
|
||||
toc(1,"reorder");
|
||||
|
||||
tic(2,"linearize");
|
||||
GaussianFactorGraph factors(*nonlinearFactors_.linearize(theta_, ordering_));
|
||||
toc(2,"linearize");
|
||||
|
||||
tic(5,"eliminate");
|
||||
JunctionTree<GaussianFactorGraph, typename Base::Clique> jt(factors, variableIndex_);
|
||||
sharedClique newRoot = jt.eliminate(EliminatePreferLDL);
|
||||
if(debug) newRoot->print("Eliminated: ");
|
||||
toc(5,"eliminate");
|
||||
|
||||
tic(6,"insert");
|
||||
this->clear();
|
||||
this->insert(newRoot);
|
||||
toc(6,"insert");
|
||||
|
||||
toc(3,"batch");
|
||||
|
||||
result.variablesReeliminated = affectedKeysSet->size();
|
||||
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeysSet->size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
|
||||
return affectedKeysSet;
|
||||
|
||||
} else {
|
||||
|
||||
tic(4,"incremental");
|
||||
|
||||
// 2. Add the new factors \Factors' into the resulting factor graph
|
||||
FastList<Index> affectedAndNewKeys;
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(), affectedKeys.end());
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), newKeys.begin(), newKeys.end());
|
||||
tic(1,"relinearizeAffected");
|
||||
GaussianFactorGraph factors(*relinearizeAffectedFactors(affectedAndNewKeys));
|
||||
if(debug) factors.print("Relinearized factors: ");
|
||||
toc(1,"relinearizeAffected");
|
||||
|
||||
if(debug) { cout << "Affected keys: "; BOOST_FOREACH(const Index key, affectedKeys) { cout << key << " "; } cout << endl; }
|
||||
|
||||
result.variablesReeliminated = affectedAndNewKeys.size();
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeys.size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
|
||||
#ifdef PRINT_STATS
|
||||
// output for generating figures
|
||||
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
|
||||
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
|
||||
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
|
||||
#endif
|
||||
|
||||
tic(2,"cached");
|
||||
// add the cached intermediate results from the boundary of the orphans ...
|
||||
FactorGraph<CacheFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||
if(debug) cachedBoundary.print("Boundary factors: ");
|
||||
factors.reserve(factors.size() + cachedBoundary.size());
|
||||
// Copy so that we can later permute factors
|
||||
BOOST_FOREACH(const CacheFactor::shared_ptr& cached, cachedBoundary) {
|
||||
factors.push_back(GaussianFactor::shared_ptr(new CacheFactor(*cached)));
|
||||
}
|
||||
toc(2,"cached");
|
||||
|
||||
// END OF COPIED CODE
|
||||
|
||||
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
|
||||
|
||||
tic(4,"reorder and eliminate");
|
||||
|
||||
tic(1,"list to set");
|
||||
// create a partial reordering for the new and contaminated factors
|
||||
// markedKeys are passed in: those variables will be forced to the end in the ordering
|
||||
boost::shared_ptr<FastSet<Index> > affectedKeysSet(new FastSet<Index>(markedKeys));
|
||||
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
|
||||
toc(1,"list to set");
|
||||
|
||||
tic(2,"PartialSolve");
|
||||
typename Impl::ReorderingMode reorderingMode;
|
||||
reorderingMode.nFullSystemVars = ordering_.nVars();
|
||||
reorderingMode.algorithm = Impl::ReorderingMode::COLAMD;
|
||||
reorderingMode.constrain = Impl::ReorderingMode::CONSTRAIN_LAST;
|
||||
if(constrainKeys)
|
||||
reorderingMode.constrainedKeys = *constrainKeys;
|
||||
else
|
||||
reorderingMode.constrainedKeys = FastSet<Index>(newKeys.begin(), newKeys.end());
|
||||
typename Impl::PartialSolveResult partialSolveResult =
|
||||
Impl::PartialSolve(factors, *affectedKeysSet, reorderingMode);
|
||||
toc(2,"PartialSolve");
|
||||
|
||||
// We now need to permute everything according this partial reordering: the
|
||||
// delta vector, the global ordering, and the factors we're about to
|
||||
// re-eliminate. The reordered variables are also mentioned in the
|
||||
// orphans and the leftover cached factors.
|
||||
tic(3,"permute global variable index");
|
||||
variableIndex_.permute(partialSolveResult.fullReordering);
|
||||
toc(3,"permute global variable index");
|
||||
tic(4,"permute delta");
|
||||
delta_.permute(partialSolveResult.fullReordering);
|
||||
toc(4,"permute delta");
|
||||
tic(5,"permute ordering");
|
||||
ordering_.permuteWithInverse(partialSolveResult.fullReorderingInverse);
|
||||
toc(5,"permute ordering");
|
||||
|
||||
toc(4,"reorder and eliminate");
|
||||
|
||||
tic(6,"re-assemble");
|
||||
if(partialSolveResult.bayesTree) {
|
||||
assert(!this->root_);
|
||||
this->insert(partialSolveResult.bayesTree);
|
||||
}
|
||||
toc(6,"re-assemble");
|
||||
|
||||
// 4. Insert the orphans back into the new Bayes tree.
|
||||
tic(7,"orphans");
|
||||
tic(1,"permute");
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
(void)orphan->permuteSeparatorWithInverse(partialSolveResult.fullReorderingInverse);
|
||||
}
|
||||
toc(1,"permute");
|
||||
tic(2,"insert");
|
||||
// add orphans to the bottom of the new tree
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
// Because the affectedKeysSelector is sorted, the orphan separator keys
|
||||
// will be sorted correctly according to the new elimination order after
|
||||
// applying the permutation, so findParentClique, which looks for the
|
||||
// lowest-ordered parent, will still work.
|
||||
Index parentRepresentative = Base::findParentClique((*orphan)->parents());
|
||||
sharedClique parent = (*this)[parentRepresentative];
|
||||
parent->children_ += orphan;
|
||||
orphan->parent_ = parent; // set new parent!
|
||||
}
|
||||
toc(2,"insert");
|
||||
toc(7,"orphans");
|
||||
|
||||
toc(4,"incremental");
|
||||
|
||||
return affectedKeysSet;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
ISAM2Result ISAM2<CONDITIONAL, GRAPH>::update(
|
||||
const GRAPH& newFactors, const Values& newTheta, const FastVector<size_t>& removeFactorIndices,
|
||||
const boost::optional<FastSet<Key> >& constrainedKeys, bool force_relinearize) {
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 update");
|
||||
static const bool verbose = ISDEBUG("ISAM2 update verbose");
|
||||
|
||||
static int count = 0;
|
||||
count++;
|
||||
|
||||
lastAffectedVariableCount = 0;
|
||||
lastAffectedFactorCount = 0;
|
||||
lastAffectedCliqueCount = 0;
|
||||
lastAffectedMarkedCount = 0;
|
||||
lastBacksubVariableCount = 0;
|
||||
lastNnzTop = 0;
|
||||
ISAM2Result result;
|
||||
const bool relinearizeThisStep = force_relinearize || (params_.enableRelinearization && count % params_.relinearizeSkip == 0);
|
||||
|
||||
if(verbose) {
|
||||
cout << "ISAM2::update\n";
|
||||
this->print("ISAM2: ");
|
||||
}
|
||||
|
||||
// Update delta if we need it to check relinearization later
|
||||
if(relinearizeThisStep) {
|
||||
tic(0, "updateDelta");
|
||||
updateDelta(disableReordering);
|
||||
toc(0, "updateDelta");
|
||||
}
|
||||
|
||||
tic(1,"push_back factors");
|
||||
// Add the new factor indices to the result struct
|
||||
result.newFactorsIndices.resize(newFactors.size());
|
||||
for(size_t i=0; i<newFactors.size(); ++i)
|
||||
result.newFactorsIndices[i] = i + nonlinearFactors_.size();
|
||||
|
||||
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
|
||||
if(debug || verbose) newFactors.print("The new factors are: ");
|
||||
nonlinearFactors_.push_back(newFactors);
|
||||
|
||||
// Remove the removed factors
|
||||
GRAPH removeFactors; removeFactors.reserve(removeFactorIndices.size());
|
||||
BOOST_FOREACH(size_t index, removeFactorIndices) {
|
||||
removeFactors.push_back(nonlinearFactors_[index]);
|
||||
nonlinearFactors_.remove(index);
|
||||
}
|
||||
|
||||
// Remove removed factors from the variable index so we do not attempt to relinearize them
|
||||
variableIndex_.remove(removeFactorIndices, *removeFactors.symbolic(ordering_));
|
||||
toc(1,"push_back factors");
|
||||
|
||||
tic(2,"add new variables");
|
||||
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
|
||||
Impl::AddVariables(newTheta, theta_, delta_, deltaReplacedMask_, ordering_, Base::nodes_);
|
||||
toc(2,"add new variables");
|
||||
|
||||
tic(3,"evaluate error before");
|
||||
if(params_.evaluateNonlinearError)
|
||||
result.errorBefore.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
toc(3,"evaluate error before");
|
||||
|
||||
tic(4,"gather involved keys");
|
||||
// 3. Mark linear update
|
||||
FastSet<Index> markedKeys = Impl::IndicesFromFactors(ordering_, newFactors); // Get keys from new factors
|
||||
// Also mark keys involved in removed factors
|
||||
{
|
||||
FastSet<Index> markedRemoveKeys = Impl::IndicesFromFactors(ordering_, removeFactors); // Get keys involved in removed factors
|
||||
markedKeys.insert(markedRemoveKeys.begin(), markedRemoveKeys.end()); // Add to the overall set of marked keys
|
||||
}
|
||||
// NOTE: we use assign instead of the iterator constructor here because this
|
||||
// is a vector of size_t, so the constructor unintentionally resolves to
|
||||
// vector(size_t count, Index value) instead of the iterator constructor.
|
||||
FastVector<Index> newKeys; newKeys.assign(markedKeys.begin(), markedKeys.end()); // Make a copy of these, as we'll soon add to them
|
||||
toc(4,"gather involved keys");
|
||||
|
||||
// Check relinearization if we're at the nth step, or we are using a looser loop relin threshold
|
||||
if (relinearizeThisStep) {
|
||||
tic(5,"gather relinearize keys");
|
||||
vector<bool> markedRelinMask(ordering_.nVars(), false);
|
||||
// 4. Mark keys in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
|
||||
FastSet<Index> relinKeys = Impl::CheckRelinearization(delta_, ordering_, params_.relinearizeThreshold);
|
||||
if(disableReordering) relinKeys = Impl::CheckRelinearization(delta_, ordering_, 0.0); // This is used for debugging
|
||||
|
||||
// Add the variables being relinearized to the marked keys
|
||||
BOOST_FOREACH(const Index j, relinKeys) { markedRelinMask[j] = true; }
|
||||
markedKeys.insert(relinKeys.begin(), relinKeys.end());
|
||||
toc(5,"gather relinearize keys");
|
||||
|
||||
tic(6,"fluid find_all");
|
||||
// 5. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
|
||||
if (!relinKeys.empty() && this->root())
|
||||
Impl::FindAll(this->root(), markedKeys, markedRelinMask); // add other cliques that have the marked ones in the separator
|
||||
toc(6,"fluid find_all");
|
||||
|
||||
tic(7,"expmap");
|
||||
// 6. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
|
||||
if (!relinKeys.empty())
|
||||
Impl::ExpmapMasked(theta_, delta_, ordering_, markedRelinMask, delta_);
|
||||
toc(7,"expmap");
|
||||
|
||||
result.variablesRelinearized = markedKeys.size();
|
||||
|
||||
#ifndef NDEBUG
|
||||
lastRelinVariables_ = markedRelinMask;
|
||||
#endif
|
||||
} else {
|
||||
result.variablesRelinearized = 0;
|
||||
#ifndef NDEBUG
|
||||
lastRelinVariables_ = vector<bool>(ordering_.nVars(), false);
|
||||
#endif
|
||||
}
|
||||
|
||||
tic(8,"linearize new");
|
||||
tic(1,"linearize");
|
||||
// 7. Linearize new factors
|
||||
FactorGraph<GaussianFactor>::shared_ptr linearFactors = newFactors.linearize(theta_, ordering_);
|
||||
toc(1,"linearize");
|
||||
|
||||
tic(2,"augment VI");
|
||||
// Augment the variable index with the new factors
|
||||
variableIndex_.augment(*linearFactors);
|
||||
toc(2,"augment VI");
|
||||
toc(8,"linearize new");
|
||||
|
||||
tic(9,"recalculate");
|
||||
// 8. Redo top of Bayes tree
|
||||
// Convert constrained symbols to indices
|
||||
boost::optional<FastSet<Index> > constrainedIndices;
|
||||
if(constrainedKeys) {
|
||||
constrainedIndices.reset(FastSet<Index>());
|
||||
BOOST_FOREACH(Key key, *constrainedKeys) {
|
||||
constrainedIndices->insert(ordering_[key]);
|
||||
}
|
||||
}
|
||||
boost::shared_ptr<FastSet<Index> > replacedKeys;
|
||||
if(!markedKeys.empty() || !newKeys.empty())
|
||||
replacedKeys = recalculate(markedKeys, newKeys, linearFactors, constrainedIndices, result);
|
||||
|
||||
// Update replaced keys mask (accumulates until back-substitution takes place)
|
||||
if(replacedKeys) {
|
||||
BOOST_FOREACH(const Index var, *replacedKeys) {
|
||||
deltaReplacedMask_[var] = true; } }
|
||||
toc(9,"recalculate");
|
||||
|
||||
//tic(9,"solve");
|
||||
// 9. Solve
|
||||
if(debug) delta_.print("delta_: ");
|
||||
//toc(9,"solve");
|
||||
|
||||
tic(10,"evaluate error after");
|
||||
if(params_.evaluateNonlinearError)
|
||||
result.errorAfter.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
toc(10,"evaluate error after");
|
||||
|
||||
result.cliques = this->nodes().size();
|
||||
deltaUptodate_ = false;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
void ISAM2<CONDITIONAL, GRAPH>::updateDelta(bool forceFullSolve) const {
|
||||
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
|
||||
// If using Gauss-Newton, update with wildfireThreshold
|
||||
const ISAM2GaussNewtonParams& gaussNewtonParams =
|
||||
boost::get<ISAM2GaussNewtonParams>(params_.optimizationParams);
|
||||
const double effectiveWildfireThreshold = forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
|
||||
tic(0, "Wildfire update");
|
||||
lastBacksubVariableCount = Impl::UpdateDelta(this->root(), deltaReplacedMask_, delta_, effectiveWildfireThreshold);
|
||||
toc(0, "Wildfire update");
|
||||
|
||||
} else if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams)) {
|
||||
// If using Dogleg, do a Dogleg step
|
||||
const ISAM2DoglegParams& doglegParams =
|
||||
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
|
||||
|
||||
// Do one Dogleg iteration
|
||||
tic(1, "Dogleg Iterate");
|
||||
DoglegOptimizerImpl::IterationResult doglegResult = DoglegOptimizerImpl::Iterate(
|
||||
*doglegDelta_, doglegParams.adaptationMode, *this, nonlinearFactors_, theta_, ordering_, nonlinearFactors_.error(theta_), doglegParams.verbose);
|
||||
toc(1, "Dogleg Iterate");
|
||||
|
||||
// Update Delta and linear step
|
||||
doglegDelta_ = doglegResult.Delta;
|
||||
delta_.permutation() = Permutation::Identity(delta_.size()); // Dogleg solves for the full delta so there is no permutation
|
||||
delta_.container() = doglegResult.dx_d; // Copy the VectorValues containing with the linear solution
|
||||
|
||||
// Clear replaced mask
|
||||
deltaReplacedMask_.assign(deltaReplacedMask_.size(), false);
|
||||
}
|
||||
|
||||
deltaUptodate_ = true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
Values ISAM2<CONDITIONAL, GRAPH>::calculateEstimate() const {
|
||||
// We use ExpmapMasked here instead of regular expmap because the former
|
||||
// handles Permuted<VectorValues>
|
||||
Values ret(theta_);
|
||||
vector<bool> mask(ordering_.nVars(), true);
|
||||
Impl::ExpmapMasked(ret, getDelta(), ordering_, mask);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
template<class VALUE>
|
||||
VALUE ISAM2<CONDITIONAL, GRAPH>::calculateEstimate(Key key) const {
|
||||
VALUE ISAM2::calculateEstimate(Key key) const {
|
||||
const Index index = getOrdering()[key];
|
||||
const SubVector delta = getDelta()[index];
|
||||
return theta_.at<VALUE>(key).retract(delta);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
Values ISAM2<CONDITIONAL, GRAPH>::calculateBestEstimate() const {
|
||||
VectorValues delta(theta_.dims(ordering_));
|
||||
optimize2(this->root(), delta);
|
||||
return theta_.retract(delta, ordering_);
|
||||
namespace internal {
|
||||
template<class CLIQUE>
|
||||
void optimizeWildfire(const boost::shared_ptr<CLIQUE>& clique, double threshold,
|
||||
vector<bool>& changed, const vector<bool>& replaced, Permuted<VectorValues>& delta, int& count) {
|
||||
// if none of the variables in this clique (frontal and separator!) changed
|
||||
// significantly, then by the running intersection property, none of the
|
||||
// cliques in the children need to be processed
|
||||
|
||||
// Are any clique variables part of the tree that has been redone?
|
||||
bool cliqueReplaced = replaced[(*clique)->frontals().front()];
|
||||
#ifndef NDEBUG
|
||||
BOOST_FOREACH(Index frontal, (*clique)->frontals()) {
|
||||
assert(cliqueReplaced == replaced[frontal]);
|
||||
}
|
||||
#endif
|
||||
|
||||
// If not redone, then has one of the separator variables changed significantly?
|
||||
bool recalculate = cliqueReplaced;
|
||||
if(!recalculate) {
|
||||
BOOST_FOREACH(Index parent, (*clique)->parents()) {
|
||||
if(changed[parent]) {
|
||||
recalculate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve clique if it was replaced, or if any parents were changed above the
|
||||
// threshold or themselves replaced.
|
||||
if(recalculate) {
|
||||
|
||||
// Temporary copy of the original values, to check how much they change
|
||||
vector<Vector> originalValues((*clique)->nrFrontals());
|
||||
GaussianConditional::const_iterator it;
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
originalValues[it - (*clique)->beginFrontals()] = delta[*it];
|
||||
}
|
||||
|
||||
// Back-substitute
|
||||
(*clique)->solveInPlace(delta);
|
||||
count += (*clique)->nrFrontals();
|
||||
|
||||
// Whether the values changed above a threshold, or always true if the
|
||||
// clique was replaced.
|
||||
bool valuesChanged = cliqueReplaced;
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
if(!valuesChanged) {
|
||||
const Vector& oldValue(originalValues[it - (*clique)->beginFrontals()]);
|
||||
const SubVector& newValue(delta[*it]);
|
||||
if((oldValue - newValue).lpNorm<Eigen::Infinity>() >= threshold) {
|
||||
valuesChanged = true;
|
||||
break;
|
||||
}
|
||||
} else
|
||||
break;
|
||||
}
|
||||
|
||||
// If the values were above the threshold or this clique was replaced
|
||||
if(valuesChanged) {
|
||||
// Set changed flag for each frontal variable and leave the new values
|
||||
BOOST_FOREACH(Index frontal, (*clique)->frontals()) {
|
||||
changed[frontal] = true;
|
||||
}
|
||||
} else {
|
||||
// Replace with the old values
|
||||
for(it = (*clique)->beginFrontals(); it!=(*clique)->endFrontals(); it++) {
|
||||
delta[*it] = originalValues[it - (*clique)->beginFrontals()];
|
||||
}
|
||||
}
|
||||
|
||||
// Recurse to children
|
||||
BOOST_FOREACH(const typename CLIQUE::shared_ptr& child, clique->children_) {
|
||||
optimizeWildfire(child, threshold, changed, replaced, delta, count);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CONDITIONAL, class GRAPH>
|
||||
const Permuted<VectorValues>& ISAM2<CONDITIONAL, GRAPH>::getDelta() const {
|
||||
if(!deltaUptodate_)
|
||||
updateDelta();
|
||||
return delta_;
|
||||
template<class CLIQUE>
|
||||
int optimizeWildfire(const boost::shared_ptr<CLIQUE>& root, double threshold, const vector<bool>& keys, Permuted<VectorValues>& delta) {
|
||||
vector<bool> changed(keys.size(), false);
|
||||
int count = 0;
|
||||
// starting from the root, call optimize on each conditional
|
||||
if(root)
|
||||
internal::optimizeWildfire(root, threshold, changed, keys, delta, count);
|
||||
return count;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CLIQUE>
|
||||
void nnz_internal(const boost::shared_ptr<CLIQUE>& clique, int& result) {
|
||||
int dimR = (*clique)->dim();
|
||||
int dimSep = (*clique)->get_S().cols() - dimR;
|
||||
result += ((dimR+1)*dimR)/2 + dimSep*dimR;
|
||||
// traverse the children
|
||||
BOOST_FOREACH(const typename CLIQUE::shared_ptr& child, clique->children_) {
|
||||
nnz_internal(child, result);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class CLIQUE>
|
||||
int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique) {
|
||||
int result = 0;
|
||||
// starting from the root, add up entries of frontal and conditional matrices of each conditional
|
||||
nnz_internal(clique, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
/// namespace gtsam
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,732 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file ISAM2-inl.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
*/
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
using namespace boost::assign;
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
#include <gtsam/inference/BayesTree-inl.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
static const bool disableReordering = false;
|
||||
static const double batchThreshold = 0.65;
|
||||
|
||||
/* ************************************************************************* */
|
||||
ISAM2::ISAM2(const ISAM2Params& params):
|
||||
delta_(deltaUnpermuted_), deltaNewton_(deltaNewtonUnpermuted_), RgProd_(RgProdUnpermuted_),
|
||||
deltaDoglegUptodate_(true), deltaUptodate_(true), params_(params) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
ISAM2::ISAM2():
|
||||
delta_(deltaUnpermuted_), deltaNewton_(deltaNewtonUnpermuted_), RgProd_(RgProdUnpermuted_),
|
||||
deltaDoglegUptodate_(true), deltaUptodate_(true) {
|
||||
// See note in gtsam/base/boost_variant_with_workaround.h
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
FastList<size_t> ISAM2::getAffectedFactors(const FastList<Index>& keys) const {
|
||||
static const bool debug = false;
|
||||
if(debug) cout << "Getting affected factors for ";
|
||||
if(debug) { BOOST_FOREACH(const Index key, keys) { cout << key << " "; } }
|
||||
if(debug) cout << endl;
|
||||
|
||||
FactorGraph<NonlinearFactor > allAffected;
|
||||
FastList<size_t> indices;
|
||||
BOOST_FOREACH(const Index key, keys) {
|
||||
// const list<size_t> l = nonlinearFactors_.factors(key);
|
||||
// indices.insert(indices.begin(), l.begin(), l.end());
|
||||
const VariableIndex::Factors& factors(variableIndex_[key]);
|
||||
BOOST_FOREACH(size_t factor, factors) {
|
||||
if(debug) cout << "Variable " << key << " affects factor " << factor << endl;
|
||||
indices.push_back(factor);
|
||||
}
|
||||
}
|
||||
indices.sort();
|
||||
indices.unique();
|
||||
if(debug) cout << "Affected factors are: ";
|
||||
if(debug) { BOOST_FOREACH(const size_t index, indices) { cout << index << " "; } }
|
||||
if(debug) cout << endl;
|
||||
return indices;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
FactorGraph<GaussianFactor>::shared_ptr
|
||||
ISAM2::relinearizeAffectedFactors(const FastList<Index>& affectedKeys) const {
|
||||
|
||||
tic(1,"getAffectedFactors");
|
||||
FastList<size_t> candidates = getAffectedFactors(affectedKeys);
|
||||
toc(1,"getAffectedFactors");
|
||||
|
||||
NonlinearFactorGraph nonlinearAffectedFactors;
|
||||
|
||||
tic(2,"affectedKeysSet");
|
||||
// for fast lookup below
|
||||
FastSet<Index> affectedKeysSet;
|
||||
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
|
||||
toc(2,"affectedKeysSet");
|
||||
|
||||
tic(3,"check candidates");
|
||||
BOOST_FOREACH(size_t idx, candidates) {
|
||||
bool inside = true;
|
||||
BOOST_FOREACH(Key key, nonlinearFactors_[idx]->keys()) {
|
||||
Index var = ordering_[key];
|
||||
if (affectedKeysSet.find(var) == affectedKeysSet.end()) {
|
||||
inside = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (inside)
|
||||
nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
|
||||
}
|
||||
toc(3,"check candidates");
|
||||
|
||||
tic(4,"linearize");
|
||||
FactorGraph<GaussianFactor>::shared_ptr linearized(nonlinearAffectedFactors.linearize(theta_, ordering_));
|
||||
toc(4,"linearize");
|
||||
return linearized;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// find intermediate (linearized) factors from cache that are passed into the affected area
|
||||
FactorGraph<ISAM2::CacheFactor>
|
||||
ISAM2::getCachedBoundaryFactors(Cliques& orphans) {
|
||||
|
||||
static const bool debug = false;
|
||||
|
||||
FactorGraph<CacheFactor> cachedBoundary;
|
||||
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
// find the last variable that was eliminated
|
||||
Index key = (*orphan)->frontals().back();
|
||||
#ifndef NDEBUG
|
||||
// typename BayesNet<CONDITIONAL>::const_iterator it = orphan->end();
|
||||
// const CONDITIONAL& lastCONDITIONAL = **(--it);
|
||||
// typename CONDITIONAL::const_iterator keyit = lastCONDITIONAL.endParents();
|
||||
// const Index lastKey = *(--keyit);
|
||||
// assert(key == lastKey);
|
||||
#endif
|
||||
// retrieve the cached factor and add to boundary
|
||||
cachedBoundary.push_back(boost::dynamic_pointer_cast<CacheFactor>(orphan->cachedFactor()));
|
||||
if(debug) { cout << "Cached factor for variable " << key; orphan->cachedFactor()->print(""); }
|
||||
}
|
||||
|
||||
return cachedBoundary;
|
||||
}
|
||||
|
||||
boost::shared_ptr<FastSet<Index> > ISAM2::recalculate(
|
||||
const FastSet<Index>& markedKeys, const FastVector<Index>& newKeys, const FactorGraph<GaussianFactor>::shared_ptr newFactors,
|
||||
const boost::optional<FastSet<Index> >& constrainKeys, ISAM2Result& result) {
|
||||
|
||||
// TODO: new factors are linearized twice, the newFactors passed in are not used.
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 recalculate");
|
||||
|
||||
// Input: BayesTree(this), newFactors
|
||||
|
||||
//#define PRINT_STATS // figures for paper, disable for timing
|
||||
#ifdef PRINT_STATS
|
||||
static int counter = 0;
|
||||
int maxClique = 0;
|
||||
double avgClique = 0;
|
||||
int numCliques = 0;
|
||||
int nnzR = 0;
|
||||
if (counter>0) { // cannot call on empty tree
|
||||
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
|
||||
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
|
||||
maxClique = cstats.maxCONDITIONALSize;
|
||||
avgClique = cstats.avgCONDITIONALSize;
|
||||
numCliques = cdata.conditionalSizes.size();
|
||||
nnzR = calculate_nnz(this->root());
|
||||
}
|
||||
counter++;
|
||||
#endif
|
||||
|
||||
if(debug) {
|
||||
cout << "markedKeys: ";
|
||||
BOOST_FOREACH(const Index key, markedKeys) { cout << key << " "; }
|
||||
cout << endl;
|
||||
cout << "newKeys: ";
|
||||
BOOST_FOREACH(const Index key, newKeys) { cout << key << " "; }
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
// 1. Remove top of Bayes tree and convert to a factor graph:
|
||||
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
|
||||
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
|
||||
tic(1, "removetop");
|
||||
Cliques orphans;
|
||||
BayesNet<GaussianConditional> affectedBayesNet;
|
||||
this->removeTop(markedKeys, affectedBayesNet, orphans);
|
||||
toc(1, "removetop");
|
||||
|
||||
if(debug) affectedBayesNet.print("Removed top: ");
|
||||
if(debug) orphans.print("Orphans: ");
|
||||
|
||||
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
|
||||
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
|
||||
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
|
||||
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
|
||||
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
|
||||
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
|
||||
// in the cached_ values which again will be wrong]
|
||||
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
|
||||
|
||||
// BEGIN OF COPIED CODE
|
||||
|
||||
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
||||
tic(2,"affectedKeys");
|
||||
FastList<Index> affectedKeys = affectedBayesNet.ordering();
|
||||
toc(2,"affectedKeys");
|
||||
|
||||
if(affectedKeys.size() >= theta_.size() * batchThreshold) {
|
||||
|
||||
tic(3,"batch");
|
||||
|
||||
tic(0,"add keys");
|
||||
boost::shared_ptr<FastSet<Index> > affectedKeysSet(new FastSet<Index>());
|
||||
BOOST_FOREACH(const Ordering::value_type& key_index, ordering_) { affectedKeysSet->insert(key_index.second); }
|
||||
toc(0,"add keys");
|
||||
|
||||
tic(1,"reorder");
|
||||
tic(1,"CCOLAMD");
|
||||
// Do a batch step - reorder and relinearize all variables
|
||||
vector<int> cmember(theta_.size(), 0);
|
||||
FastSet<Index> constrainedKeysSet;
|
||||
if(constrainKeys)
|
||||
constrainedKeysSet = *constrainKeys;
|
||||
else
|
||||
constrainedKeysSet.insert(newKeys.begin(), newKeys.end());
|
||||
if(theta_.size() > constrainedKeysSet.size()) {
|
||||
BOOST_FOREACH(Index var, constrainedKeysSet) { cmember[var] = 1; }
|
||||
}
|
||||
Permutation::shared_ptr colamd(inference::PermutationCOLAMD_(variableIndex_, cmember));
|
||||
Permutation::shared_ptr colamdInverse(colamd->inverse());
|
||||
toc(1,"CCOLAMD");
|
||||
|
||||
// Reorder
|
||||
tic(2,"permute global variable index");
|
||||
variableIndex_.permute(*colamd);
|
||||
toc(2,"permute global variable index");
|
||||
tic(3,"permute delta");
|
||||
delta_.permute(*colamd);
|
||||
deltaNewton_.permute(*colamd);
|
||||
RgProd_.permute(*colamd);
|
||||
toc(3,"permute delta");
|
||||
tic(4,"permute ordering");
|
||||
ordering_.permuteWithInverse(*colamdInverse);
|
||||
toc(4,"permute ordering");
|
||||
toc(1,"reorder");
|
||||
|
||||
tic(2,"linearize");
|
||||
GaussianFactorGraph factors(*nonlinearFactors_.linearize(theta_, ordering_));
|
||||
toc(2,"linearize");
|
||||
|
||||
tic(5,"eliminate");
|
||||
JunctionTree<GaussianFactorGraph, Base::Clique> jt(factors, variableIndex_);
|
||||
sharedClique newRoot = jt.eliminate(EliminatePreferLDL);
|
||||
if(debug) newRoot->print("Eliminated: ");
|
||||
toc(5,"eliminate");
|
||||
|
||||
tic(6,"insert");
|
||||
this->clear();
|
||||
this->insert(newRoot);
|
||||
toc(6,"insert");
|
||||
|
||||
toc(3,"batch");
|
||||
|
||||
result.variablesReeliminated = affectedKeysSet->size();
|
||||
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeysSet->size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
|
||||
return affectedKeysSet;
|
||||
|
||||
} else {
|
||||
|
||||
tic(4,"incremental");
|
||||
|
||||
// 2. Add the new factors \Factors' into the resulting factor graph
|
||||
FastList<Index> affectedAndNewKeys;
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(), affectedKeys.end());
|
||||
affectedAndNewKeys.insert(affectedAndNewKeys.end(), newKeys.begin(), newKeys.end());
|
||||
tic(1,"relinearizeAffected");
|
||||
GaussianFactorGraph factors(*relinearizeAffectedFactors(affectedAndNewKeys));
|
||||
if(debug) factors.print("Relinearized factors: ");
|
||||
toc(1,"relinearizeAffected");
|
||||
|
||||
if(debug) { cout << "Affected keys: "; BOOST_FOREACH(const Index key, affectedKeys) { cout << key << " "; } cout << endl; }
|
||||
|
||||
result.variablesReeliminated = affectedAndNewKeys.size();
|
||||
lastAffectedMarkedCount = markedKeys.size();
|
||||
lastAffectedVariableCount = affectedKeys.size();
|
||||
lastAffectedFactorCount = factors.size();
|
||||
|
||||
#ifdef PRINT_STATS
|
||||
// output for generating figures
|
||||
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
|
||||
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
|
||||
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
|
||||
#endif
|
||||
|
||||
tic(2,"cached");
|
||||
// add the cached intermediate results from the boundary of the orphans ...
|
||||
FactorGraph<CacheFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||
if(debug) cachedBoundary.print("Boundary factors: ");
|
||||
factors.reserve(factors.size() + cachedBoundary.size());
|
||||
// Copy so that we can later permute factors
|
||||
BOOST_FOREACH(const CacheFactor::shared_ptr& cached, cachedBoundary) {
|
||||
factors.push_back(GaussianFactor::shared_ptr(new CacheFactor(*cached)));
|
||||
}
|
||||
toc(2,"cached");
|
||||
|
||||
// END OF COPIED CODE
|
||||
|
||||
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
|
||||
|
||||
tic(4,"reorder and eliminate");
|
||||
|
||||
tic(1,"list to set");
|
||||
// create a partial reordering for the new and contaminated factors
|
||||
// markedKeys are passed in: those variables will be forced to the end in the ordering
|
||||
boost::shared_ptr<FastSet<Index> > affectedKeysSet(new FastSet<Index>(markedKeys));
|
||||
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
|
||||
toc(1,"list to set");
|
||||
|
||||
tic(2,"PartialSolve");
|
||||
Impl::ReorderingMode reorderingMode;
|
||||
reorderingMode.nFullSystemVars = ordering_.nVars();
|
||||
reorderingMode.algorithm = Impl::ReorderingMode::COLAMD;
|
||||
reorderingMode.constrain = Impl::ReorderingMode::CONSTRAIN_LAST;
|
||||
if(constrainKeys)
|
||||
reorderingMode.constrainedKeys = *constrainKeys;
|
||||
else
|
||||
reorderingMode.constrainedKeys = FastSet<Index>(newKeys.begin(), newKeys.end());
|
||||
Impl::PartialSolveResult partialSolveResult =
|
||||
Impl::PartialSolve(factors, *affectedKeysSet, reorderingMode);
|
||||
toc(2,"PartialSolve");
|
||||
|
||||
// We now need to permute everything according this partial reordering: the
|
||||
// delta vector, the global ordering, and the factors we're about to
|
||||
// re-eliminate. The reordered variables are also mentioned in the
|
||||
// orphans and the leftover cached factors.
|
||||
tic(3,"permute global variable index");
|
||||
variableIndex_.permute(partialSolveResult.fullReordering);
|
||||
toc(3,"permute global variable index");
|
||||
tic(4,"permute delta");
|
||||
delta_.permute(partialSolveResult.fullReordering);
|
||||
deltaNewton_.permute(partialSolveResult.fullReordering);
|
||||
RgProd_.permute(partialSolveResult.fullReordering);
|
||||
toc(4,"permute delta");
|
||||
tic(5,"permute ordering");
|
||||
ordering_.permuteWithInverse(partialSolveResult.fullReorderingInverse);
|
||||
toc(5,"permute ordering");
|
||||
|
||||
toc(4,"reorder and eliminate");
|
||||
|
||||
tic(6,"re-assemble");
|
||||
if(partialSolveResult.bayesTree) {
|
||||
assert(!this->root_);
|
||||
this->insert(partialSolveResult.bayesTree);
|
||||
}
|
||||
toc(6,"re-assemble");
|
||||
|
||||
// 4. Insert the orphans back into the new Bayes tree.
|
||||
tic(7,"orphans");
|
||||
tic(1,"permute");
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
(void)orphan->permuteSeparatorWithInverse(partialSolveResult.fullReorderingInverse);
|
||||
}
|
||||
toc(1,"permute");
|
||||
tic(2,"insert");
|
||||
// add orphans to the bottom of the new tree
|
||||
BOOST_FOREACH(sharedClique orphan, orphans) {
|
||||
// Because the affectedKeysSelector is sorted, the orphan separator keys
|
||||
// will be sorted correctly according to the new elimination order after
|
||||
// applying the permutation, so findParentClique, which looks for the
|
||||
// lowest-ordered parent, will still work.
|
||||
Index parentRepresentative = Base::findParentClique((*orphan)->parents());
|
||||
sharedClique parent = (*this)[parentRepresentative];
|
||||
parent->children_ += orphan;
|
||||
orphan->parent_ = parent; // set new parent!
|
||||
}
|
||||
toc(2,"insert");
|
||||
toc(7,"orphans");
|
||||
|
||||
toc(4,"incremental");
|
||||
|
||||
return affectedKeysSet;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
ISAM2Result ISAM2::update(
|
||||
const NonlinearFactorGraph& newFactors, const Values& newTheta, const FastVector<size_t>& removeFactorIndices,
|
||||
const boost::optional<FastSet<Key> >& constrainedKeys, bool force_relinearize) {
|
||||
|
||||
static const bool debug = ISDEBUG("ISAM2 update");
|
||||
static const bool verbose = ISDEBUG("ISAM2 update verbose");
|
||||
|
||||
static int count = 0;
|
||||
count++;
|
||||
|
||||
lastAffectedVariableCount = 0;
|
||||
lastAffectedFactorCount = 0;
|
||||
lastAffectedCliqueCount = 0;
|
||||
lastAffectedMarkedCount = 0;
|
||||
lastBacksubVariableCount = 0;
|
||||
lastNnzTop = 0;
|
||||
ISAM2Result result;
|
||||
const bool relinearizeThisStep = force_relinearize || (params_.enableRelinearization && count % params_.relinearizeSkip == 0);
|
||||
|
||||
if(verbose) {
|
||||
cout << "ISAM2::update\n";
|
||||
this->print("ISAM2: ");
|
||||
}
|
||||
|
||||
// Update delta if we need it to check relinearization later
|
||||
if(relinearizeThisStep) {
|
||||
tic(0, "updateDelta");
|
||||
updateDelta(disableReordering);
|
||||
toc(0, "updateDelta");
|
||||
}
|
||||
|
||||
tic(1,"push_back factors");
|
||||
// Add the new factor indices to the result struct
|
||||
result.newFactorsIndices.resize(newFactors.size());
|
||||
for(size_t i=0; i<newFactors.size(); ++i)
|
||||
result.newFactorsIndices[i] = i + nonlinearFactors_.size();
|
||||
|
||||
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
|
||||
if(debug || verbose) newFactors.print("The new factors are: ");
|
||||
nonlinearFactors_.push_back(newFactors);
|
||||
|
||||
// Remove the removed factors
|
||||
NonlinearFactorGraph removeFactors; removeFactors.reserve(removeFactorIndices.size());
|
||||
BOOST_FOREACH(size_t index, removeFactorIndices) {
|
||||
removeFactors.push_back(nonlinearFactors_[index]);
|
||||
nonlinearFactors_.remove(index);
|
||||
}
|
||||
|
||||
// Remove removed factors from the variable index so we do not attempt to relinearize them
|
||||
variableIndex_.remove(removeFactorIndices, *removeFactors.symbolic(ordering_));
|
||||
toc(1,"push_back factors");
|
||||
|
||||
tic(2,"add new variables");
|
||||
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
|
||||
Impl::AddVariables(newTheta, theta_, delta_, deltaNewton_, RgProd_, deltaReplacedMask_, ordering_, Base::nodes_);
|
||||
toc(2,"add new variables");
|
||||
|
||||
tic(3,"evaluate error before");
|
||||
if(params_.evaluateNonlinearError)
|
||||
result.errorBefore.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
toc(3,"evaluate error before");
|
||||
|
||||
tic(4,"gather involved keys");
|
||||
// 3. Mark linear update
|
||||
FastSet<Index> markedKeys = Impl::IndicesFromFactors(ordering_, newFactors); // Get keys from new factors
|
||||
// Also mark keys involved in removed factors
|
||||
{
|
||||
FastSet<Index> markedRemoveKeys = Impl::IndicesFromFactors(ordering_, removeFactors); // Get keys involved in removed factors
|
||||
markedKeys.insert(markedRemoveKeys.begin(), markedRemoveKeys.end()); // Add to the overall set of marked keys
|
||||
}
|
||||
// NOTE: we use assign instead of the iterator constructor here because this
|
||||
// is a vector of size_t, so the constructor unintentionally resolves to
|
||||
// vector(size_t count, Index value) instead of the iterator constructor.
|
||||
FastVector<Index> newKeys; newKeys.assign(markedKeys.begin(), markedKeys.end()); // Make a copy of these, as we'll soon add to them
|
||||
toc(4,"gather involved keys");
|
||||
|
||||
// Check relinearization if we're at the nth step, or we are using a looser loop relin threshold
|
||||
if (relinearizeThisStep) {
|
||||
tic(5,"gather relinearize keys");
|
||||
vector<bool> markedRelinMask(ordering_.nVars(), false);
|
||||
// 4. Mark keys in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
|
||||
FastSet<Index> relinKeys = Impl::CheckRelinearization(delta_, ordering_, params_.relinearizeThreshold);
|
||||
if(disableReordering) relinKeys = Impl::CheckRelinearization(delta_, ordering_, 0.0); // This is used for debugging
|
||||
|
||||
// Add the variables being relinearized to the marked keys
|
||||
BOOST_FOREACH(const Index j, relinKeys) { markedRelinMask[j] = true; }
|
||||
markedKeys.insert(relinKeys.begin(), relinKeys.end());
|
||||
toc(5,"gather relinearize keys");
|
||||
|
||||
tic(6,"fluid find_all");
|
||||
// 5. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
|
||||
if (!relinKeys.empty() && this->root())
|
||||
Impl::FindAll(this->root(), markedKeys, markedRelinMask); // add other cliques that have the marked ones in the separator
|
||||
toc(6,"fluid find_all");
|
||||
|
||||
tic(7,"expmap");
|
||||
// 6. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
|
||||
if (!relinKeys.empty())
|
||||
Impl::ExpmapMasked(theta_, delta_, ordering_, markedRelinMask, delta_);
|
||||
toc(7,"expmap");
|
||||
|
||||
result.variablesRelinearized = markedKeys.size();
|
||||
|
||||
#ifndef NDEBUG
|
||||
lastRelinVariables_ = markedRelinMask;
|
||||
#endif
|
||||
} else {
|
||||
result.variablesRelinearized = 0;
|
||||
#ifndef NDEBUG
|
||||
lastRelinVariables_ = vector<bool>(ordering_.nVars(), false);
|
||||
#endif
|
||||
}
|
||||
|
||||
tic(8,"linearize new");
|
||||
tic(1,"linearize");
|
||||
// 7. Linearize new factors
|
||||
FactorGraph<GaussianFactor>::shared_ptr linearFactors = newFactors.linearize(theta_, ordering_);
|
||||
toc(1,"linearize");
|
||||
|
||||
tic(2,"augment VI");
|
||||
// Augment the variable index with the new factors
|
||||
variableIndex_.augment(*linearFactors);
|
||||
toc(2,"augment VI");
|
||||
toc(8,"linearize new");
|
||||
|
||||
tic(9,"recalculate");
|
||||
// 8. Redo top of Bayes tree
|
||||
// Convert constrained symbols to indices
|
||||
boost::optional<FastSet<Index> > constrainedIndices;
|
||||
if(constrainedKeys) {
|
||||
constrainedIndices.reset(FastSet<Index>());
|
||||
BOOST_FOREACH(Key key, *constrainedKeys) {
|
||||
constrainedIndices->insert(ordering_[key]);
|
||||
}
|
||||
}
|
||||
boost::shared_ptr<FastSet<Index> > replacedKeys;
|
||||
if(!markedKeys.empty() || !newKeys.empty())
|
||||
replacedKeys = recalculate(markedKeys, newKeys, linearFactors, constrainedIndices, result);
|
||||
|
||||
// Update replaced keys mask (accumulates until back-substitution takes place)
|
||||
if(replacedKeys) {
|
||||
BOOST_FOREACH(const Index var, *replacedKeys) {
|
||||
deltaReplacedMask_[var] = true; } }
|
||||
toc(9,"recalculate");
|
||||
|
||||
//tic(9,"solve");
|
||||
// 9. Solve
|
||||
if(debug) delta_.print("delta_: ");
|
||||
//toc(9,"solve");
|
||||
|
||||
tic(10,"evaluate error after");
|
||||
if(params_.evaluateNonlinearError)
|
||||
result.errorAfter.reset(nonlinearFactors_.error(calculateEstimate()));
|
||||
toc(10,"evaluate error after");
|
||||
|
||||
result.cliques = this->nodes().size();
|
||||
deltaDoglegUptodate_ = false;
|
||||
deltaUptodate_ = false;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void ISAM2::updateDelta(bool forceFullSolve) const {
|
||||
|
||||
if(params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
|
||||
// If using Gauss-Newton, update with wildfireThreshold
|
||||
const ISAM2GaussNewtonParams& gaussNewtonParams =
|
||||
boost::get<ISAM2GaussNewtonParams>(params_.optimizationParams);
|
||||
const double effectiveWildfireThreshold = forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
|
||||
tic(0, "Wildfire update");
|
||||
lastBacksubVariableCount = Impl::UpdateDelta(this->root(), deltaReplacedMask_, delta_, effectiveWildfireThreshold);
|
||||
toc(0, "Wildfire update");
|
||||
|
||||
} else if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams)) {
|
||||
// If using Dogleg, do a Dogleg step
|
||||
const ISAM2DoglegParams& doglegParams =
|
||||
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
|
||||
|
||||
// Do one Dogleg iteration
|
||||
tic(1, "Dogleg Iterate");
|
||||
DoglegOptimizerImpl::IterationResult doglegResult(DoglegOptimizerImpl::Iterate(
|
||||
*doglegDelta_, doglegParams.adaptationMode, *this, nonlinearFactors_, theta_, ordering_, nonlinearFactors_.error(theta_), doglegParams.verbose));
|
||||
toc(1, "Dogleg Iterate");
|
||||
|
||||
tic(2, "Copy dx_d");
|
||||
// Update Delta and linear step
|
||||
doglegDelta_ = doglegResult.Delta;
|
||||
delta_.permutation() = Permutation::Identity(delta_.size()); // Dogleg solves for the full delta so there is no permutation
|
||||
delta_.container() = doglegResult.dx_d; // Copy the VectorValues containing with the linear solution
|
||||
toc(2, "Copy dx_d");
|
||||
}
|
||||
|
||||
deltaUptodate_ = true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values ISAM2::calculateEstimate() const {
|
||||
// We use ExpmapMasked here instead of regular expmap because the former
|
||||
// handles Permuted<VectorValues>
|
||||
tic(1, "Copy Values");
|
||||
Values ret(theta_);
|
||||
toc(1, "Copy Values");
|
||||
tic(2, "getDelta");
|
||||
const Permuted<VectorValues>& delta(getDelta());
|
||||
toc(2, "getDelta");
|
||||
tic(3, "Expmap");
|
||||
vector<bool> mask(ordering_.nVars(), true);
|
||||
Impl::ExpmapMasked(ret, delta, ordering_, mask);
|
||||
toc(3, "Expmap");
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values ISAM2::calculateBestEstimate() const {
|
||||
VectorValues delta(theta_.dims(ordering_));
|
||||
internal::optimizeInPlace<Base>(this->root(), delta);
|
||||
return theta_.retract(delta, ordering_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const Permuted<VectorValues>& ISAM2::getDelta() const {
|
||||
if(!deltaUptodate_)
|
||||
updateDelta();
|
||||
return delta_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues optimize(const ISAM2& isam) {
|
||||
tic(0, "allocateVectorValues");
|
||||
VectorValues delta = *allocateVectorValues(isam);
|
||||
toc(0, "allocateVectorValues");
|
||||
optimizeInPlace(isam, delta);
|
||||
return delta;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void optimizeInPlace(const ISAM2& isam, VectorValues& delta) {
|
||||
// We may need to update the solution calcaulations
|
||||
if(!isam.deltaDoglegUptodate_) {
|
||||
tic(1, "UpdateDoglegDeltas");
|
||||
double wildfireThreshold = 0.0;
|
||||
if(isam.params().optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
|
||||
wildfireThreshold = boost::get<ISAM2GaussNewtonParams>(isam.params().optimizationParams).wildfireThreshold;
|
||||
else if(isam.params().optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
wildfireThreshold = boost::get<ISAM2DoglegParams>(isam.params().optimizationParams).wildfireThreshold;
|
||||
else
|
||||
assert(false);
|
||||
ISAM2::Impl::UpdateDoglegDeltas(isam, wildfireThreshold, isam.deltaReplacedMask_, isam.deltaNewton_, isam.RgProd_);
|
||||
isam.deltaDoglegUptodate_ = true;
|
||||
toc(1, "UpdateDoglegDeltas");
|
||||
}
|
||||
|
||||
tic(2, "copy delta");
|
||||
delta = isam.deltaNewton_;
|
||||
toc(2, "copy delta");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues optimizeGradientSearch(const ISAM2& isam) {
|
||||
tic(0, "Allocate VectorValues");
|
||||
VectorValues grad = *allocateVectorValues(isam);
|
||||
toc(0, "Allocate VectorValues");
|
||||
|
||||
optimizeGradientSearchInPlace(isam, grad);
|
||||
|
||||
return grad;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void optimizeGradientSearchInPlace(const ISAM2& isam, VectorValues& grad) {
|
||||
// We may need to update the solution calcaulations
|
||||
if(!isam.deltaDoglegUptodate_) {
|
||||
tic(1, "UpdateDoglegDeltas");
|
||||
double wildfireThreshold = 0.0;
|
||||
if(isam.params().optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
|
||||
wildfireThreshold = boost::get<ISAM2GaussNewtonParams>(isam.params().optimizationParams).wildfireThreshold;
|
||||
else if(isam.params().optimizationParams.type() == typeid(ISAM2DoglegParams))
|
||||
wildfireThreshold = boost::get<ISAM2DoglegParams>(isam.params().optimizationParams).wildfireThreshold;
|
||||
else
|
||||
assert(false);
|
||||
ISAM2::Impl::UpdateDoglegDeltas(isam, wildfireThreshold, isam.deltaReplacedMask_, isam.deltaNewton_, isam.RgProd_);
|
||||
isam.deltaDoglegUptodate_ = true;
|
||||
toc(1, "UpdateDoglegDeltas");
|
||||
}
|
||||
|
||||
tic(2, "Compute Gradient");
|
||||
// Compute gradient (call gradientAtZero function, which is defined for various linear systems)
|
||||
gradientAtZero(isam, grad);
|
||||
double gradientSqNorm = grad.dot(grad);
|
||||
toc(2, "Compute Gradient");
|
||||
|
||||
tic(3, "Compute minimizing step size");
|
||||
// Compute minimizing step size
|
||||
double RgNormSq = isam.RgProd_.container().vector().squaredNorm();
|
||||
double step = -gradientSqNorm / RgNormSq;
|
||||
toc(3, "Compute minimizing step size");
|
||||
|
||||
tic(4, "Compute point");
|
||||
// Compute steepest descent point
|
||||
grad.vector() *= step;
|
||||
toc(4, "Compute point");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues gradient(const ISAM2& bayesTree, const VectorValues& x0) {
|
||||
return gradient(FactorGraph<JacobianFactor>(bayesTree), x0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static void gradientAtZeroTreeAdder(const boost::shared_ptr<ISAM2Clique>& root, VectorValues& g) {
|
||||
// Loop through variables in each clique, adding contributions
|
||||
int variablePosition = 0;
|
||||
for(GaussianConditional::const_iterator jit = root->conditional()->begin(); jit != root->conditional()->end(); ++jit) {
|
||||
const int dim = root->conditional()->dim(jit);
|
||||
g[*jit] += root->gradientContribution().segment(variablePosition, dim);
|
||||
variablePosition += dim;
|
||||
}
|
||||
|
||||
// Recursively add contributions from children
|
||||
typedef boost::shared_ptr<ISAM2Clique> sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& child, root->children()) {
|
||||
gradientAtZeroTreeAdder(child, g);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void gradientAtZero(const ISAM2& bayesTree, VectorValues& g) {
|
||||
// Zero-out gradient
|
||||
g.setZero();
|
||||
|
||||
// Sum up contributions for each clique
|
||||
gradientAtZeroTreeAdder(bayesTree.root(), g);
|
||||
}
|
||||
|
||||
}
|
||||
/// namespace gtsam
|
|
@ -12,7 +12,7 @@
|
|||
/**
|
||||
* @file ISAM2.h
|
||||
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
|
||||
* @author Michael Kaess
|
||||
* @author Michael Kaess, Richard Roberts
|
||||
*/
|
||||
|
||||
// \callgraph
|
||||
|
@ -21,10 +21,8 @@
|
|||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
|
||||
#include <gtsam/inference/BayesTree.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
|
||||
// Workaround for boost < 1.47, see note in file
|
||||
//#include <gtsam/base/boost_variant_with_workaround.h>
|
||||
#include <boost/variant.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -56,15 +54,18 @@ struct ISAM2GaussNewtonParams {
|
|||
*/
|
||||
struct ISAM2DoglegParams {
|
||||
double initialDelta; ///< The initial trust region radius for Dogleg
|
||||
double wildfireThreshold; ///< Continue updating the linear delta only when changes are above this threshold (default: 0.001)
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode adaptationMode; ///< See description in DoglegOptimizerImpl::TrustRegionAdaptationMode
|
||||
bool verbose; ///< Whether Dogleg prints iteration and convergence information
|
||||
|
||||
/** Specify parameters as constructor arguments */
|
||||
ISAM2DoglegParams(
|
||||
double _initialDelta = 1.0, ///< see ISAM2DoglegParams public variables, ISAM2DoglegParams::initialDelta
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode _adaptationMode = DoglegOptimizerImpl::SEARCH_EACH_ITERATION, ///< see ISAM2DoglegParams public variables, ISAM2DoglegParams::adaptationMode
|
||||
bool _verbose = false ///< see ISAM2DoglegParams public variables, ISAM2DoglegParams::verbose
|
||||
) : initialDelta(_initialDelta), adaptationMode(_adaptationMode), verbose(_verbose) {}
|
||||
double _initialDelta = 1.0, ///< see ISAM2DoglegParams::initialDelta
|
||||
double _wildfireThreshold = 1e-5, ///< see ISAM2DoglegParams::wildfireThreshold
|
||||
DoglegOptimizerImpl::TrustRegionAdaptationMode _adaptationMode = DoglegOptimizerImpl::SEARCH_EACH_ITERATION, ///< see ISAM2DoglegParams::adaptationMode
|
||||
bool _verbose = false ///< see ISAM2DoglegParams::verbose
|
||||
) : initialDelta(_initialDelta), wildfireThreshold(_wildfireThreshold),
|
||||
adaptationMode(_adaptationMode), verbose(_verbose) {}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -181,17 +182,16 @@ struct ISAM2Result {
|
|||
FastVector<size_t> newFactorsIndices;
|
||||
};
|
||||
|
||||
template<class CONDITIONAL>
|
||||
struct ISAM2Clique : public BayesTreeCliqueBase<ISAM2Clique<CONDITIONAL>, CONDITIONAL> {
|
||||
struct ISAM2Clique : public BayesTreeCliqueBase<ISAM2Clique, GaussianConditional> {
|
||||
|
||||
typedef ISAM2Clique<CONDITIONAL> This;
|
||||
typedef BayesTreeCliqueBase<This,CONDITIONAL> Base;
|
||||
typedef ISAM2Clique This;
|
||||
typedef BayesTreeCliqueBase<This,GaussianConditional> Base;
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
typedef boost::weak_ptr<This> weak_ptr;
|
||||
typedef CONDITIONAL ConditionalType;
|
||||
typedef typename ConditionalType::shared_ptr sharedConditional;
|
||||
typedef GaussianConditional ConditionalType;
|
||||
typedef ConditionalType::shared_ptr sharedConditional;
|
||||
|
||||
typename Base::FactorType::shared_ptr cachedFactor_;
|
||||
Base::FactorType::shared_ptr cachedFactor_;
|
||||
Vector gradientContribution_;
|
||||
|
||||
/** Construct from a conditional */
|
||||
|
@ -199,7 +199,7 @@ struct ISAM2Clique : public BayesTreeCliqueBase<ISAM2Clique<CONDITIONAL>, CONDIT
|
|||
throw runtime_error("ISAM2Clique should always be constructed with the elimination result constructor"); }
|
||||
|
||||
/** Construct from an elimination result */
|
||||
ISAM2Clique(const std::pair<sharedConditional, boost::shared_ptr<typename ConditionalType::FactorType> >& result) :
|
||||
ISAM2Clique(const std::pair<sharedConditional, boost::shared_ptr<ConditionalType::FactorType> >& result) :
|
||||
Base(result.first), cachedFactor_(result.second), gradientContribution_(result.first->get_R().cols() + result.first->get_S().cols()) {
|
||||
// Compute gradient contribution
|
||||
const ConditionalType& conditional(*result.first);
|
||||
|
@ -211,13 +211,13 @@ struct ISAM2Clique : public BayesTreeCliqueBase<ISAM2Clique<CONDITIONAL>, CONDIT
|
|||
shared_ptr clone() const {
|
||||
shared_ptr copy(new ISAM2Clique(make_pair(
|
||||
sharedConditional(new ConditionalType(*Base::conditional_)),
|
||||
cachedFactor_ ? cachedFactor_->clone() : typename Base::FactorType::shared_ptr())));
|
||||
cachedFactor_ ? cachedFactor_->clone() : Base::FactorType::shared_ptr())));
|
||||
copy->gradientContribution_ = gradientContribution_;
|
||||
return copy;
|
||||
}
|
||||
|
||||
/** Access the cached factor */
|
||||
typename Base::FactorType::shared_ptr& cachedFactor() { return cachedFactor_; }
|
||||
Base::FactorType::shared_ptr& cachedFactor() { return cachedFactor_; }
|
||||
|
||||
/** Access the gradient contribution */
|
||||
const Vector& gradientContribution() const { return gradientContribution_; }
|
||||
|
@ -269,8 +269,7 @@ private:
|
|||
* estimate of all variables.
|
||||
*
|
||||
*/
|
||||
template<class CONDITIONAL, class GRAPH = NonlinearFactorGraph>
|
||||
class ISAM2: public BayesTree<CONDITIONAL, ISAM2Clique<CONDITIONAL> > {
|
||||
class ISAM2: public BayesTree<GaussianConditional, ISAM2Clique> {
|
||||
|
||||
protected:
|
||||
|
||||
|
@ -296,6 +295,12 @@ protected:
|
|||
*/
|
||||
mutable Permuted<VectorValues> delta_;
|
||||
|
||||
VectorValues deltaNewtonUnpermuted_;
|
||||
mutable Permuted<VectorValues> deltaNewton_;
|
||||
VectorValues RgProdUnpermuted_;
|
||||
mutable Permuted<VectorValues> RgProd_;
|
||||
mutable bool deltaDoglegUptodate_;
|
||||
|
||||
/** Indicates whether the current delta is up-to-date, only used
|
||||
* internally - delta will always be updated if necessary when it is
|
||||
* requested with getDelta() or calculateEstimate().
|
||||
|
@ -316,7 +321,7 @@ protected:
|
|||
mutable std::vector<bool> deltaReplacedMask_;
|
||||
|
||||
/** All original nonlinear factors are stored here to use during relinearization */
|
||||
GRAPH nonlinearFactors_;
|
||||
NonlinearFactorGraph nonlinearFactors_;
|
||||
|
||||
/** The current elimination ordering Symbols to Index (integer) keys.
|
||||
*
|
||||
|
@ -339,9 +344,7 @@ private:
|
|||
|
||||
public:
|
||||
|
||||
typedef BayesTree<CONDITIONAL,ISAM2Clique<CONDITIONAL> > Base; ///< The BayesTree base class
|
||||
typedef ISAM2<CONDITIONAL> This; ///< This class
|
||||
typedef GRAPH Graph;
|
||||
typedef BayesTree<GaussianConditional,ISAM2Clique> Base; ///< The BayesTree base class
|
||||
|
||||
/** Create an empty ISAM2 instance */
|
||||
ISAM2(const ISAM2Params& params);
|
||||
|
@ -349,17 +352,22 @@ public:
|
|||
/** Create an empty ISAM2 instance using the default set of parameters (see ISAM2Params) */
|
||||
ISAM2();
|
||||
|
||||
typedef typename Base::Clique Clique; ///< A clique
|
||||
typedef typename Base::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef typename Base::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
typedef Base::Clique Clique; ///< A clique
|
||||
typedef Base::sharedClique sharedClique; ///< Shared pointer to a clique
|
||||
typedef Base::Cliques Cliques; ///< List of Clique typedef from base class
|
||||
|
||||
void cloneTo(boost::shared_ptr<This>& newISAM2) const {
|
||||
void cloneTo(boost::shared_ptr<ISAM2>& newISAM2) const {
|
||||
boost::shared_ptr<Base> bayesTree = boost::static_pointer_cast<Base>(newISAM2);
|
||||
Base::cloneTo(bayesTree);
|
||||
newISAM2->theta_ = theta_;
|
||||
newISAM2->variableIndex_ = variableIndex_;
|
||||
newISAM2->deltaUnpermuted_ = deltaUnpermuted_;
|
||||
newISAM2->delta_ = delta_;
|
||||
newISAM2->deltaNewtonUnpermuted_ = deltaNewtonUnpermuted_;
|
||||
newISAM2->deltaNewton_ = deltaNewton_;
|
||||
newISAM2->RgProdUnpermuted_ = RgProdUnpermuted_;
|
||||
newISAM2->RgProd_ = RgProd_;
|
||||
newISAM2->deltaDoglegUptodate_ = deltaDoglegUptodate_;
|
||||
newISAM2->deltaUptodate_ = deltaUptodate_;
|
||||
newISAM2->deltaReplacedMask_ = deltaReplacedMask_;
|
||||
newISAM2->nonlinearFactors_ = nonlinearFactors_;
|
||||
|
@ -395,7 +403,7 @@ public:
|
|||
* (Params::relinearizeSkip).
|
||||
* @return An ISAM2Result struct containing information about the update
|
||||
*/
|
||||
ISAM2Result update(const GRAPH& newFactors = GRAPH(), const Values& newTheta = Values(),
|
||||
ISAM2Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(), const Values& newTheta = Values(),
|
||||
const FastVector<size_t>& removeFactorIndices = FastVector<size_t>(),
|
||||
const boost::optional<FastSet<Key> >& constrainedKeys = boost::none,
|
||||
bool force_relinearize = false);
|
||||
|
@ -432,7 +440,7 @@ public:
|
|||
const Permuted<VectorValues>& getDelta() const;
|
||||
|
||||
/** Access the set of nonlinear factors */
|
||||
const GRAPH& getFactorsUnsafe() const { return nonlinearFactors_; }
|
||||
const NonlinearFactorGraph& getFactorsUnsafe() const { return nonlinearFactors_; }
|
||||
|
||||
/** Access the current ordering */
|
||||
const Ordering& getOrdering() const { return ordering_; }
|
||||
|
@ -460,8 +468,93 @@ private:
|
|||
// void linear_update(const GaussianFactorGraph& newFactors);
|
||||
void updateDelta(bool forceFullSolve = false) const;
|
||||
|
||||
friend void optimizeInPlace(const ISAM2&, VectorValues&);
|
||||
friend void optimizeGradientSearchInPlace(const ISAM2&, VectorValues&);
|
||||
|
||||
}; // ISAM2
|
||||
|
||||
/** Get the linear delta for the ISAM2 object, unpermuted the delta returned by ISAM2::getDelta() */
|
||||
VectorValues optimize(const ISAM2& isam);
|
||||
|
||||
/** Get the linear delta for the ISAM2 object, unpermuted the delta returned by ISAM2::getDelta() */
|
||||
void optimizeInPlace(const ISAM2& isam, VectorValues& delta);
|
||||
|
||||
/// Optimize the BayesTree, starting from the root.
|
||||
/// @param replaced Needs to contain
|
||||
/// all variables that are contained in the top of the Bayes tree that has been
|
||||
/// redone.
|
||||
/// @param delta The current solution, an offset from the linearization
|
||||
/// point.
|
||||
/// @param threshold The maximum change against the PREVIOUS delta for
|
||||
/// non-replaced variables that can be ignored, ie. the old delta entry is kept
|
||||
/// and recursive backsubstitution might eventually stop if none of the changed
|
||||
/// variables are contained in the subtree.
|
||||
/// @return The number of variables that were solved for
|
||||
template<class CLIQUE>
|
||||
int optimizeWildfire(const boost::shared_ptr<CLIQUE>& root,
|
||||
double threshold, const std::vector<bool>& replaced, Permuted<VectorValues>& delta);
|
||||
|
||||
/**
|
||||
* Optimize along the gradient direction, with a closed-form computation to
|
||||
* perform the line search. The gradient is computed about \f$ \delta x=0 \f$.
|
||||
*
|
||||
* This function returns \f$ \delta x \f$ that minimizes a reparametrized
|
||||
* problem. The error function of a GaussianBayesNet is
|
||||
*
|
||||
* \f[ f(\delta x) = \frac{1}{2} |R \delta x - d|^2 = \frac{1}{2}d^T d - d^T R \delta x + \frac{1}{2} \delta x^T R^T R \delta x \f]
|
||||
*
|
||||
* with gradient and Hessian
|
||||
*
|
||||
* \f[ g(\delta x) = R^T(R\delta x - d), \qquad G(\delta x) = R^T R. \f]
|
||||
*
|
||||
* This function performs the line search in the direction of the
|
||||
* gradient evaluated at \f$ g = g(\delta x = 0) \f$ with step size
|
||||
* \f$ \alpha \f$ that minimizes \f$ f(\delta x = \alpha g) \f$:
|
||||
*
|
||||
* \f[ f(\alpha) = \frac{1}{2} d^T d + g^T \delta x + \frac{1}{2} \alpha^2 g^T G g \f]
|
||||
*
|
||||
* Optimizing by setting the derivative to zero yields
|
||||
* \f$ \hat \alpha = (-g^T g) / (g^T G g) \f$. For efficiency, this function
|
||||
* evaluates the denominator without computing the Hessian \f$ G \f$, returning
|
||||
*
|
||||
* \f[ \delta x = \hat\alpha g = \frac{-g^T g}{(R g)^T(R g)} \f]
|
||||
*/
|
||||
VectorValues optimizeGradientSearch(const ISAM2& isam);
|
||||
|
||||
/** In-place version of optimizeGradientSearch requiring pre-allocated VectorValues \c x */
|
||||
void optimizeGradientSearchInPlace(const ISAM2& isam, VectorValues& grad);
|
||||
|
||||
/// calculate the number of non-zero entries for the tree starting at clique (use root for complete matrix)
|
||||
template<class CLIQUE>
|
||||
int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique);
|
||||
|
||||
/**
|
||||
* Compute the gradient of the energy function,
|
||||
* \f$ \nabla_{x=x_0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$,
|
||||
* centered around \f$ x = x_0 \f$.
|
||||
* The gradient is \f$ R^T(Rx-d) \f$.
|
||||
* This specialized version is used with ISAM2, where each clique stores its
|
||||
* gradient contribution.
|
||||
* @param bayesTree The Gaussian Bayes Tree $(R,d)$
|
||||
* @param x0 The center about which to compute the gradient
|
||||
* @return The gradient as a VectorValues
|
||||
*/
|
||||
VectorValues gradient(const ISAM2& bayesTree, const VectorValues& x0);
|
||||
|
||||
/**
|
||||
* Compute the gradient of the energy function,
|
||||
* \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$,
|
||||
* centered around zero.
|
||||
* The gradient about zero is \f$ -R^T d \f$. See also gradient(const GaussianBayesNet&, const VectorValues&).
|
||||
* This specialized version is used with ISAM2, where each clique stores its
|
||||
* gradient contribution.
|
||||
* @param bayesTree The Gaussian Bayes Tree $(R,d)$
|
||||
* @param [output] g A VectorValues to store the gradient, which must be preallocated, see allocateVectorValues
|
||||
* @return The gradient as a VectorValues
|
||||
*/
|
||||
void gradientAtZero(const ISAM2& bayesTree, VectorValues& g);
|
||||
|
||||
} /// namespace gtsam
|
||||
|
||||
#include <gtsam/nonlinear/ISAM2-inl.h>
|
||||
#include <gtsam/nonlinear/ISAM2-impl.h>
|
||||
|
|
|
@ -117,6 +117,8 @@ namespace gtsam {
|
|||
typedef boost::transform_iterator<
|
||||
boost::function1<ConstKeyValuePair, const ConstKeyValuePtrPair&>, KeyValueMap::const_reverse_iterator> const_reverse_iterator;
|
||||
|
||||
typedef KeyValuePair value_type;
|
||||
|
||||
private:
|
||||
template<class ValueType>
|
||||
struct _KeyValuePair {
|
||||
|
@ -143,6 +145,7 @@ namespace gtsam {
|
|||
/** A key-value pair, with the value a specific derived Value type. */
|
||||
typedef _KeyValuePair<ValueType> KeyValuePair;
|
||||
typedef _ConstKeyValuePair<ValueType> ConstKeyValuePair;
|
||||
typedef KeyValuePair value_type;
|
||||
|
||||
typedef
|
||||
boost::transform_iterator<
|
||||
|
@ -208,6 +211,7 @@ namespace gtsam {
|
|||
public:
|
||||
/** A const key-value pair, with the value a specific derived Value type. */
|
||||
typedef _ConstKeyValuePair<ValueType> KeyValuePair;
|
||||
typedef KeyValuePair value_type;
|
||||
|
||||
typedef typename Filtered<ValueType>::const_const_iterator iterator;
|
||||
typedef typename Filtered<ValueType>::const_const_iterator const_iterator;
|
||||
|
|
|
@ -17,7 +17,7 @@ using namespace boost::assign;
|
|||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianSequentialSolver.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/nonlinear/GaussianISAM2.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/slam/smallExample.h>
|
||||
#include <gtsam/slam/planarSLAM.h>
|
||||
|
||||
|
@ -29,7 +29,7 @@ using boost::shared_ptr;
|
|||
const double tol = 1e-4;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, AddVariables) {
|
||||
TEST_UNSAFE(ISAM2, AddVariables) {
|
||||
|
||||
// Create initial state
|
||||
Values theta;
|
||||
|
@ -48,11 +48,31 @@ TEST(ISAM2, AddVariables) {
|
|||
|
||||
Permuted<VectorValues> delta(permutation, deltaUnpermuted);
|
||||
|
||||
VectorValues deltaNewtonUnpermuted;
|
||||
deltaNewtonUnpermuted.insert(0, Vector_(3, .1, .2, .3));
|
||||
deltaNewtonUnpermuted.insert(1, Vector_(2, .4, .5));
|
||||
|
||||
Permutation permutationNewton(2);
|
||||
permutationNewton[0] = 1;
|
||||
permutationNewton[1] = 0;
|
||||
|
||||
Permuted<VectorValues> deltaNewton(permutationNewton, deltaNewtonUnpermuted);
|
||||
|
||||
VectorValues deltaRgUnpermuted;
|
||||
deltaRgUnpermuted.insert(0, Vector_(3, .1, .2, .3));
|
||||
deltaRgUnpermuted.insert(1, Vector_(2, .4, .5));
|
||||
|
||||
Permutation permutationRg(2);
|
||||
permutationRg[0] = 1;
|
||||
permutationRg[1] = 0;
|
||||
|
||||
Permuted<VectorValues> deltaRg(permutationRg, deltaRgUnpermuted);
|
||||
|
||||
vector<bool> replacedKeys(2, false);
|
||||
|
||||
Ordering ordering; ordering += planarSLAM::PointKey(0), planarSLAM::PoseKey(0);
|
||||
|
||||
GaussianISAM2<>::Nodes nodes(2);
|
||||
ISAM2::Nodes nodes(2);
|
||||
|
||||
// Verify initial state
|
||||
LONGS_EQUAL(0, ordering[planarSLAM::PointKey(0)]);
|
||||
|
@ -78,19 +98,47 @@ TEST(ISAM2, AddVariables) {
|
|||
|
||||
Permuted<VectorValues> deltaExpected(permutationExpected, deltaUnpermutedExpected);
|
||||
|
||||
VectorValues deltaNewtonUnpermutedExpected;
|
||||
deltaNewtonUnpermutedExpected.insert(0, Vector_(3, .1, .2, .3));
|
||||
deltaNewtonUnpermutedExpected.insert(1, Vector_(2, .4, .5));
|
||||
deltaNewtonUnpermutedExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
|
||||
|
||||
Permutation permutationNewtonExpected(3);
|
||||
permutationNewtonExpected[0] = 1;
|
||||
permutationNewtonExpected[1] = 0;
|
||||
permutationNewtonExpected[2] = 2;
|
||||
|
||||
Permuted<VectorValues> deltaNewtonExpected(permutationNewtonExpected, deltaNewtonUnpermutedExpected);
|
||||
|
||||
VectorValues deltaRgUnpermutedExpected;
|
||||
deltaRgUnpermutedExpected.insert(0, Vector_(3, .1, .2, .3));
|
||||
deltaRgUnpermutedExpected.insert(1, Vector_(2, .4, .5));
|
||||
deltaRgUnpermutedExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
|
||||
|
||||
Permutation permutationRgExpected(3);
|
||||
permutationRgExpected[0] = 1;
|
||||
permutationRgExpected[1] = 0;
|
||||
permutationRgExpected[2] = 2;
|
||||
|
||||
Permuted<VectorValues> deltaRgExpected(permutationRgExpected, deltaRgUnpermutedExpected);
|
||||
|
||||
vector<bool> replacedKeysExpected(3, false);
|
||||
|
||||
Ordering orderingExpected; orderingExpected += planarSLAM::PointKey(0), planarSLAM::PoseKey(0), planarSLAM::PoseKey(1);
|
||||
|
||||
GaussianISAM2<>::Nodes nodesExpected(
|
||||
3, GaussianISAM2<>::sharedClique());
|
||||
ISAM2::Nodes nodesExpected(
|
||||
3, ISAM2::sharedClique());
|
||||
|
||||
// Expand initial state
|
||||
GaussianISAM2<>::Impl::AddVariables(newTheta, theta, delta, replacedKeys, ordering, nodes);
|
||||
ISAM2::Impl::AddVariables(newTheta, theta, delta, deltaNewton, deltaRg, replacedKeys, ordering, nodes);
|
||||
|
||||
EXPECT(assert_equal(thetaExpected, theta));
|
||||
EXPECT(assert_equal(deltaUnpermutedExpected, deltaUnpermuted));
|
||||
EXPECT(assert_equal(deltaExpected.permutation(), delta.permutation()));
|
||||
EXPECT(assert_equal(deltaNewtonUnpermutedExpected, deltaNewtonUnpermuted));
|
||||
EXPECT(assert_equal(deltaNewtonExpected.permutation(), deltaNewton.permutation()));
|
||||
EXPECT(assert_equal(deltaRgUnpermutedExpected, deltaRgUnpermuted));
|
||||
EXPECT(assert_equal(deltaRgExpected.permutation(), deltaRg.permutation()));
|
||||
EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
|
||||
EXPECT(assert_equal(orderingExpected, ordering));
|
||||
}
|
||||
|
@ -171,10 +219,10 @@ TEST(ISAM2, optimize2) {
|
|||
conditional->solveInPlace(expected);
|
||||
|
||||
// Clique
|
||||
GaussianISAM2<>::sharedClique clique(
|
||||
GaussianISAM2<>::Clique::Create(make_pair(conditional,GaussianFactor::shared_ptr())));
|
||||
ISAM2::sharedClique clique(
|
||||
ISAM2::Clique::Create(make_pair(conditional,GaussianFactor::shared_ptr())));
|
||||
VectorValues actual(theta.dims(ordering));
|
||||
internal::optimizeInPlace(clique, actual);
|
||||
internal::optimizeInPlace<ISAM2::Base>(clique, actual);
|
||||
|
||||
// expected.print("expected: ");
|
||||
// actual.print("actual: ");
|
||||
|
@ -182,7 +230,7 @@ TEST(ISAM2, optimize2) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool isam_check(const planarSLAM::Graph& fullgraph, const Values& fullinit, const GaussianISAM2<>& isam) {
|
||||
bool isam_check(const planarSLAM::Graph& fullgraph, const Values& fullinit, const ISAM2& isam) {
|
||||
Values actual = isam.calculateEstimate();
|
||||
Ordering ordering = isam.getOrdering(); // *fullgraph.orderingCOLAMD(fullinit).first;
|
||||
GaussianFactorGraph linearized = *fullgraph.linearize(fullinit, ordering);
|
||||
|
@ -212,7 +260,7 @@ TEST(ISAM2, slamlike_solution_gaussnewton)
|
|||
SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
GaussianISAM2<> isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
Values fullinit;
|
||||
planarSLAM::Graph fullgraph;
|
||||
|
||||
|
@ -300,7 +348,7 @@ TEST(ISAM2, slamlike_solution_gaussnewton)
|
|||
CHECK(isam_check(fullgraph, fullinit, isam));
|
||||
|
||||
// Check gradient at each node
|
||||
typedef GaussianISAM2<>::sharedClique sharedClique;
|
||||
typedef ISAM2::sharedClique sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
||||
// Compute expected gradient
|
||||
FactorGraph<JacobianFactor> jfg;
|
||||
|
@ -345,7 +393,7 @@ TEST(ISAM2, slamlike_solution_dogleg)
|
|||
SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
GaussianISAM2<> isam(ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
|
||||
ISAM2 isam(ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
|
||||
Values fullinit;
|
||||
planarSLAM::Graph fullgraph;
|
||||
|
||||
|
@ -433,7 +481,7 @@ TEST(ISAM2, slamlike_solution_dogleg)
|
|||
CHECK(isam_check(fullgraph, fullinit, isam));
|
||||
|
||||
// Check gradient at each node
|
||||
typedef GaussianISAM2<>::sharedClique sharedClique;
|
||||
typedef ISAM2::sharedClique sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
||||
// Compute expected gradient
|
||||
FactorGraph<JacobianFactor> jfg;
|
||||
|
@ -473,7 +521,7 @@ TEST(ISAM2, clone) {
|
|||
SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
GaussianISAM2<> isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true));
|
||||
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true));
|
||||
Values fullinit;
|
||||
planarSLAM::Graph fullgraph;
|
||||
|
||||
|
@ -558,8 +606,8 @@ TEST(ISAM2, clone) {
|
|||
}
|
||||
|
||||
// CLONING...
|
||||
boost::shared_ptr<GaussianISAM2<> > isam2
|
||||
= boost::shared_ptr<GaussianISAM2<> >(new GaussianISAM2<>());
|
||||
boost::shared_ptr<ISAM2 > isam2
|
||||
= boost::shared_ptr<ISAM2 >(new ISAM2());
|
||||
isam.cloneTo(isam2);
|
||||
|
||||
CHECK(assert_equal(isam, *isam2));
|
||||
|
@ -567,24 +615,23 @@ TEST(ISAM2, clone) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(ISAM2, permute_cached) {
|
||||
typedef ISAM2Clique<GaussianConditional> Clique;
|
||||
typedef boost::shared_ptr<ISAM2Clique<GaussianConditional> > sharedClique;
|
||||
typedef boost::shared_ptr<ISAM2Clique> sharedISAM2Clique;
|
||||
|
||||
// Construct expected permuted BayesTree (variable 2 has been changed to 1)
|
||||
BayesTree<GaussianConditional, Clique> expected;
|
||||
expected.insert(sharedClique(new Clique(make_pair(
|
||||
BayesTree<GaussianConditional, ISAM2Clique> expected;
|
||||
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(3, Matrix_(1,1,1.0))
|
||||
(4, Matrix_(1,1,2.0)),
|
||||
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
|
||||
HessianFactor::shared_ptr())))); // Cached: empty
|
||||
expected.insert(sharedClique(new Clique(make_pair(
|
||||
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(2, Matrix_(1,1,1.0))
|
||||
(3, Matrix_(1,1,2.0)),
|
||||
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
|
||||
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
|
||||
expected.insert(sharedClique(new Clique(make_pair(
|
||||
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(0, Matrix_(1,1,1.0))
|
||||
(2, Matrix_(1,1,2.0)),
|
||||
|
@ -595,20 +642,20 @@ TEST(ISAM2, permute_cached) {
|
|||
expected.root()->children().front()->children().front()->conditional()->keys()[1] = 1;
|
||||
|
||||
// Construct unpermuted BayesTree
|
||||
BayesTree<GaussianConditional, Clique> actual;
|
||||
actual.insert(sharedClique(new Clique(make_pair(
|
||||
BayesTree<GaussianConditional, ISAM2Clique> actual;
|
||||
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(3, Matrix_(1,1,1.0))
|
||||
(4, Matrix_(1,1,2.0)),
|
||||
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
|
||||
HessianFactor::shared_ptr())))); // Cached: empty
|
||||
actual.insert(sharedClique(new Clique(make_pair(
|
||||
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(2, Matrix_(1,1,1.0))
|
||||
(3, Matrix_(1,1,2.0)),
|
||||
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
|
||||
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
|
||||
actual.insert(sharedClique(new Clique(make_pair(
|
||||
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
||||
boost::make_shared<GaussianConditional>(pair_list_of
|
||||
(0, Matrix_(1,1,1.0))
|
||||
(2, Matrix_(1,1,2.0)),
|
||||
|
@ -646,7 +693,7 @@ TEST(ISAM2, removeFactors)
|
|||
SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
GaussianISAM2<> isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
Values fullinit;
|
||||
planarSLAM::Graph fullgraph;
|
||||
|
||||
|
@ -740,7 +787,7 @@ TEST(ISAM2, removeFactors)
|
|||
CHECK(isam_check(fullgraph, fullinit, isam));
|
||||
|
||||
// Check gradient at each node
|
||||
typedef GaussianISAM2<>::sharedClique sharedClique;
|
||||
typedef ISAM2::sharedClique sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
||||
// Compute expected gradient
|
||||
FactorGraph<JacobianFactor> jfg;
|
||||
|
@ -785,7 +832,7 @@ TEST(ISAM2, constrained_ordering)
|
|||
SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
|
||||
|
||||
// These variables will be reused and accumulate factors and values
|
||||
GaussianISAM2<> isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
||||
Values fullinit;
|
||||
planarSLAM::Graph fullgraph;
|
||||
|
||||
|
@ -883,7 +930,7 @@ TEST(ISAM2, constrained_ordering)
|
|||
(isam.getOrdering()[planarSLAM::PoseKey(3)] == 13 && isam.getOrdering()[planarSLAM::PoseKey(4)] == 12));
|
||||
|
||||
// Check gradient at each node
|
||||
typedef GaussianISAM2<>::sharedClique sharedClique;
|
||||
typedef ISAM2::sharedClique sharedClique;
|
||||
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
||||
// Compute expected gradient
|
||||
FactorGraph<JacobianFactor> jfg;
|
||||
|
|
Loading…
Reference in New Issue