diff --git a/gtsam/nonlinear/NonlinearFactor.h b/gtsam/nonlinear/NonlinearFactor.h index 73c150695..a5a838881 100644 --- a/gtsam/nonlinear/NonlinearFactor.h +++ b/gtsam/nonlinear/NonlinearFactor.h @@ -118,7 +118,7 @@ public: /** * Calculate the error of the factor - * This is typically equal to log-likelihood, e.g. 0.5(h(x)-z)^2/sigma^2 in case of Gaussian. + * This is typically equal to log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/sigma^2 \f$ in case of Gaussian. * You can override this for systems with unusual noise models. */ virtual double error(const Values& c) const = 0; diff --git a/gtsam/nonlinear/NonlinearFactorGraph.h b/gtsam/nonlinear/NonlinearFactorGraph.h index 82b364ddf..429bf0102 100644 --- a/gtsam/nonlinear/NonlinearFactorGraph.h +++ b/gtsam/nonlinear/NonlinearFactorGraph.h @@ -49,7 +49,7 @@ namespace gtsam { /** return keys in some random order */ std::set keys() const; - /** unnormalized error */ + /** unnormalized error, \f$ 0.5 \sum_i (h_i(X_i)-z)^2/\sigma^2 \f$ in the most common case */ double error(const Values& c) const; /** Unnormalized probability. O(n) */