remove dead modes in HybridBayesNet

release/4.3a0
Varun Agrawal 2025-01-21 20:44:03 -05:00
parent ff9a56c055
commit 22bf9df39a
3 changed files with 81 additions and 5 deletions

View File

@ -19,6 +19,7 @@
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/discrete/TableDistribution.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridValues.h>
@ -46,7 +47,8 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
// TODO(Frank): This can be quite expensive *unless* the factors have already
// been pruned before. Another, possibly faster approach is branch and bound
// search to find the K-best leaves and then create a single pruned conditional.
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves,
bool removeDeadModes) const {
// Collect all the discrete conditionals. Could be small if already pruned.
const DiscreteBayesNet marginal = discreteMarginal();
@ -66,6 +68,30 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
// we can prune HybridGaussianConditionals.
DiscreteConditional pruned = *result.back()->asDiscrete();
DiscreteValues deadModesValues;
if (removeDeadModes) {
DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
for (auto dkey : pruned.discreteKeys()) {
Vector probabilities = marginals.marginalProbabilities(dkey);
int index = -1;
auto threshold = (probabilities.array() > 0.99);
// If atleast 1 value is non-zero, then we can find the index
// Else if all are zero, index would be set to 0 which is incorrect
if (!threshold.isZero()) {
threshold.maxCoeff(&index);
}
if (index >= 0) {
deadModesValues.insert(std::make_pair(dkey.first, index));
}
}
// Remove the modes (imperative)
result.back()->removeModes(deadModesValues);
pruned = *result.back()->asDiscrete();
}
/* To prune, we visitWith every leaf in the HybridGaussianConditional.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
@ -80,8 +106,28 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) const {
// Prune the hybrid Gaussian conditional!
auto prunedHybridGaussianConditional = hgc->prune(pruned);
if (removeDeadModes) {
KeyVector deadKeys, conditionalDiscreteKeys;
for (const auto &kv : deadModesValues) {
deadKeys.push_back(kv.first);
}
for (auto dkey : prunedHybridGaussianConditional->discreteKeys()) {
conditionalDiscreteKeys.push_back(dkey.first);
}
// The discrete keys in the conditional are the same as the keys in the
// dead modes, then we just get the corresponding Gaussian conditional.
if (deadKeys == conditionalDiscreteKeys) {
result.push_back(
prunedHybridGaussianConditional->choose(deadModesValues));
} else {
// Add as-is
result.push_back(prunedHybridGaussianConditional);
}
} else {
// Type-erase and add to the pruned Bayes Net fragment.
result.push_back(prunedHybridGaussianConditional);
}
} else if (auto gc = conditional->asGaussian()) {
// Add the non-HybridGaussianConditional conditional
result.push_back(gc);

View File

@ -209,9 +209,10 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
* @brief Prune the Bayes Net such that we have at most maxNrLeaves leaves.
*
* @param maxNrLeaves Continuous values at which to compute the error.
* @param removeDeadModes
* @return A pruned HybridBayesNet
*/
HybridBayesNet prune(size_t maxNrLeaves) const;
HybridBayesNet prune(size_t maxNrLeaves, bool removeDeadModes = false) const;
/**
* @brief Error method using HybridValues which returns specific error for

View File

@ -407,7 +407,7 @@ TEST(HybridBayesNet, Prune) {
HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph().eliminateSequential();
EXPECT_LONGS_EQUAL(7, posterior->size());
EXPECT_LONGS_EQUAL(5, posterior->size());
// Call Max-Product to get MAP
HybridValues delta = posterior->optimize();
@ -421,6 +421,35 @@ TEST(HybridBayesNet, Prune) {
EXPECT(assert_equal(delta.continuous(), pruned_delta.continuous()));
}
/* ****************************************************************************/
// Test Bayes net pruning and dead node removal
TEST(HybridBayesNet, RemoveDeadNodes) {
Switching s(3);
HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph().eliminateSequential();
EXPECT_LONGS_EQUAL(5, posterior->size());
// Call Max-Product to get MAP
HybridValues delta = posterior->optimize();
// Prune the Bayes net
const bool pruneDeadVariables = true;
auto prunedBayesNet = posterior->prune(2, pruneDeadVariables);
// Check that discrete joint only has M0 and not (M0, M1)
// since M0 is removed
KeyVector actual_keys = prunedBayesNet.at(0)->asDiscrete()->keys();
EXPECT(KeyVector{M(0)} == actual_keys);
// Check that hybrid conditionals that only depend on M1 are no longer hybrid
EXPECT(prunedBayesNet.at(0)->isDiscrete());
EXPECT(prunedBayesNet.at(1)->isHybrid());
// Only P(X2 | X1, M1) depends on M1, so it is Gaussian
EXPECT(prunedBayesNet.at(2)->isContinuous());
EXPECT(prunedBayesNet.at(3)->isHybrid());
}
/* ****************************************************************************/
// Test Bayes net error and log-probability after pruning
TEST(HybridBayesNet, ErrorAfterPruning) {