From 224a2f82db02e644b7df8b60eed25e9b768a84cd Mon Sep 17 00:00:00 2001 From: Frank Dellaert Date: Tue, 2 Mar 2010 01:47:58 +0000 Subject: [PATCH] Split off Lie Groups for Beginners --- doc/LieGroups.lyx | 1544 ++++++++++++++++++++++++++++++++ doc/LieGroups.pdf | Bin 0 -> 98840 bytes doc/macros.lyx | 294 ++++++ doc/math.lyx | 2172 ++++++++++----------------------------------- doc/math.pdf | Bin 133585 -> 114013 bytes 5 files changed, 2329 insertions(+), 1681 deletions(-) create mode 100644 doc/LieGroups.lyx create mode 100644 doc/LieGroups.pdf create mode 100644 doc/macros.lyx diff --git a/doc/LieGroups.lyx b/doc/LieGroups.lyx new file mode 100644 index 000000000..1076188bf --- /dev/null +++ b/doc/LieGroups.lyx @@ -0,0 +1,1544 @@ +#LyX 1.6.5 created this file. For more info see http://www.lyx.org/ +\lyxformat 345 +\begin_document +\begin_header +\textclass article +\use_default_options false +\begin_modules +theorems-std +\end_modules +\language english +\inputencoding auto +\font_roman times +\font_sans default +\font_typewriter default +\font_default_family rmdefault +\font_sc false +\font_osf false +\font_sf_scale 100 +\font_tt_scale 100 + +\graphics default +\paperfontsize 12 +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_amsmath 1 +\use_esint 0 +\cite_engine basic +\use_bibtopic false +\paperorientation portrait +\leftmargin 1in +\topmargin 1in +\rightmargin 1in +\bottommargin 1in +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\defskip medskip +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\author "" +\author "" +\end_header + +\begin_body + +\begin_layout Title +Lie Groups for Beginners +\end_layout + +\begin_layout Author +Frank Dellaert +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand include +filename "macros.lyx" + +\end_inset + + +\end_layout + +\begin_layout Section +Basic Lie Group Concepts +\end_layout + +\begin_layout Subsection +A Manifold and a Group +\end_layout + +\begin_layout Standard +A Lie group +\begin_inset Formula $G$ +\end_inset + + is a manifold that possesses a smooth group operation. + Associated with it is a Lie Algebra +\begin_inset Formula $\gg$ +\end_inset + + which, loosely speaking, can be identified with the tangent space at the + identity and completely defines how the groups behaves around the identity. + There is a mapping from +\begin_inset Formula $\gg$ +\end_inset + + back to +\begin_inset Formula $G$ +\end_inset + +, called the exponential map +\begin_inset Formula \[ +\exp:\gg\rightarrow G\] + +\end_inset + +and a corresponding inverse +\begin_inset Formula \[ +\log:G\rightarrow\gg\] + +\end_inset + +that maps elements in G to an element in +\begin_inset Formula $\gg$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Lie Algebra +\end_layout + +\begin_layout Standard +The Lie Algebra +\begin_inset Formula $\gg$ +\end_inset + + is called an algebra because it is endowed with a binary operation, the + Lie bracket +\begin_inset Formula $[X,Y]$ +\end_inset + +, the properties of which are closely related to the group operation of + +\begin_inset Formula $G$ +\end_inset + +. + For example, in matrix Lie groups, the Lie bracket is given by +\begin_inset Formula $[A,B]\define AB-BA$ +\end_inset + +. + The relationship with the group operation is as follows: for commutative + Lie groups vector addition +\begin_inset Formula $X+Y$ +\end_inset + + in +\begin_inset Formula $\gg$ +\end_inset + + mimicks the group operation. + For example, if we have +\begin_inset Formula $Z=X+Y$ +\end_inset + + in +\begin_inset Formula $\gg$ +\end_inset + +, when mapped backed to +\begin_inset Formula $G$ +\end_inset + + via the exponential map we obtain +\begin_inset Formula \[ +e^{Z}=e^{X+Y}=e^{X}e^{Y}\] + +\end_inset + +However, this does +\emph on +not +\emph default + hold for non-commutative Lie groups: +\begin_inset Formula \[ +Z=\log(e^{X}e^{Y})\neq X+Y\] + +\end_inset + +Instead, +\begin_inset Formula $Z$ +\end_inset + + can be calculated using the Baker-Campbell-Hausdorff (BCH) formula: +\begin_inset Foot +status collapsed + +\begin_layout Plain Layout +http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula +\end_layout + +\end_inset + + +\begin_inset Formula \[ +Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\] + +\end_inset + +For commutative groups the bracket is zero and we recover +\begin_inset Formula $Z=X+Y$ +\end_inset + +. + For non-commutative groups we can use the BCH formula to approximate it. +\end_layout + +\begin_layout Subsection +Exponential Coordinates +\end_layout + +\begin_layout Standard +For +\begin_inset Formula $n$ +\end_inset + +-dimensional matrix Lie groups, the Lie algebra +\begin_inset Formula $\gg$ +\end_inset + + is isomorphic to +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, and we can define the mapping +\begin_inset Formula \[ +\hat{}:\mathbb{R}^{n}\rightarrow\gg\] + +\end_inset + + +\begin_inset Formula \[ +\hat{}:x\rightarrow\xhat\] + +\end_inset + +which maps +\begin_inset Formula $n$ +\end_inset + +-vectors +\begin_inset Formula $x\in$ +\end_inset + + +\begin_inset Formula $\Rn$ +\end_inset + + to elements of +\begin_inset Formula $\gg$ +\end_inset + +. + In the case of matrix Lie groups, the elements +\begin_inset Formula $\xhat$ +\end_inset + + of +\begin_inset Formula $\gg$ +\end_inset + + are +\begin_inset Formula $n\times n$ +\end_inset + + matrices, and the map is given by +\begin_inset Formula \begin{equation} +\xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}\end{equation} + +\end_inset + +where the +\begin_inset Formula $G^{i}$ +\end_inset + + are +\begin_inset Formula $n\times n$ +\end_inset + + matrices known as the Lie group generators. + The meaning of the map +\begin_inset Formula $x\rightarrow\xhat$ +\end_inset + + will depend on the group +\begin_inset Formula $G$ +\end_inset + + and will be very intuitive. +\end_layout + +\begin_layout Subsection +The Adjoint Map +\end_layout + +\begin_layout Standard +Below we frequently make use of the equality +\begin_inset Foot +status collapsed + +\begin_layout Plain Layout +http://en.wikipedia.org/wiki/Exponential_map +\end_layout + +\end_inset + + +\begin_inset Formula \[ +ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\] + +\end_inset + +where +\begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$ +\end_inset + + is a map parameterized by a group element +\begin_inset Formula $g$ +\end_inset + +. + The intuitive explanation is that a change +\begin_inset Formula $\exp\left(\xhat\right)$ +\end_inset + + defined around the orgin, but applied at the group element +\begin_inset Formula $g$ +\end_inset + +, can be written in one step by taking the adjoint +\begin_inset Formula $\Ad g{\xhat}$ +\end_inset + + of +\begin_inset Formula $\xhat$ +\end_inset + +. + In the case of a matrix group the ajoint can be written as +\begin_inset Foot +status collapsed + +\begin_layout Plain Layout +http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group +\end_layout + +\end_inset + + +\begin_inset Formula \[ +\Ad T{\xhat}\define Te^{\xhat}T^{-1}\] + +\end_inset + +and hence we have +\end_layout + +\begin_layout Standard +\begin_inset Formula \[ +Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\] + +\end_inset + +where both +\begin_inset Formula $T$ +\end_inset + + and +\begin_inset Formula $\xhat$ +\end_inset + + are +\begin_inset Formula $n\times n$ +\end_inset + + matrices for an +\begin_inset Formula $n$ +\end_inset + +-dimensional Lie group. +\end_layout + +\begin_layout Subsection +Actions +\end_layout + +\begin_layout Standard +The (usual) action of an +\begin_inset Formula $n$ +\end_inset + +-dimensional matrix group +\begin_inset Formula $G$ +\end_inset + + is matrix-vector multiplication on +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula \[ +q=Tp\] + +\end_inset + +with +\begin_inset Formula $p,q\in\mathbb{R}^{n}$ +\end_inset + + and +\begin_inset Formula $T\in GL(n)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +2D Rotations +\end_layout + +\begin_layout Standard +We first look at a very simple group, the 2D rotations. +\end_layout + +\begin_layout Subsection +Basics +\end_layout + +\begin_layout Standard +The Lie group +\begin_inset Formula $\SOtwo$ +\end_inset + + is a subgroup of the general linear group +\begin_inset Formula $GL(2)$ +\end_inset + + of +\begin_inset Formula $2\times2$ +\end_inset + + invertible matrices. + Its Lie algebra +\begin_inset Formula $\sotwo$ +\end_inset + + is the vector space of +\begin_inset Formula $2\times2$ +\end_inset + + skew-symmetric matrices. + Since +\begin_inset Formula $\SOtwo$ +\end_inset + + is a one-dimensional manifold, +\begin_inset Formula $\sotwo$ +\end_inset + + is isomorphic to +\begin_inset Formula $\mathbb{R}$ +\end_inset + + and we define +\begin_inset Formula \[ +\hat{}:\mathbb{R}\rightarrow\sotwo\] + +\end_inset + + +\begin_inset Formula \[ +\hat{}:\theta\rightarrow\that=\skew{\theta}\] + +\end_inset + +which maps the angle +\begin_inset Formula $\theta$ +\end_inset + + to the +\begin_inset Formula $2\times2$ +\end_inset + + skew-symmetric matrix +\family roman +\series medium +\shape up +\size normal +\emph off +\bar no +\noun off +\color none + +\begin_inset Formula $\skew{\theta}$ +\end_inset + +: +\family default +\series default +\shape default +\size default +\emph default +\bar default +\noun default +\color inherit + +\begin_inset Formula \[ +\skew{\theta}=\left[\begin{array}{cc} +0 & -\theta\\ +\theta & 0\end{array}\right]\] + +\end_inset + +The exponential map can be computed in closed form as +\begin_inset Formula \[ +R=e^{\skew{\theta}}=\left[\begin{array}{cc} +\cos\theta & -\sin\theta\\ +\sin\theta & \cos\theta\end{array}\right]\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Actions +\end_layout + +\begin_layout Standard +In the case of +\begin_inset Formula $\SOtwo$ +\end_inset + + the vector space is +\begin_inset Formula $\Rtwo$ +\end_inset + +, and the group action corresponds to rotating a point +\begin_inset Formula \[ +q=Rp\] + +\end_inset + +We would now like to know what an incremental rotation parameterized by + +\begin_inset Formula $\theta$ +\end_inset + + would do: +\begin_inset Formula \[ +q(\text{\theta})=Re^{\skew{\theta}}p\] + +\end_inset + +hence the derivative is: +\begin_inset Formula \[ +\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\] + +\end_inset + +Note that +\begin_inset Formula \begin{equation} +\skew{\theta}\left[\begin{array}{c} +x\\ +y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c} +x\\ +y\end{array}\right]=\theta\left[\begin{array}{c} +-y\\ +x\end{array}\right]\label{eq:RestrictedCross}\end{equation} + +\end_inset + +which acts like a restricted +\begin_inset Quotes eld +\end_inset + +cross product +\begin_inset Quotes erd +\end_inset + + in the plane. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +2D Rigid Transformations +\end_layout + +\begin_layout Subsection +Basics +\end_layout + +\begin_layout Standard +The Lie group +\begin_inset Formula $\SEtwo$ +\end_inset + + is a subgroup of the general linear group +\begin_inset Formula $GL(3)$ +\end_inset + + of +\begin_inset Formula $3\times3$ +\end_inset + + invertible matrices of the form +\begin_inset Formula \[ +T\define\left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\] + +\end_inset + +where +\begin_inset Formula $R\in\SOtwo$ +\end_inset + + is a rotation matrix and +\begin_inset Formula $t\in\Rtwo$ +\end_inset + + is a translation vector. + Its Lie algebra +\begin_inset Formula $\setwo$ +\end_inset + + is the vector space of +\begin_inset Formula $3\times3$ +\end_inset + + twists +\begin_inset Formula $\xihat$ +\end_inset + + parameterized by the +\emph on +twist coordinates +\emph default + +\begin_inset Formula $\xi\in\Rthree$ +\end_inset + +, with the mapping +\begin_inset Formula \[ +\xi\define\left[\begin{array}{c} +v\\ +\omega\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} +\skew{\omega} & v\\ +0 & 0\end{array}\right]\] + +\end_inset + +Note we think of robots as having a pose +\begin_inset Formula $(x,y,\theta)$ +\end_inset + + and hence I reserved the first two components for translation and the last + for rotation. + +\family roman +\series medium +\shape up +\size normal +\emph off +\bar no +\noun off +\color none +The Lie group generators are +\begin_inset Formula \[ +G^{x}=\left[\begin{array}{ccc} +0 & 0 & 1\\ +0 & 0 & 0\\ +0 & 0 & 0\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc} +0 & 0 & 0\\ +0 & 0 & 1\\ +0 & 0 & 0\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc} +0 & -1 & 0\\ +1 & 0 & 0\\ +0 & 0 & 0\end{array}\right]\] + +\end_inset + + +\family default +\series default +\shape default +\size default +\emph default +\bar default +\noun default +\color inherit +Applying the exponential map to a twist +\begin_inset Formula $\xi$ +\end_inset + + yields a screw motion yielding an element in +\begin_inset Formula $\SEtwo$ +\end_inset + +: +\begin_inset Formula \[ +T=\exp\xihat\] + +\end_inset + +A closed form solution for the exponential map is in the works... +\end_layout + +\begin_layout Subsection +The Adjoint Map +\end_layout + +\begin_layout Standard +The adjoint is +\begin_inset Formula \begin{eqnarray} +\Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\ + & = & \left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\left[\begin{array}{cc} +\skew{\omega} & v\\ +0 & 0\end{array}\right]\left[\begin{array}{cc} +R^{T} & -R^{T}t\\ +0 & 1\end{array}\right]\nonumber \\ + & = & \left[\begin{array}{cc} +\skew{\omega} & -\skew{\omega}t+Rv\\ +0 & 0\end{array}\right]\nonumber \\ + & = & \left[\begin{array}{cc} +\skew{\omega} & Rv-\omega R_{\pi/2}t\\ +0 & 0\end{array}\right]\label{eq:adjointSE2}\end{eqnarray} + +\end_inset + +From this we can express the Adjoint map in terms of plane twist coordinates: +\begin_inset Formula \[ +\left[\begin{array}{c} +v'\\ +\omega'\end{array}\right]=\left[\begin{array}{cc} +R & -R_{\pi/2}t\\ +0 & 1\end{array}\right]\left[\begin{array}{c} +v\\ +\omega\end{array}\right]\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Actions +\end_layout + +\begin_layout Standard +The action of +\begin_inset Formula $\SEtwo$ +\end_inset + + on 2D points is done by embedding the points in +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + by using homogeneous coordinates +\begin_inset Formula \[ +\hat{q}=\left[\begin{array}{c} +q\\ +1\end{array}\right]=\left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=T\hat{p}\] + +\end_inset + +Analoguous to +\begin_inset Formula $\SEthree$ +\end_inset + +, we can compute a velocity +\begin_inset Formula $\xihat\hat{p}$ +\end_inset + + in the local +\begin_inset Formula $T$ +\end_inset + + frame: +\begin_inset Formula \[ +\xihat\hat{p}=\left[\begin{array}{cc} +\skew{\omega} & v\\ +0 & 0\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=\left[\begin{array}{c} +\skew{\omega}p+v\\ +0\end{array}\right]\] + +\end_inset + +By only taking the top two rows, we can write this as a velocity in +\begin_inset Formula $\Rtwo$ +\end_inset + +, as the product of a +\begin_inset Formula $2\times3$ +\end_inset + + matrix +\begin_inset Formula $H_{p}$ +\end_inset + + that acts upon the exponential coordinates +\begin_inset Formula $\xi$ +\end_inset + + directly: +\begin_inset Formula \[ +\skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc} +I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c} +v\\ +\omega\end{array}\right]=H_{p}\xi\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +3D Rotations +\end_layout + +\begin_layout Subsection +Basics +\end_layout + +\begin_layout Standard +The Lie group +\begin_inset Formula $\SOthree$ +\end_inset + + is a subgroup of the general linear group +\begin_inset Formula $GL(3)$ +\end_inset + + of +\begin_inset Formula $3\times3$ +\end_inset + + invertible matrices. + Its Lie algebra +\begin_inset Formula $\sothree$ +\end_inset + + is the vector space of +\begin_inset Formula $3\times3$ +\end_inset + + skew-symmetric matrices. + The exponential map can be computed in closed form using Rodrigues' formula. +\end_layout + +\begin_layout Standard +Since +\begin_inset Formula $\SOthree$ +\end_inset + + is a three-dimensional manifold, +\begin_inset Formula $\sothree$ +\end_inset + + is isomorphic to +\begin_inset Formula $\Rthree$ +\end_inset + + and we define the map +\begin_inset Formula \[ +\hat{}:\Rthree\rightarrow\sothree\] + +\end_inset + + +\begin_inset Formula \[ +\hat{}:\omega\rightarrow\what=\Skew{\omega}\] + +\end_inset + +which maps 3-vectors +\begin_inset Formula $\omega$ +\end_inset + + to skew-symmetric matrices +\begin_inset Formula $\Skew{\omega}$ +\end_inset + + : +\begin_inset Formula \[ +\Skew{\omega}=\left[\begin{array}{ccc} +0 & -\omega_{z} & \omega_{y}\\ +\omega_{z} & 0 & -\omega_{x}\\ +-\omega_{y} & \omega_{x} & 0\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}\] + +\end_inset + +where the +\begin_inset Formula $G^{i}$ +\end_inset + + are the generators for +\begin_inset Formula $\SOthree$ +\end_inset + +, +\begin_inset Formula \[ +G^{x}=\left(\begin{array}{ccc} +0 & 0 & 0\\ +0 & 0 & -1\\ +0 & 1 & 0\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc} +0 & 0 & 1\\ +0 & 0 & 0\\ +-1 & 0 & 0\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc} +0 & -1 & 0\\ +1 & 0 & 0\\ +0 & 0 & 0\end{array}\right)\] + +\end_inset + +corresponding to a rotation around +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $Y$ +\end_inset + +, and +\begin_inset Formula $Z$ +\end_inset + +, respectively. + The Lie bracket +\begin_inset Formula $[x,y]$ +\end_inset + + corresponds to the cross product +\begin_inset Formula $x\times y$ +\end_inset + + in +\begin_inset Formula $\Rthree$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For every +\begin_inset Formula $3-$ +\end_inset + +vector +\begin_inset Formula $\omega$ +\end_inset + + there is a corresponding rotation matrix +\begin_inset Formula \[ +R=e^{\Skew{\omega}}\] + +\end_inset + +and this is defines the canonical parameterization of +\begin_inset Formula $\SOthree$ +\end_inset + +, with +\begin_inset Formula $\omega$ +\end_inset + + known as the canonical or exponential coordinates. + It is equivalent to the axis-angle representation for rotations, where + the unit vector +\begin_inset Formula $\omega/\left\Vert \omega\right\Vert $ +\end_inset + + defines the rotation axis, and its magnitude the amount of rotation +\begin_inset Formula $\theta$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +The Adjoint Map +\end_layout + +\begin_layout Standard +For rotation matrices +\begin_inset Formula $R$ +\end_inset + + we can prove the following identity (see +\begin_inset CommandInset ref +LatexCommand vref +reference "remove" + +\end_inset + +): +\begin_inset Formula \begin{equation} +R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}\end{equation} + +\end_inset + +Hence, given property +\begin_inset CommandInset ref +LatexCommand eqref +reference "remove" + +\end_inset + +, the adjoint map for +\begin_inset Formula $\sothree$ +\end_inset + + simplifies to +\begin_inset Formula \[ +\Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}\] + +\end_inset + +and this can be expressed in exponential coordinates simply by rotating + the axis +\begin_inset Formula $\omega$ +\end_inset + + to +\begin_inset Formula $R\omega$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +As an example, to apply an axis-angle rotation +\begin_inset Formula $\omega$ +\end_inset + + to a point +\begin_inset Formula $p$ +\end_inset + + in the frame +\begin_inset Formula $R$ +\end_inset + +, we could: +\end_layout + +\begin_layout Enumerate +First transform +\begin_inset Formula $p$ +\end_inset + + back to the world frame, apply +\begin_inset Formula $\omega$ +\end_inset + +, and then rotate back: +\begin_inset Formula \[ +q=Re^{\Skew{\omega}}R^{T}\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Immediately apply the transformed axis-angle transformation +\begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$ +\end_inset + +: +\begin_inset Formula \[ +q=e^{\Skew{R\omega}}p\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Actions +\end_layout + +\begin_layout Standard +In the case of +\begin_inset Formula $\SOthree$ +\end_inset + + the vector space is +\begin_inset Formula $\Rthree$ +\end_inset + +, and the group action corresponds to rotating a point +\begin_inset Formula \[ +q=Rp\] + +\end_inset + +We would now like to know what an incremental rotation parameterized by + +\begin_inset Formula $\omega$ +\end_inset + + would do: +\begin_inset Formula \[ +q(\omega)=Re^{\Skew{\omega}}p\] + +\end_inset + +hence the derivative is: +\begin_inset Formula \[ +\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=RH_{p}\] + +\end_inset + +To calculate +\begin_inset Formula $H_{p}$ +\end_inset + + we make use of +\begin_inset Formula \[ +\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +3D Rigid Transformations +\end_layout + +\begin_layout Standard +The Lie group +\begin_inset Formula $\SEthree$ +\end_inset + + is a subgroup of the general linear group +\begin_inset Formula $GL(4)$ +\end_inset + + of +\begin_inset Formula $4\times4$ +\end_inset + + invertible matrices of the form +\begin_inset Formula \[ +T\define\left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\] + +\end_inset + +where +\begin_inset Formula $R\in\SOthree$ +\end_inset + + is a rotation matrix and +\begin_inset Formula $t\in\Rthree$ +\end_inset + + is a translation vector. + Its Lie algebra +\begin_inset Formula $\sethree$ +\end_inset + + is the vector space of +\begin_inset Formula $4\times4$ +\end_inset + + twists +\begin_inset Formula $\xihat$ +\end_inset + + parameterized by the +\emph on +twist coordinates +\emph default + +\begin_inset Formula $\xi\in\Rsix$ +\end_inset + +, with the mapping +\begin_inset CommandInset citation +LatexCommand cite +key "Murray94book" + +\end_inset + + +\begin_inset Formula \[ +\xi\define\left[\begin{array}{c} +\omega\\ +v\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} +\Skew{\omega} & v\\ +0 & 0\end{array}\right]\] + +\end_inset + +Note we follow Frank Park's convention and reserve the first three components + for rotation, and the last three for translation. + Hence, with this parameterization, the generators for +\begin_inset Formula $\SEthree$ +\end_inset + + are +\begin_inset Formula \[ +G^{1}=\left(\begin{array}{cccc} +0 & 0 & 0 & 0\\ +0 & 0 & -1 & 0\\ +0 & 1 & 0 & 0\\ +0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc} +0 & 0 & 1 & 0\\ +0 & 0 & 0 & 0\\ +-1 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc} +0 & -1 & 0 & 0\\ +1 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\end{array}\right)\] + +\end_inset + + +\begin_inset Formula \[ +G^{4}=\left(\begin{array}{cccc} +0 & 0 & 0 & 1\\ +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc} +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 1\\ +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc} +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 0\\ +0 & 0 & 0 & 1\\ +0 & 0 & 0 & 0\end{array}\right)\] + +\end_inset + +Applying the exponential map to a twist +\begin_inset Formula $\xi$ +\end_inset + + yields a screw motion yielding an element in +\begin_inset Formula $\SEthree$ +\end_inset + +: +\begin_inset Formula \[ +T=\exp\xihat\] + +\end_inset + +A closed form solution for the exponential map is given in +\begin_inset CommandInset citation +LatexCommand cite +after "page 42" +key "Murray94book" + +\end_inset + +. +\end_layout + +\begin_layout Subsection +The Adjoint Map +\end_layout + +\begin_layout Standard +The adjoint is +\begin_inset Formula \begin{eqnarray*} +\Ad T{\xihat} & = & T\xihat T^{-1}\\ + & = & \left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\left[\begin{array}{cc} +\Skew{\omega} & v\\ +0 & 0\end{array}\right]\left[\begin{array}{cc} +R^{T} & -R^{T}t\\ +0 & 1\end{array}\right]\\ + & = & \left[\begin{array}{cc} +\Skew{R\omega} & -\Skew{R\omega}t+Rv\\ +0 & 0\end{array}\right]\\ + & = & \left[\begin{array}{cc} +\Skew{R\omega} & t\times R\omega+Rv\\ +0 & 0\end{array}\right]\end{eqnarray*} + +\end_inset + +From this we can express the Adjoint map in terms of twist coordinates (see + also +\begin_inset CommandInset citation +LatexCommand cite +key "Murray94book" + +\end_inset + + and FP): +\begin_inset Formula \[ +\left[\begin{array}{c} +\omega'\\ +v'\end{array}\right]=\left[\begin{array}{cc} +R & 0\\ +\Skew tR & R\end{array}\right]\left[\begin{array}{c} +\omega\\ +v\end{array}\right]\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Actions +\end_layout + +\begin_layout Standard +The action of +\begin_inset Formula $\SEthree$ +\end_inset + + on 3D points is done by embedding the points in +\begin_inset Formula $\mathbb{R}^{4}$ +\end_inset + + by using homogeneous coordinates +\begin_inset Formula \[ +\hat{q}=\left[\begin{array}{c} +q\\ +1\end{array}\right]=\left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=T\hat{p}\] + +\end_inset + +We would now like to know what an incremental rotation parameterized by + +\begin_inset Formula $\xi$ +\end_inset + + would do: +\begin_inset Formula \[ +\hat{q}(\xi)=Te^{\xihat}\hat{p}\] + +\end_inset + +hence the derivative (following the exposition in Section +\begin_inset CommandInset ref +LatexCommand ref +reference "sec:Derivatives-of-Actions" + +\end_inset + +): +\begin_inset Formula \[ +\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=TH_{p}\] + +\end_inset + +where +\begin_inset Formula $\xihat\hat{p}$ +\end_inset + + corresponds to a velocity in +\begin_inset Formula $\mathbb{R}^{4}$ +\end_inset + + (in the local +\begin_inset Formula $T$ +\end_inset + + frame): +\begin_inset Formula \[ +\xihat\hat{p}=\left[\begin{array}{cc} +\Skew{\omega} & v\\ +0 & 0\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=\left[\begin{array}{c} +\omega\times p+v\\ +0\end{array}\right]\] + +\end_inset + +Notice how velocities are anologous to points at infinity in projective + geometry: they correspond to free vectors indicating a direction and magnitude + of change. +\end_layout + +\begin_layout Standard +By only taking the top three rows, we can write this as a velocity in +\begin_inset Formula $\Rthree$ +\end_inset + +, as the product of a +\begin_inset Formula $3\times6$ +\end_inset + + matrix +\begin_inset Formula $H_{p}$ +\end_inset + + that acts upon the exponential coordinates +\begin_inset Formula $\xi$ +\end_inset + + directly: +\begin_inset Formula \[ +\omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc} +-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c} +\omega\\ +v\end{array}\right]=H_{p}\xi\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section* +Appendix: Proof of Property +\begin_inset CommandInset ref +LatexCommand ref +reference "remove" + +\end_inset + + +\end_layout + +\begin_layout Standard +We can prove the following identity for rotation matrices +\begin_inset Formula $R$ +\end_inset + +, +\begin_inset Formula \begin{eqnarray} +R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc} +a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\ + & = & R\left[\begin{array}{ccc} +\omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\ + & = & \left[\begin{array}{ccc} +a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\ +a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\ +a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})\end{array}\right]\nonumber \\ + & = & \left[\begin{array}{ccc} +\omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\ +\omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\ +\omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})\end{array}\right]\nonumber \\ + & = & \left[\begin{array}{ccc} +0 & -\omega a_{3} & \omega a_{2}\\ +\omega a_{3} & 0 & -\omega a_{1}\\ +-\omega a_{2} & \omega a_{1} & 0\end{array}\right]\nonumber \\ + & = & \Skew{R\omega}\label{remove}\end{eqnarray} + +\end_inset + +where +\begin_inset Formula $a_{1}$ +\end_inset + +, +\begin_inset Formula $a_{2}$ +\end_inset + +, and +\begin_inset Formula $a_{3}$ +\end_inset + + are the +\emph on +rows +\emph default + of +\begin_inset Formula $R$ +\end_inset + +. + Above we made use of the orthogonality of rotation matrices and the triple + product rule: +\begin_inset Formula \[ +a(b\times c)=b(c\times a)=c(a\times b)\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset bibtex +LatexCommand bibtex +bibfiles "/Users/dellaert/papers/refs" +options "plain" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/doc/LieGroups.pdf b/doc/LieGroups.pdf new file mode 100644 index 0000000000000000000000000000000000000000..15c97254ecbe6db4c4fee7fa343395a0d4878c2c GIT binary patch literal 98840 zcmb@tV|ZoTwly5vNyS*PZQHi(RBWeW+Z9_Ct76->?Mf=rx-+kAw z%=wHy=U8Lq>8tA24{Cmw1=FB{wUrY+^_OjarZQOGv|%hAm)3q;IZGKgfn% zJyDPZ2%;q50>~fA!k5Iqma9q$1^dMYBzW8(qfFPtjbp1wj%iP{Ss&HYLtAkGU`%aI z{%hC2{`&QeVVM5(%~d??O#$=@hUTU)^ul(w&Zf4`PJrKzMhS*q$<)ct#nIT*3BdS| z8?vS*mWD!h?f`9uUpLqonE>pZOu8_?!X1Cb0oZ?E#m5KuulM{G^~VW|{d)GVqyBZC zEGz)F-xdOXohH44qn)v`sWU+P*B(T~0Q4%R?#=++UkCl)&-m?4e>~*BekLY1R<^(U zGc9Oo+pT~9R)b&kwLEK6#db-VQNgKIbK ztAm!cKL|uf{&0cQo*Uim#l}EIj(r)r22sG%?xi8&h)@blGF+~b47}tBZ>kav!OM48W2O}{sQjcJ+xj!v zkSZ+XQw)~C0&UK6?!MYRbh05?*4CL$oRHPm7SrSmJXc+I+x6vZ<1N>h*6P9H&oici z$r_t*!p&CYwf81DUu(*+He!Nc$w_{6P>=`*jfnzdn~Uv|3i@ zcsnnD!=FFE$A7j>WrjbHFm~u=!^Y)ZzUZ;3b1voZ#*d3NZS3 zAI<7eZQNLV=ir(#RKPj#UU93O5omNt1mqt;Qt!o%*6&RgZ2`eTYwDSskmCYBk|Y>& z%t3!}<5c&iP~@k|YH#!;&=okd_)tTy&r!5Gy;$70ABXwCTSQLXp#_VYf>s zU|+{kHSwe96Ol@m0bG(O$Q}g-07fZb3*eH`hp`ry+ls=31LkmzPu^ZhDl?w{-65X>>ETkANf>r379=Grv4FD!a0fL%4=w!FT!hxOsvCjKlAE$b~=JaiK zVR4A|=k$^`fzeJ6SKE_|i6q=qh>?QVtALy|khV}enqs`5U*qeDf#ec*D*`4pYC}~f zYuREhCTLDvnB@8Eq`e>s?ryDJ=l5D}^!_7`z!@a?nUfz{WK{-BYr|ml_&9q(2rE2q zFV&pF$ith3Nk{9XVIGN27|>4y{1}OfSTi1K+k+^y5nHz*64>2cAJX^Ft&-KsG_rh6cqsT5 zZw}S2!}(IhB!kH%mqLcmP{mVNMELKV(%Vic2D`ynLF$Whg8}HMY>iD}2=x!ZXN#8` zI@se#u|`uWemW2_zMrY&CsuU%#{4=U1@J0oS=RUa+1xyCIAz@U)nxA#48T`9xa2bS zdZCad~#KV#<`kPN4{^<&C05a(ELr0{TSV&3BedL*|v_lUnjV6?fU-u8tD1Ffyuqj6=mWgC9SI=-&Dp z62^MK#ko>2NOE2Y47S&b4xGr3L=NRR`OrCO%@I~k5IJMW55`vlPTW``!_0a-<}f7+ z=vm;&G^3SD+eO3*#ObP6MnXUZQR@2=&Ea4R#pJI3>4A`GR1yCFRhr3o+Heu|j8?GwtgM1Ok6kjKFZeaF^+ueju9uY1#7GyLiG z?74u|O2|LPnIFQ#56pY^V40#DK&7eivCV_iy*cdL(fgO z%T_CwJ@XhSvcJMnYatE_tg?w2l6bjEgT1X4FE^lBhr#o>yJz`9@VF3k$ejX(yt-oL zk~vQS`?E(YBryl^7i@KLNv15wF;Ejl`y{xpta+)ct)0E62o?`VsFPEKzh zgsO*-6Q@ky3}sejiSS@@h(rR(AYh5 zCb=bm$&&%sm9S-kf<&5?jQpcj8AyIrBQ#K&>&!bh${Y&)5DfG|L5RuiJVQo17Eqjn z0g+ghjb2MP3_Tgo)It;|DeAY_PANkiUF=;L><`g`5V<*?>1e&fhfD!3JAn)v4fxb1 z$8l><=iA=a-NYC;@gYbVAu)ncu`$3;zv)MVaTe)#JqC^zqD7l+paTMSHgE|-eIoST zXH)O>VwXN%2G}_QG*9~{qI!3t2$~*d6K8?}$cRlouOcZ;z^kqTMo?{wTCT%{8ScYU zwcY})rxhRTi|2+)Y5fP`-6M=yF2F)>Ky4IKNaVOM&0$vNNql%c`*Wngy}p#Gj}E0v zw|+sfA84*9^U1$*YtBE>)ql&a8Gj?Re<9Z#|G4oVlI!21{@}&`B-e}#9011O>HD9V zHoX|*FRsq`586#H#?As@{B55~zt%7^vI3ZXD+vB^!2)1n{qGA#0MqY#`+XTZfcf_- z;Mc{kDv6op_f>z3!ZZI?7yPl+KPoLY7S6v*;U_etoz~cpI?vP@*saKdu1UI`J!?uN zi_>qX)tXuM{7E&8Xcd`6mt6gPFu)`NP)N9C5qZO77cPwmwwlK(R`z#6kDv)lk%-ba z$P&mD=Ad-WL)=0B1^O*5a`@J+_ zUKoLGR@_BIKHs)ec2urHryCIYQu#E-JYQ;@rc#QT8f}~I@MW1pG`X}r@}g%{HEFY! z@9zbc#IB4snZ*cmgWawu@xdt5G2Br(36SG(Rz<^6aO)G1NeZzuuq;R15wgQ@NjP_T z-0qaBmbN>)PkPT~8ts?XM&DZNdxBx*Y1os91Q)(%4o;%Zzf^I92Cm@P?Nn1DmzCvg z=xVYenkuiZw_pt83{e4JVNGqsV~GbP zdxR&BX9s;R)k$xxz`3eia?;LtfmCMwe03nUB?~S0wiepaWkF3Gh5ssDJ$BgAy!L=i z3ZBr{y1)TGw%M+L<@w0@^a1`5ASN24=KErgvXmt>- zracIm1cFqJn{G^3nNd95b}NL3Oc0VV*PE&A$l&Ng3^<=T`b|h*UuJvhh|660(J9s< zv#Ra}S&HdC*w8UCW$m)X^Lc3!=f6!rc+#VDMmSj@IS%5emtOiro~{>wQt*QjvlL`8%rByx?e5}k1Hrlr}aA763XWOy|P54Xspij^OdP5bJ3Te=#L@W zX1eH)$a}<>F4vY|wTp5pFZC=@D3*VbBoFKFKBJX!Vxj=zjWKFmOXuM@` zVTIdANh?}Lg5tmgZ{8fN<9CFlr!gFc5?(Okk%6TU-WQHoGBCn)qTDlhiRD4aDK!Q` zrVd)4kW|2VVU(`{TO>Te) zU{wYE%LOZi%5$p`(w?V4iuI6dKK7DWxn03i_;AfDltC>9dlMh}u&sTA;=xwsf9w@J z7^MhA);AJCTMx6fffEHqvzbQHteJg^3?5dTO09pi5(Yzb%W#U5V#E#XM9GoAn#(^r zLWOOdxQT>yA)LIN6P?oT;j>`}Yasmj#uGlXW%S+}(Qq|;6kc=k%GY}f+dVB2&M z@;)f2f&0X87Ol>=qux2zlC^M8Pv`z-WpPv)%KOdyf@eR5?ct~1u(oQuItkI1!=^EI z6qbLZJg#pI=Vpy0$LEJuW=Qv+#baxSh8sx?$rCR25?7qoVE(h~a`d_wAFjLH$OLLj z%h$l9GVTYOVvkxm@p| zbRq2cePc)yfWnb{8*Xq#E5+-mIw#>A_-iMFxU_iE+jC^CnH+@9OOzp2f-e};?Z_Sy z>Gd7z(zf^Kz=+jK_mQjozZfvB%Y@Zc(!ITT-n{HD>B&Px)CtTbe@MWxK-pP)8f=6Z zeg)Rq$FH-v`t}Cs$*cxrJB;#=0xeUWJKxmRNrT}{aXXl#k&1rpbODwxu8GlW_gn43 zR%R{I)3*zt*Y3C&uTY&fBEk*nT5I?ych$|%wYlFGhNWCuTl?$-FX4*^SfwCG8ziT( zX^R9okb;+6*?$EE$a>iRE2cC52AqEY*uMq!-y!ZVpw9d|jKa|Whp7I0*dMR@C#?Us zX7+y}`Crld&)Cn%_$Mg;E8zcIB>(Nf|Bd&53)WfwjWWl`$?><9xd~0_#5FdQU$9QW zUS>q(js&zrMX;D`!d|A*Ihn$WN#zzL(j}v@p~wr!f1x;l`Wgg+lubNd+NH+Ta$^SB8&WG z6>W1{wBLJE8G&o{`rZ5F2PTPCfJlG%d|4t&JQaOn9Es_wrEuEPkL7z)hP+R-L$qV@GujrDhakvWxTQ-ab$WGtm~lUEe{H4&78 zJ3~bD6=78P>-B^>m%5|N3ZL%|TF!2Fmwq3l z<;^4@{Ovkd=k1&0^w8yZUL!q1ayw9qc48hT%wpjqp8l;JqgLtn8XKwXIChOTopz(D zI|@+KlsJkjJpNtEu%hQb=J0)yu$&A~!eYIhwAWc$xHV(v6+|A;ZO%$Xu?&Uy>r1n> zSh$T9jpelGky6ru6TU&wRc?D1+S$S%I5oyGgr#5>V_t_BLfEP3?4o{k* z(92x)u7x6xJ9YJQ?P4&vrYc9hlvvPst79?|r1OoVSZcURY-K&%CEtLWCC z%;+Zs6gCOuk#%QS0{_D{q_1tRy}CE2uFCz4i`#$X?lBo7U66taIX?{Us_^Lg}YG58aWa+ErL;hv$yHsuBjrN-YhS2(*0&0l*bpF|T?df?u^F4ZQY43g$CSP<1v z3SF2A=|dGeQ`|D!GlPv8F5q-UL^_l+P(Z>tYdc)2XAi!P=4EA)he$NzMT;>khoC_Q zi4@EsZKjrarHa#T4CVBlqV>^WNB|jnVJ|?ggi*Fln@}AS7xWbOTp%wA8klhH`;#-(l47J87LO~&vr}gAG zZO2^-b%tthe$`W`h&MhcN`1~Tgle`B7)H*{=(h*WTdBsy6;j5r0F z-`niBHRzI88WS!+gpw+#k{LuHMgDaVR7BkcXCm5Qo{Cp9EbchT6JpOYUzr9i7@dz_ ziK7mclf!?h5p(aoYaOP;tT<4q1T7VHpk&8bVZ306`7#t$aAqUFOt1qI`d*d~+U9*r zt>o*Au>PwuDu1vJ2oa=hP~7Lls@T zJ4;(ZSxbVUo%AvYxU?w44;j`BSO}IF%HKl}-H;bPX^l`NGZ<=OYhpS15VpjI-@#=> z!xL|+a2ZC45I`USP!SfzA>fB%K@H*^F1Ne61!{JH!^xOz05*-FaX#6#S5~bA$919LpvzXBd^kBE z8o?!J(7|ko8=B=Pn@ef4;eq54k;=n@k zkL*B-0r6A6@bcJMk`-`cA~G;89=6#nGj{ytSf9p(09j{bSy3*$)%*b~F6=1Kn)Iew!?3;>otR24=hW&q0{Qp$f! zn*Mx5f7qFftbbn%(fo%Na-?3$Zl#s)jv~OsSvWV;kl4grWoL=dAi`~Jsz{nVdRcw7 zD~OUSpjkUtNG>^#vOd(@wnf*~;(dSj09FAWABIxj=Rp@?J0}8ogr(a^GxLco_d( zMqP#aJHjMJ5P&wQ%U_8kOnLW47d$qoq@(HrBYvY{;w8%uC9fwsfrtuo-R|_d%8yb&;D(!}d#U)HYtNa=+fkT)`wh*I?+g#*?uk}IQ0GxveRQf#m zaMkD1%gL_XW+4T~{HAzQ&GhUejXB367%ga;_d0Y*at++ben)Vv5yQ}_Y3!%Xl`PIA zia%gLf|?CC#B!J6F(eq5r7m<~jdW;bOPZ*zd}B!+=ZX!;NV}RUk{U=aFMfW2C^XFp zbVv{HOU+Lf?-q#1;x}mazT`{_5*|!1&K3m;4D_uaBFU9}fjWD{N4A4{+)l%~Ve#5j zJ-EwgnT1?($~daD2j~OI3#fb;gn0>jBT{;xYc10k6{)=Z?M>K86u4d~bCM#kWQp!M z%D`!~4iq8>YdP4*s(GR#T*1}1siPm8YhM)+BKEJFH z`|yF1;UCv<89M>XaG|kHD{BeIzM3kV9{v|xc=91IGv-%(2l(AFi?yQ(;~qoY8aK#g zF!Kkn%4vPX#U2&19A4?+s$R-B?EZ#y!0Io>x-jv1rjt-(zUyvu^*SSL&33ls6-~G* zFwSb2&>IE$6$v~2P!$Chqb*-qF(!K42#{ozNvuhCGKml@bA-W@mq~RD+F6^|lBxBT zpNSH`c|;J24ui5Hp5{YIWm9T|wyw4HLX09o@diE@u2Uv$zbkT#DwICJ!R!D$QhhOp zI)vKlXzeO|78XBLI@k0!Vo90Pli?IMF&rw26ZKiQvB~OPI%pqMQ+@vU>+6LGYyE zi-Pepz1SLjtB}UPKmhSc_!Kib>~ikpf`S3l904HaRfZ?|$b@AFZRU>`IKMT5j<8(9 z6v1u}N)$A1KZ+#-ghg}|2O0uSBtq}#k8B$A{xN$_7>}v8(&H;N{LS;Fq|GFvxMe@> zTGe

`B-4^26;Q0py7Jpl0 z8$p7Ir$=}lMOfIRa>Yn_)(&FSeK{(52Ag46a{RLjB*``VZxfT6fBxNFtT=&p&K&TN(j+hxa2|PuTlGs5n#In%Dlm<>N|CvGJ z0mz2+W^659#!rtg-`WVbuWe#JHTbzg<+bQm*ErR!-6?gQ;XOZ9+!4rb?42Arx*a|* z0hrqBFAvoyLO8_rw8&c%(u2@kz`llF=O|FY+dv=F3&pD8ZMirm*A~O{Z ztsTgCO5ZhLQEH_Lmy%5}t8yRH7a|Gzg~L1mRKc{l6L9OlYo7OX3$gaz%;z59{_tO$ zLe%s{KceM7nek2x3_Kd*`vK1R`J7lD?}cc7GSR`{8bNwO+(&zN% zn>uhW>yaj6An7zQNCQbICqeT_Dm-m|k%Xq3T>E}0Ciazn1 za8Z#S_YPZ<52`yx#o*IIWH�)ZWur=1S(GcsVD&2NcT{TZ%!CuUOIn;RT--uy9Kj z8RV)2WZhkcWIbJqW!Cql3cLWO8bvgw9Z+x1+s4d4Kqw6j>;9GDvHY2K{aYpMm#y=E z*;_3CXbbyKm9XE#{#6P4TL#zvH^XCO{FD0i7bf>-zV~My_*d@tA8KT*e{Qw=!}?-m zW&OL>*M_?6Z`N1Gi~0`xG zdzljQnKSSou3NhoyL+#@8|K?|zypO$Bd=7oM78UTRnAQMzLKPg^>7?VC!wOcYG)hg zYp=0xImuE$X-ln|y@@hV#XSwwhwKA1sB*;~ZMjcsmM)@aK>Y@Jwd2y^XBjSjlT4|; zr|Tgv#2k5nOX^h~U;##A&)Y;sUKWRyyqCc7ybKmQ0kAtMWsk`}?8+T=uZGnwhnv1F z63$*Bno!zyVT_r!bdovArl)<=o0~z05Qja%62Ry-MVw@`gEM4SB88XimqP1okX&p- zB1^w?1CEulD_=Wp)xcQjG-VtqWc$uF!q6jy>=jwQY6Rw?8;58y+0JmhmsXtcNcClC zdHf6K*7dDh6j($6t}ir#5JLJOJs3y`Co!nH&;UXo{SIJ+XU@ufyMX~RPw-X*PTq^; zi-&nDsta!WQrb3f(-OiCirp7COT5S+tOBtaduLZZ{G=M0y`8ySCLmwzX!Dp1;IFb^ zVuRP-4^iJhl-E0HD&}-pHH&7`#p4KLV;(SGorAR&R4rKepaVSUe}FRMllP(YiF0AN5>Vuq)CVkFR`fq7z{;)A!OWcg{$a zcJ$f*va8?g%9|)1{DGpyJB_=Cq<1_f`@tdmyBhsLxO4oweu%w<%{A!EQN?mosVmTZ z84(Bs@AnEDU+s4CJh0f{Sanr*vl^YLV!=*LY&}(l1!b#SQgpl+P^fqWp8lpDzQeYd z_lx6ccBa+b@Nv}aocyH?rq9#UUK;~+6$;B=&s9DNe$KejU@9C$hxiaezwnblCzz|q zk*#(|=&+B`a|zMokfx8JB6clkw1H&8q(`ydC`WB^_uoclppDZogc_8;W;#Jc!4x;0 zKwAtZy(Ms%O~AD`(`nQvs{GltnpaWVR5y=ZAzOoMreXg{vw1=0__jtkUhK|Vw3V@$ zXoG{G$#lcUeoiJknsFc~@stk=Ht%1S45`p7pTm1JTR;2{(x(K&Hu<3Uh?6@HQG_I$fG zQ!wQ}BsJX!60_mv-Ncf9;d7eNj$q@g7)oi_RaP8bX5ro{?p0eQZLOFG8w+uH5-rj& z?rh09BgrL|deEdXUlICHdlsZ+WKY!(jp)?f@9ZGeh?7K;Dl)lEj^7)Kn$>H`!L4FJ z11dB6*c5a9cn_)_14lo!MF1JRaIxyq4So=P8RWLcuDa#bK{0d*?}+QAf)6?b7q5fW zPk}_a%xovTB6U}*yCrHq5dy`T&?$@-+Y5T9%{$~PA~y6GugX3@lh$eaMV>L#1|}K* zjZ}84_`3a(rRx#$#Yau$Um<|?&t1L$76N`xdVeYMS^ul&;XgD(eh>S90Rex`?SD!7 ze@X6t&H8_7i}=r+kze`!pMKFFMLzp459jyK|J+)>p{4D#_N!-ks`>|?YIX<(9T-$` zV!Bz$ge}+FNz@XejoVKF>4rWrqQ*j%p{F}u01!$p0;vZo`9-HjQt()h+vL+E`0M@i z3V|MTIlYD$Mvt>Hfhw!h%bSZk{f+gc zFqQO{TO#BnsIMz!K`kR&=(>&0%(J%vj0w^wWcG3-^1J>x~n>XRby( zX=#l4K><%@o3W|kdaoOZuuG6LOjH{+Ic0@maFpMY+6Y0kMG|<%23axd#Kf48rVz@w zsJ#sNTi>F2ML#NA8gsb)=G*G%){JbrzE!l+tfGpWa~?;$)cZYvdfG~Yz3$CTRm$gN zv=F{q^l33+4pUMDz(*>^&!F>s-4xTFPii{D36|c3xxz?&w8<;88VYR8m?kh;eQa) z4LT8Vd|037^RJ8nZBLVdovnx}Fhn=eB&s%2o*`(ogyQ&apt-oLeN&%8rZ!bV&dN5t zIBjS=%CWv6nj#~wXf>N_Saa*hN+;%mW=5AAe@Qbo*Mpz6{E^LvVu>WDm)4Co%6>rS zE)l{g+EE9xp6a@%YROYXci~rwdcVx2Y!(4JMpa`eH9Jms!)$)b6mNA6f{YC%cYXeS zni482l15Bb%!r!0iQo>t*jQmwU|c_S8U<>BQidx8#n>64*ei1??B4eQUd$A0CKpqR zgy2EgRSJ$az@o4F1*Xkwrs{K5Gg{zUwsqBZp@zkHH)SnFmm1Vm48YUFK%?J03^bNRw|=!hhS zF!{aiR9mz(5tC+4dlGr*#)9X@=gbV`lSF4Q%pdc(rFdxaEm@K?nR4AVj1mg-1CG5e zeBi;MnL}mV^#>ubrO6E3X21>q@RzzqtVxz5F92N)^$$os9 z=W+x!StzpMYU6lv-kW#?W-J9B=zt%XJ0%)c1IRSS1#FS0uzCJs^O$L5YP9Cr~9Q`#$|If z{K8h~5^oH|F3(^>e*HlZ_yIs~9HoqQAzTTkwj>W@K7WKY@YMV`1-9i=#pT-n4+mdB}J|S#yi8 zE4{?Q^ST2?-`0YH9c5x^3FG&WU6}UQs}<@&j%JZvvJ3J2xD|bpbrzv!Ox)gPxSK|8f zyicQmr*T3 zs*&>LXw&m?H~WW;tpiHXm$=i9^tC{H_-&oMyWP&!4&e#4FRJ(#;4r(SzWVGw4^xJU z{ZMt30gLiq<^e%pDKNRtd!mt-QPX_q0v0gZ-b0|jnO~ck`<=Kz<{Z#_VX$t?*M^MT ze~=~I=X6l~Q1C8oEiAoSd~*w{JV0+R2OC*2avMR{D`J>WQhf__tDh7Y45kNtYYnyR z@2qlNB#%`FMS`C~ScSDNmVHDyvNnVZot|H;yPEOw9FrJSv>@NOQ!0^`UFL-phf#yc zBr8`mwqh#fcZ+T88eMbAZoUMnezVd#M8}bE#*Mib;?zK|*GK`j^J?%FR7Mc>ageJ? zMbFIyK^T7qQE6>Jciz|2{eGX&q4m~Q)^6cP-9)}+7S@Z@yDAvUgU|#Lrajc-xY~Re z=)eBr-My73#Ad+OB*r25(4<*i`Kyd6)WRxRYnisND5c)8IGNwZpu1d0jKV7S@b63| zB*a-LDTra*xs~1kDHN~AVE~W@F5Y}n64G=SLUN0io;N2lg#M(De%&&bPYnlrbRZuf zU@ebb_sQuB11^c>ZU;<`M3%-ys&VkmN0VOqXv0nLk`H^Q$y&G~!K~#-*$&ZXbiHD* zvhtWN!3o(UUH@g(vpx5`e8N>1%L0Z&G zzw0)ZeW?gSb)}yz`%B~y4rGjBTQrQB-_0fonF1KXTm0r|++~HHO}HX>-{0_3rv(!h zWc7DBy}3*2okDb`bm?(Q9M2toB84arG>aklvw$|D(uSGEwk!`OIcPLz&x>-Ez^K<1 z&$oABq~29~uVCb<06}G&ybXBO;(ehE5E(0JF1aDK{c1wxcka?fE#Azly{8UPd6ryD z$5o2P3y{<@ilDaE6qO`fh*zO7frXrpLt=foI}P^ZpKfGN_oyA~r0bDUjh`DhE5FbI zTWu8GxU)+ktlJl`H^=`m$WlsF2`}Ek9$itaTOE+dkH{LikpSEpal%|_{nfE=(Zv8m z4uP2HYd7iaZSgL{9jqABJ$!|-4=DdG%xBy*X)Ce-=@#-!+~ES}YKc*q)RbXVZ+g)1 z>g#4FfH1qd77sa7W71SsOUH`!s4BQ8X1lxdagP*)@a;LL%eA4v{;^^#Dt>6yg?Bcg zFQ~`hhbT=J8S3|+J$ee0b?-`oEh=7%FS8{ltJlj9{e<2<*oQX$^xGNfqAQPNIYrwd z0!=~_vP_UL^(CX@-_8A6eDC$o{oj`g|J5b+&q+hp|C&AgA4-K^ z1AxEDO#hq{{5|fEcm1<*>VGL0{kbIgOA+z^%n&kPD6uJKYdC9oPv$5ckoygwt5Diyciu6pP$Cb8i9{`6t) zTTzeP9r!FpYlspwZ*rZDDF@dmP(&2DumQI0cMdsx}a(LUkMAau)qj`cTMY0%~W* z^m_zQVC5cYw85yt$$1An(IcHgk_sl|`y5p3x%M9VI(^oIV>`tB?_Im95!;$H@p?mC zA2*tH7b-Il4aa`ee_oPJRStD9n9S?NCNbqrkmocD4Ga0=H_6qTJWotoq*$*@cAfwW ziYqTA|LSFXLKEbb$vj>-B%7OOd8D&5_HJ1Je%!S<_k~~1ItEb{qYMs)ZOo^mGNWp> z5KffHZJ~2@QMW_?Lp@Y@>kWsv5ZXD96BAF8!z|#Zi54Ta42WhUy;DQ-I0urHp87UT zvn7I&7GNk7HPkAyL7=8#1zZr%ek4ElZe%U(0JF-h*PIFewDM9eO^g_UDQ~|F6@GD` zp(S?fQ>Uwj!rps=VOA+n#tp6>C`gVpFbwf+$kXkdM15M#n*w|7@=(6EA=hK!^ZAEC z9o*+F5+il@^gV+3z~nl+G?g@9dVCMy>S(Pujh+KdaT;G;G(8Pxku+9bqoSIDy(>p; zZ>q~nO3hD6?UWP}{r3H=;B>ev=mGwpxOi+Mng?h=c1-9IjZUsF!Q{99bP&vdUBbAT^Re z!C>mXF*Q*5k>qbD4{%`g56b;g(dbd)L5OJyvC#@>KfT`NCYKpQl z)PPi4e1%vV;I8Hh>pqr{xN)gu%%blU{^rWWscVE?TQps_6cQH(Cmn{v0ICbiU*F&W zwn;<4uBvW+q@VdoHz-bc`%6BOI#Mo(F9@DZ%ns42+KI&NqcfU(*7n9wS-Os|W{ar4 zH+u|n>g{3k=|t7Zg}J;7pV#cqI-i7Gs>WP{g%kYoz@B8h3O~1>Xy52qk$A}0VvynL z0A6Rbdiysy_J365f6p*~m1F*%BLA;B_RoVH|C=29=T!RV6#ExB<}aNY ze^PD!R&y%bzY*Si63P@FQxW zIOG^|y#o~@S-hc&2hw%K=697AdZM<^r-)vDID{;%@`@thfom5&e%eP|FL}g~E2s!2 zByn$eu$den;t3}Ly-G4*Oj3wE5&@w?A*BLJje23dehmbh{%E-sa3l`ur`jJL$Ne4D zZl=oC9m8u@>gckM#&X_9EVBlPAN>S=QloT8fw1JJ?EXPhBULG5o8gN;QIH7-hAkGE z`&fG5It}xlQ8~>PY$qJ<9b`q+*g{V?*h=9Q7F053d#sX~E#sIRlLIF_zLat!Y|nhg z?py~!pL-6<*pZTBK>@-H9gI<^WMNX`;)*~sr4CP0i8+2rnss~(8KEK=?u0h6zmibv zJBR>!Cxw;DJRhz`Nh^SxG7bWww{63B;mTHekq|ot$K$WQGzFJ>T)my0#AfVmRba(U4cvxX z=SJ~5{XV!_PyTh-r3Tp>C;U*?-l;UB5eZA{D5~Z>HgxeN1#$KM{zCVuit<@lv}6$z zdTuA5HW6X~>WtW{yrq=Yd`iztzNQ2ol`h3z4jHm*iZF!gyibtCTdr(m)u*-=MERl* zPDe_NS2k|&R%E`9?io%IF%1uYTf?4=V3Py5zw{F**9E6yK-zsl z?9CT}5L&^S=2NQmM27!4#B{rs1O^9o+-!CcKx(@P1(wehr zW3frp{l^kL;FlHl@w^hUmj86n%(l?*ekF^i8o-^CN>eFYACpVDR(I|90y`N=8@`}y zT#(eYnzZv=+_|;HZGevN@VT$e_)`KG7z6|)T>APwb$s1(tE2XJsADPFA#Svcoz*yr zc)xRk(T!s7iw}6lp$+X|9qi!!OSA&6MK`#($kiRiGNy5b!tnP`jgkqjqWbYwxK71r z`+C5`@nMkW&$UOa5jXRL4u`_Pl6WKJPu{s-9~_|swtLgS$)TExr(^7MKDsWdC@K6_ zZWG`<_8-cC$blG;7zFW+o+EJUqVHIxEN?yFYO`68^>_NU5Y751>#@S5bty%N^m0E1 zgh}y6@*HSD&zAX;1_4QUf_Ropv&RMbc5yFWxeY!0FwfyrBB3BrrSt~Bd+rF?0DmL1 zKWV@{FTl!SmX--89;I{_kQo_@-c<&mVa5W1!wsOuFhf8KXWo2}NaQL8J>H_l)zDKH zlSILpgz%FKi9iK{fr4)hR}CQ(_4d#ZO%eKBrzJ2~0o+!xk-rGf8>bN>FkAUXpc@`K zH+tZkJ=V`E?2qrySorPVxwF`73%Ez@sZa|E+w;#&dn;Z7q-|(AopI=!pq{pBu92QG z)->L?mfdR!6697?4wg!JI(D~v*UfQNeeLw#;5^3MK zp7LOC_EE4}R3o=h6F~p@DTO|CnK@OMF}6CwH0B)y48p8c=&#pwm2>>^JiKgCc5qr=b?H?coG@g_$#*^Ed^PF@Hh zl;lm87H4U!Gl1qAoU~#ewOzV>ed=YPUtimkEm=OEW z7|$JGY|yN-qf8P5@gxM>th$3r6O)7Kmg$7J7alq@6Ogo0+(0gsM|Ct`nLw5dKcG|O zPihUpNImVzULT{5vj-j!uV5>2#6jiW%ZzKbg5W=Sjzp)7dB4i-Z}`4W8i;9}rrd#z zynBlZ88`(aDhExf*Uy;uBZwQKRk-y=@eTXMjoFSq&6hXF*=C|=Cq^g3iFmHc#;r;u zp`~LDGcz-EgYOHo45wT`qVLmoCYXkh>}Z^kk%UV_CVvwtyLsN+V%6K3)f8Bikpw{x zxKn&cBw?68QEK~g!38yobwhcZ#p%n5+$o`oM@A>kwd!Z(ri;RCyyQ4xJe*7JqzRwz z1%86m?Lr1COD=OAeA{%(mxULuRs&6yZ3z#ppJRkNe6H(lggWJRb&N!c{5WMCI^8wp z2FarBkN0GAd=oqnxYXLz>gkgyX~l5v(vpF0kB@_c8+h~frWf@|)nmCnu4muIQ>Svh z@?8~w+1^ZzjX+{PKyqZjYpxcIzJhjSVFta$^y1MOQoZ|i8dLK9o(Ka!1>8=KFj7bI zQTH*fB(Wae~zb2!8ujyaZk1Yy5 z^*s;^AhTEmu!Vw5U>_SM1{!@{va%kDZ(OnV^9d!o%avJMvyQl}%ikyDr1$*^|8U@V zf6m&&MTpBtmv|tXZ;@XkmKJH!(wPk_f z|HIx}M%9&UeZM#a4eqe9;O_437Tn$4Ex5Y}ClG>LaCe8`?jGD7F6r)cr_bqUob%rI z8TZp2d#nMqYSmh`stWe6{7K5;ad5mjT<>?|K5(R07T$TLh zB(6$cpX0uw+i_IhEq5Gr?WUQlEbka;FW1ORDZC>dmQk>!+of?YE-LEqD;dauMa00Q z;1?lUSJ=QMVM7~909ZA$d4+*@sI7x}pMxYs62TG41&HO5TvXo$12z5*4lQR74;7ahQ)0Zueo8n}@!A@rsZ$ zgazlTHqBP=;6=w8I}%58^=<<~fA6wb<3U{vj(S?@HIIgWRIXiBxO8CvaA+IAVjYyY zp&C@qI61Exs67_cVorsWaa}ZVsvSyergDV?N>YBZ!E?|*QtwUP7tTABW zwgW4!Az*;#$ccTq z-#}mzs8%hE@QjqLZW?lT4Wwb>@O)dx>&4)2kacDZLabde*Qu*6p2vSuH>*?SP(Lz~ zoB_!vhx9gxB}(+2@sMdL?5%ZI#v4IZilJ0k7!Zv5Zn?Y~ z*JjBz!|%xOXOdd>Vs)Ep!2vZA1R`z%IfmrZ(-b%(!Zextp z%)y>b@Az423epH7U<}6F{Swi6pPlhHnHn&aCS6V$_}9t}JORqw4hWD9tziSKovXe6#i)FLZ+pq;rS$&G<0rzqY$~ z=GUBSzJUG~VC#T$0f`Kxy+w%ydZmR8>Q2zPp%ie&)ahv0_w+WaA{v9?Ldo`nom9h8 z0u`*~M)0e*IhXS&sUCxHjTxj~7Bs~Q$?x@&q$6;2@N6HK7(7VtJf=~o+X7_lCvV74 z89-_YdFyS|j!3Gj7T(ugqvd#6(IaMdQA36>9jhhG1n2wrUE^j#EPQOdA5s|k(A0TS z=LWtk^K^<+-!wyA)e-%=E4`PRCUDs+c$n2GGrGfVTInjMYsaY)q;rX0A7SGlcT@!w zbyQ*%`KU@m?$P=vx!8Kip=Mxk5vO4h(e!KJn@iU>gA5Y8$_-ba-aX7&4`f@IPCZg-t88-Cb^dDP>9`O;3gVK(%7$n0u7T2uJ8r3Q zxX)^&7x2;pC8qz`hAYptyj}StP0*}-)l*XRm$R#Fd>dXdb`ah7M&IxHMMq$b2YDmm zZgMqUvC7WFosgpW-CpwWdwdobH}vsnlkLpMtt;>25U7pE&6~&y()+}{W4jk^n?hhR zbh@mnQbf|006-;b0ltRsEvl%P%{D67b^VGrURY^Rc`&+S3~E^ha?0LhOHM13w_AYt zz4;)ZyE~zasj3F0nG9lXSjBvZdfN^{$&fRa{%L6MgLtV(;!+;c0_D&MiD$roA&nNA zukqlQSe?+PjgJUag5c6AS;%Z;=3!Fr_}lUu@P*T~Zj;E<1_B>$=Vgmh;G{ST={e$o zNx8tX^2l!#yqNR~-m%NY+vf0vPo^4U?jeD%cP>K$rZtg(K_JNRLqIHr`C;6t!K6zg zpWxlR5zdgo8Xz=4=5^LXLZSi^IA1*_L;z1NX9KA``v(4r{@4j|~h~Gn( z!on!PI3;1ocOpu`q6pU&5Z^$3JC6q{bq2tWA4Sz0WiiC53|>{9JaKY(V+{I9VvkW} zX&XV@&T4VsfZo6VqGYeOjR1(EG2Z!d~6xU?fRTj`tik9eIm>piQK zv)%xK7n`!sQ#I+OUCtU1M^J$i(om=n-()x^P4HDiKNsnTp*1Rp}(_wcrZ zA(sJB($hS)9dhVvdj)W?o{jAvfXmF~kYdeXg3s{s^pQeu1Q_JD8?tP`-jmkPrAwO4 z^MLJ?3hKJ$GHTCDl#T@Cg8LtK*B~irCN{(>q~;RmW1HMJEs}+59uQ_vGM;WWPs>b> zYJ+w@eCT}gb@SYsfl*;B7(xN{72Sb7FDlCtLk{CnO>=UtU(0j+EXfvMsifV!Snv78 zbe7zoAk!uN@(tqU;jwN&0P4z}^e1oE+M$V%WNaHCvzq*DTLS<()<| z$qLDZ3kvo|${G^t+vX5LQN4>A=i=4iLC31JpS+5P53L)iIkb*}*xGS=kLC1FZBZudJ8sI|92x;U~i4B$d(PDMuLr>Y7yAv`vkEY+cw1B{$OT-E(xr-d&BqefMsCDdAPNQC+2W*l1!Q6iySZkmbMI5yYnS zGs8)1&1$CAILaN_k@l9}8GOXs3L-#NO6Zgd#V{;mdpJ5jr(Z1||7gKx z`SE}H@3YPmLBlBxq{)R$7F_AcVX--KU0hV zX2w6W0E`T;ZS&uLTgAI^C3rmau^VK_B-Du5BZwqXG4|UJw!Zq;s1%A!^+<`p?42X5 zI*}AslMuhACfDd!PZA{u>vz46MV`*g}Htp5nSRx5_o(B z%JO8&;6`L1-#*vhDTK<5GVy6@=rfAH`Q`{-D1?&)o1$+vnoZdP2`>pkMaD)bc996o zBu?D!S=|Xr2g%J>gdURYOBf538S)7@DjPW#HgP$@Q0$!?P(E*$t886c47%7=b~s2k ztFi=;W27r|>K4ozKZp{VbPfXOzQQxF(vfA^t~g;%Wm(!$o##DzUn7!uD=#BinRO;p z40MXZDIl?#5f${Ad=#Y{nOn<6K@clRsM{MQe%jT>j;h)hQn~+*n{k|(xmyMYu_F3(|@oCwa(c>WE(dqMpAjv(Dv%RBF?4{8C z!))?XlwPAD4!A5aCoowL5m1su&%MBYU9h(T*kcS(Yy_ki(6`_+)%QVCIpdN*jpVz) zAc4@!OJvY7PI>xvG=NAjB-1FN0_kSqt(SKi8cR_zqCje_RH(!@Gp1IM61*Mn2b}%l z7THa)1)nXZXuo7PTcM2{sc0HKe6iv?%Zjg!$91Uvgv;~IJ2r#oQ9u->R(ugpWr@a$ zbM6@1i`J*_MQ>5|^n^1%U-;}SUW6QIf-I5fl7y0s0!TvQ%f(B7x0}L#q^U+5)sy+N z)4R9(=$K$$d^nfN_~199d-KJp>vzD7YTV$%aS`e=iJ^PvLFi6R0uVF|arPV$%Os-5 z>g8yk?Hr^SWTD;4-?$3R-e>Jiq`}$CO1U-A?>iYY9BI~kxJqVHTy?STTow4tj<0k{ z!G_3W9)$UCs(d~nqu`pNHd`rl_iH-!Yu(er~rt&Tj`#kiNao=p3(gHHa)sAiEtx&YDaA%;|_#Lgyfe zKK;0rQia~T{S<2LV5~K&8a(IY&a1{o%>;z7wK{=E~ z?}4FaH&Xt)-}78<*Z^_kUMoQmPEP>Ki>i&mY}Bq(3m&C%znK^xDa?IW)R|}vm;fGQ zmo4pTG(#!cJ|!OPF~$Y+ASqsN8mH)_y@P%DeDS$gR2UnRcYsFd8{z~a|79o980W3t zb6;p)w^*CG=x}L5gtd3?Xs9MYHUx}6a*y_72YI9lHbWR&SQ187$5c8Wz0c9{>$L>K z%3N--A{xN0Zx1n=(^1Y-5n%aZ#EXGhj=YYef1NWI!D66myVt&$yHh{65MZ#qvD8I7 z#4I@p6|qr)W%Q|-o*bg6z6R|eGjw6#>TMLzHK#xMuBL6G`=ABu+I;2cJ!S=+9%bFL zMb}A~vm5O;sZ;$C#|V2H(yf@4mlUy>-RK_2w`SgaDf@`E>BD|d%6^ICkAYZGXHbKS zA9PwRK4WN0d)?=iw&UqV-O#%ME5pb{MZBzZgWw*Qn^k6{?%&(V@X}_o>BjjYZdyUz7dkefr-2fs^9}^nC@2tS^ z!0t;l30#Myng6z-*xCq_E3BuFNgIgPje2=nM0sH+n{j&$Ke$l54IxF&Repl3c9sIW zjH=>!dMZ!fS+QT;JL&N8n(sSt{z9nI5hQH* z!*=8=`%6%{>C77lhe}_KYQ7Ba*H(O=q=x%UciJ9pDDhx>BuiVrojESosZ?88gxYiI zAxO4#O>um+zHiW+b+Qz;z>35v^bx^&$4+;92_xY>sCFO2ZnM8i@eROrHJz8Y>QemD z+-8xUkvX$A{X}+QqUq%Gjp}?BmK6eP#M#WiP`pKpGm{Z{F`oQ0xkuSfP5j$)7vV_6 zI=AQOr$oPokx=@^$Qw8r_nQ*Mg_1-7$wIpsVm9nNgg3qAjnC31AF|Zah)o zf^nH@fiYE1RJ@gfm}7CwyN%NWH<27znxp>P$ zr+iBSRN&=_Xw9J}TGw56Shg1y@^uZD&YqrbevISko9~Wex|)~4t`B|D<_(!n$Qm*J z&n+2RUgmoq83{1bHhuJyWd5htI&M+yB-r8MEqV*a-)$h&6)@*YG7A%Z=tyNEAWS%L zx2~DSQ^?=1b?%*Aae4vp$MoKcXWtr~XOg2(SxJwUt>VIb ze-fU)^`jwWr<;azeeMUn8eO_{JfW15vTVAksHEpgRQ3l}Y^O(+EGQ~4eH-CZmL6^i4|!#5=ecJA-U5R*PNpI?r(^YYS*;*v>v)PS#W=H+MH4oWoB{8< zH1`O}Nr#;o*w*!1GS{pc(lPe+4+x#>BN&g9bWl_T1VY!BuvN^SSpuoeJU(u=GYwd| zjfHiR4P!i&%%%I8^W*7}#=Hqm10^Cd`w0`$ZZ=j<$>Ep#L#)uP+T&1_WT=!aPoGeo z-iEbW(GSI<1=V1h`{3)o?^L+`R#{i+Zi*H6EU+oo<|!dYy+tPWE4 zwNAbbj`DlOV|zQHtp7Y#&q2J;qG!p_YCG|0ZR_??;l!1qYR*-;{JXwi`a0zNVtJV{_4Pme9t_;@gm zqr|zB2iz4CPo8fwS$=xct;h+P#TXioglCi_#x|riu;@TsgW7BEab($LX~|UBopft4IkN`gaLVZz;p0kjfv;V* z5ZDpIYY~p7S_e7W@FYWuA;v=?2zV+tkzIG+Bc%>oP0r$9j#%tQ10|CJ-fmwm5F1+h~!af}A|;EMCCMLm8Pa?cMIxKShI-Py%tE zz<;Mm9LZG*t)%R4E=@+Jtw+WL(vP}O zRI1&d@6?07E9kRNCOa_ev>e1y_%{kYy_+>$l@W`arQx80!W>CX*+BvbCL8&pnw3ku z95~os_i2-!=W17qXq{|SD6DLDyQgUgt||d8^|aj`L{3vxctiXjNjORo;ZSEwjQw~HS4<1pg(FMW{rZ4fW0aJIy6 zCG+JqE0xgqe1H~Tjxqjy?)aOJpr2yn?{mi=vpQ&6MJIj7-=ePkI7tspD{TE5T*l1W z1iNQx*zdTFaQP0xMfZy80(&$GiMMop6_W-8X%BucxD<;O* zm;6y9f!{*MP%|(As2SK_jl1+r%uE1Q)*lgMUZd>1{(EG4t-}MyqeHXJBFE zXlZ2ZsBdQSGim>$c0ba#KVr`O$Q1aQ_$}*4>hC50O#dwUOIb(T-|zEV)@$OIl7FTC zAyeP+=cT{j)bX$Cyk`AYwSUVna{VR4$d&x}HhB#*WCZwap8e};_TM`AwSS;Bm|h(g z{5XE}_&%s;$_)5%u&}WH?f9p1Kd=4yQ|rgz|54lD z2Jp{e_4|L>K z^*ex`?avDt=>FxV|2_&{-Jbt>ITPDo_x)cR69DGFD$c_6*8~3B5dvWO^L>7eh{W{o zOIu$>85Z_Gm6umhhMoTPPw987!M}(yY_H?vzZGRv+}Nf(7Rx_T8L$&jFg?TYTEyL+tij(TwK zmhZanAZ%*4W_jE#-FRvFzpZnSqw7}W;#Y)D&B-nanE=MYP-VcA?Bc9=ECE7+p2(Tf zgX-qN3Nd<1ZfHOSItBb~1^5GX6z~@^(7}a;1v;>bXaS?~5bYJ%_VE==+w8X({Hj=F zFY$QxQ(#`_GkMO`w>d1frq_` z-FxGXI6#+QgIEDTCi}qfy$KJW?`aYZYGMYP_@a*wki%8+DmZn6oC1J98w%?2$pfdh zbrfyzihk$i+vgS7;}zI#6Wu8fcr7j=M#9CH(zpe3E0SDrM%|t=Mt+>}| zRpliNy?Wh8+;Or$@2?F^Om(DE4Gs!3Z7p`~cVC`e`sH)r#IrSELON9Ht&OPRS~D<6 z5*V|I)`?iJKNC_ctN?M@4T7AU{P=TE(Dl0w&jE|&_miruzJ`zG%6!cwv)PXA)AQe~ zvX;gm<5F-&CXB^lACRnx9E6L01Ec;r6<@VyRG4um!AcyV8TiQ z_ut@;-1B$Wi*sCdJJl*vtpKYch<>S=!j*0qN0vAaY%WwBwG%aIDuG~WFw0IC z30^>$Ytm8ITb*|kP3&cVz{I3LOhIo{w)Y)$!AVw#1t?W-_d@udhuak7jmmgx$F$Ba zOn9~(ckKir$~TmN(F9npz0)q7lY60(_hRiMWW2_U&7XQd@N`E#HSKR6d(vgoK#X6v z@8#;x9_D+a(8z?l+gTMK$7bkZ(z=7DGJtW^uWIPI9oa#oW2nDY$x04xYn{?AUj4;c zi+*6ncvO~)Kf%w!TJ^ogoP=zHGmK5pU699M_3VO+*Aor%v?2!@OFvg)-0675Ir z&yfRL81Q=cS(9EUqu668%Vj#bOKHe zk_a{tp|*lr2DwtMw|X#j<-Jms9f|x;r1?57Bt-l&C>rBy|{ zHml!q1~X1mncf6$9B<}cH46vd*KZP6CF!6A?Mj^W2V1qw+^r9NUp#Y6dq+KB-rK(% z{&3MO=VfoAjjnm>{ivz@kryxN3<`B)jB|Q9wU?{rW7$WNfEGIqUaoaVh#B}6K{KC# z7Rp_Hrw;4Zb+Av%a6{JQ_ne@ zz74F!X4=IbvJBkagvx8=sykQW;5Z&X@b{&ZV|eX8eb0@N_J=;V7fyxinbTL~Ut@G2 z4FrWMsB#c%(e;+nP|15vg9+D~C2T&S3u7zp6(*QGn&6o{43IV z(n9}UN^EzI4P#$<$S6LdL?DsCv7K{kUwXOuN}f-ru3c0a9bHF;uJ~Ni#*|bDI;@aI zP4O+w-cC`N@!_zlH1B?9ObOrHnG+NL-P*`a5uqJ{C&YYQN_)aM@Ip7#3vuBgQkcx5 zF4p1HGqJv-^DhJdM)FmdXf zK8$Kcd%r5N9DZcVdHA+X5_MHNDg#lNkN4m%dr6n07=er9YexlD+eu6Zm}bj3(Ps%k zoR^~CnJGESHC4-^=}ANq9zBmbCms_JJX!+v{I#kw&oC#|mdb{2i;5DdiQl;PU7gfxx_>Mzz(i!Qq z_T4l$b;~|5wlclG9R@fr<@CF6?jJ$>BNHFF#fJPQELq^O+NfUt=n00)Le2c#S{~Sr zKTTwdI!0t3)8kl*$e0Dsu_w!W1lx( zO60^}Z2MShRdhRAYUIaxg6fFppP3GJZ>QUq zVDjA$oX<>AYHb893TwKI2v1T6wzPyAw77O;pp}j4XB|m!nC^%pS`B!ri$)@z7~D^J z66g0}tuNOIoCymYb#R0X7u%CBrEWN2N!7kNZddcy{uD)UXPVJ|re7LrFZ7)4Bw3TW z!TtVa<+xV+PRNe&22KlYDaGp$H}8Xa>cAd`D(TYGh+`OUP<&b67_-`SLgIVQc6zEb zO`hE~#g*# zUx%3@(SUCmDw;)J|G?JjLf@wuZz3GudFB43xGEwA%}AeuRQJ-VJaZlhXT5?nB*!PvT zd`ax$?#;Qeh?-AesdOq3!i-=U#HKR)emji1pn|-C$e^CN?as&?oDZ{c`-ZUBGTyoi zQzK+_sh{Xc{?m%HW#;r5qZv`aTy<(L?PnWkKL3Vonw#DYs9JYS zuiKLchhCn@4m7dPi|oBT^X|5Jv0qVd=8TLFkH2%wquGfCAe1$zPp|g%so1=*>Cv|* zp-uR#ZP|Ww6`ixX{igOIXCuIqnI=03D)5RZ$U=wMl}+p*2DL*I^sO9NTJnt(me%GsTAPdX zBRa&%@73-)3p@7u2Lj$-<8I~3KIE-$C^|^z54p>vX==t14xhp+dVuT86WXuey|1U=Ya;~|o3!{ZY3O=1tq z-ShBh8Me8l&GD|wR4U2BpZ!=ZrJ<>Nt1Fd}X74nCC;-x~k75u4sn30~$_?yY90jOO zA`7!)THJXs%4Oqx@P-FM_wrKj(>`C8+5Gfv=Kf*H=SgvV@5LV8XKYX7{V$b@X8vBI zf~4X`*Zr5GD$Nj6<)!ZL=%Po=!J9!;>%?RwnE{pSlgd*B*!9+XWDTa#6NH*&rw0T2JFVuu z4^u-Zo-<+esRz&-EIKzlHG;wdviPB>J6DwL-+XTa78$01^$x0Sw9i{uy}Fk%Bkx&x zD_%ezMS<4D0GEo98^QT^ozLJHqO{xpAmaU4Y4~?V<3EUauS)}eTM+V>i1!+M?H3u3 zp6xaDQ^)%;l~;hK{Y%G_S5x6v7o=2l)U!6!vo}<9vy!4#wA8b9)S>^O|NX13_xrQ{ z@`AwhPesw&`%<$v&e|}hAL(wq3KKy6;|NEaz>`bq*tpCu)ej67*yXL>v z#$Lw`?a$`=y zO6~87*KmOhjQ_*Rp4Wc;??og9D=wu_EFDT41L`_&ZD^+u8nYC1seq(`r3C&JqPFx@ zc7rJ6od`xoHY3aP+5n3{BlU*u{D7}H%1hX&HL>q1<%g)Zj0BSPsj5%NLnX9_ z*y5AEQzo-x(oVD ziL2j^k0fYH)m=#vGXMl>ED3~$0uJ-WnR2u_KocyxG@o5zJXnD$Ak5C;1FH25R(q-a zTLSzp$X%pE&$pT|ouqdpLF%%jG3R$Y*+2z4i`Qe{vw?ODETCk`@dai<1+r^mQ{F-* zLC>hP5Ciayn_xcOzU5Pw?9hk6L9lz&eUk=h%ioHjJ|ZYE>Tc$#Rov;!0}1cy9x(rS zf%iV#8$gu+rl0FGUY4z5aNcI%NlAu-5D;%EPRsz`y^5fNc+kxiXc+(s^9d--p9m(u~$P5eWf(z*%{8%DLmp8B3bjpt;6fw{rr#tL>gqXrT@w_&q* z*Z}o+#i$;UsDbEJI{1uu#!3~!i=M67#*tZ%-2xmXPmdsu;&X)Ly5z_F%_}$FVlUrK zEZ!8aDKxyrZ_X?|v1o%a7yc89fF4Xdb z8|@0EE)Yx-MA1ItF(tP~?8p-9_|l z3hFw*Lyt96)Hl>O_(!z-d#k~jwR3Kf9#oysp7jq3E+}~%EleFtu67ohVGCrk`(H;~ z%5`Kt^mV?8OdD`WZ;ppvqHY2xFW2Sy+8SRo%8CF9D2`vz;AExXc>{8rDC>fw|4Z6VoM5S!g%+sA5Jowalo6I= z+P5ek9!(K!mSRm7HS2(k>AL7P>*1;(bbD0s8aMx4kl|qP@q2tud-HB1{+@!S>sgB4 zAq_eyD+gkG?Ys9~(F+q6JPu(CTaC=XbA0UcqAV_O2S*lkAABUp_l%)~;zol$dn^HJ z3?{=b8$4FP!-FIf?^|nJ5@sd>%U4q^E8h>v;`3Im(mqO9MUblO7%)+Q@rn<9jX;z= zi1DVf8Id-+p0qzlF{<3@3?G}DJE4}D>fVQk5!!Ta(2}gF79ocC1khA2-z016bls75 z&zSgF=$4G3intm@%wZ@aEyq{Y}arnH%IZRLHi zVnh3iN?>Bx6Z0T=`OdMRGUFp+QUAjUxSQV%(lVX4UbNMPO=W+}-5m`zwsTqqntE|8 z>#~VKQ8F*DtlX@)tCI!OKE<|hy`y=oDJTnR7rlBMeYU4fQ-5%mum<|c*S z9r1wm?SVA76v`oo?~b+nZigz7L8hd;x;iow%^lO!Zj0eY(Oc7(E;R8sn=%~B#5<-q zRyBn>VQbFHh8nQVb9xKuSJsAqR|f?P z0d@DiN856IDRP6FMye1L#7P@Kq2xNI8T$|vrxaCIhW`QG1TV_)kYVv+PmU4mT)Mcv zWbXT!)BI6-u8dY{VXgP5>Ir*6+_!u9umKlzU7>B9xVig7$cdNRx6iVt#Q@z4g13nP zkhk0-w~!;PQ{Vp`FnCjOUa{mPDinTda4MWHaWoQ(5Ue2qVm86R@D6&gz5G2tvxlWymIpoPyOOqRZreFdH37aygjRSKWWtTJ6@c$%gHZ7$Q>xm=(CD=C!8sR2IuA?B%QjqJ+m^Hdm z^@8!*(M)9ult%w@#TTkvr2#tAOGj3atJB014OA#)xxps4jJQU_$IsbcVmRsB@*1WY zi}uq`k9MRQH^O6xjLejkx{~}3@pcF2#=lE7DXP4;82!R|GHKA_J@i16ktV9j^oYkp z#w?>|JgsW%y4Y-;@3eYy$Xm3A4j*tLpn?p<3) zF8*pHZe->l6}*pGIPpa4GFIwyGF5Jz!RG1H{uuvE+J%NrQ^%xZ>3S(+P#$~Lu{=4f z8FzWR!)_J|8L3Gm7=0(z(y(W?Zlw4^ME&)hL;`z)Hg;?l*3?yjVo_@fiI!5|;5Q#@ z>iH%WAGg^XgZxAjs%3PvXj_9vT!!KUNd2U(DYRq~ag#O5NUmDF@TAYEaR=d|cooqY}+JULUjLLY`WtKG} z2}5C%hn2C3|4`v^KWYS-^^{N8GWDpHR_eghcD~oJ^W2h~eNikmX5XTNdrcdT?x=Cn zprsvSTjLNIs7F&?FI_rm6*+Wj#MR!ck^pjzkPJRh0@$YEpujH z(ip23S3=!Uixu@d^H9SpVQ`K-Mhe02K});^AcS{IVDKWp%R}!TZ5U+O^Q| zTXWH}Mb7=v76OHZ(iKS>PIA_5mAfky-3hFL%fu4pp1P*;q;Ds@?%B;KUQ`KNYH-Ae`a%up+1 zI4#dwskvklyP}>uo%|GIM09IjazaT}q9=q^4!UaY0&mI8ci9-dLI_OKcOARx1}Z15 zK>mD*f+o{&$x>!_Uy1AZghg$$dIDuLGOsX?+#9us)IBYHU|)(TIOms?8BDAFXPVfz z8rB2bX1gS~D{J^iOO<8?>3F}IZ`zswcchK z_5mg!jSu(-Jo{Bp`<)d26Q2FCTlp_MV|f+a{=_o|hF4ztDgXVkQ|vGKk6%z$P*wbI z^54ISehj~_68uX9`|ZR}`1n)w`xi=kWsjefM$N$RTB9GY@w@2vj}QGvT>F*Qey$1p zKh*k!j4WS;J_jc&D?LXu8|%N(+YgBP8@>IpBMw@Fh5iSc{{Nrnb|-zq<1k*6Duc{HiuG{JM|wCm*x^m^%EaHqx{H3Cn+9 zvi6$sU&l*2QZQ3hRKXJI7LD9YP&Vv#cV&VGnJ4BGQ0v5_4?E=SUc#=ocd&7H=%548 ze8`s@fA9Mlw#tIP2#sv0zCtxp`E3t$9z~dLA+$m`S-2#v>Y~ZsSgOv&WjgP!N863( zs>jO7w-L{$Qt-E}aM#`R6CX!(FMQL)hz+ZOoQx|?9UHNM!^Oe+mU@VXAuaL7&@83+ zfK5Pk=g%6jZ#6lwaO>C4i9tdmiF_N4w1y+p$EhE3(|W2>&#Psg$Z3-ZOebt$HQ&hs^gu#v zq25(AOzGa1vLV6}ys2tXBOn(+3Y*e(fGfl0?rq~Ob=yQ>EZMee~eW$FsKl%lBox~!ouitKcF zH|%>pvP_N;?I$m}$vJhn>}6@J8yBd^arP&vQ!ols1JA<|+T2$Pg5hzrkLXbnc%njP zIuwm_*O?`!n*<|8{BHi+dkDpSC+{*fZ0#onYqbgo#FAu;WN(Tqr*5@yZ5ODxo*ZHApy(qxFb)n8hx>CHQmQF%Pdr_gqeHGP&&+#Kqmg315d z=HE*bqLcrIy>oGIOvljt!Aq_Z+VrVwTncq#YHE+jy~=d05!|L->Z*=reI>(frK7Wb zm$FFWk|dE*PP804-tDxow!%0SdFFn6t+3SNYExEglMT;!2-|+&n?AmLudQUh{DR8f zz44?c%`$#RUc4%G<{WvUBk3A^G;}8^ntDO)9gMYM(TG5gU2u??Z?(%RQu1MVRq^N( zxim82+s>wj#fpca;b|=RBLW|VBppi<=;{(PB_Fi)oT-gK?{KegI`*yJ;< z*S+XXK-{Tlm3<}^cC6)|VrB9g$0w^Tr8fziUD~JTh6mcGI>c1o(qjN^*fW)C4f=Q4 znJ8X1D8^GpUs%C3X>)Mx4Z|q0M&MLyr8chdFNEFV^xC%H8$OU;jNK{q5o=YKmnr+y zS!(g1#OSv$^FF)g%Wm_iO(?ExEK#f!X3bxOD~|FYGik@5AwqVDJ7j5X9#GRve4Nymr3rW3z6Gp9I?Xih09EllG#e1M;dVo3GrIqb{sBmCcJAe8!zByq2!JFe3pE9 z1Ai*Dh4(Tn=@tLnJWHt;nkj1FQ4fJ#q_BK zW@k?vG)~R*i_uK;GdahU5=Ajfo?wuFvSv@^&c|)@*bcY#>g|+9@ywR7_&j_sWsM~C zZYkVDr^0GxB39{ybNZK>PIt$aq-)%a(8}g*|IO~qPV5!uRg_)6(K<=buFPa9_LUZ% z#EQkWbFue*rIXk~3gcjOnv9Fbs|NHDLs{QOmcixK(8kbUl++ZAxJb@Ru} zo0>wV3-FUz<&j1@R!$iU{%IbDerA&DHG;B1%bQHz5DItox`cu#4DOO_lEwP;U_}P5 zZ7BnnZHCwj<->*8z!4)GArk)6H;l^W^U(|J$MQ59*4RF77rjblcW$4dRmZud-J z5tPBBy(gac+tTZ1BPE{ZSW%r?k`yx};nFT;4`?C}af<5mEy+!x8Z@nu+2lO3^ZP3= zs$A-9tH+;?$#=UpgQS_?XJ89fyH5x|!$iY3Q}MKV^gUPB9__}Vp@MJaL-Xs|b#trIz>U?&(irvJ%dE`9p^4znlNJ>DQFKcN!^84bLYy71g zp1LPmh*7%$6*D=4dEI4sGe@Hv!O(2Q=_*jrEUUxA=g=@H3!l=5`?;SrzuVhNbiuZC z>i|??mU5iand-uU{Zb$MpiT2@8}y?NN=$Y|3cxNkC8Xd9`j-C7KR6`#ZFT=o*8A^x z^v754-{eB(UwM?})#CRPNB?kT@E4BCiwmeKi@feCkrw|4xsc&^eEkJP|KK$M7Z)_` zA0W!Y{x2ZtLzpVEQYG{)Q`mBhf#+@jz=Zu(APu9Iv}A z=;(gosb2x-zve0C*KG&CR0P2CCp-aI=zp&kfaT9!3V#EtKZMQSn))YDu`&N?uzl4V znOXkCtG@#k1O5MjV+I8eHl+i+&++0!22&{Z6#@3Fn+tj2l43Mw_Q~d{YQqyLdLyv@ zQu8$AB*HYC?*jtFjN-``NAn$BsB_|CXv+G~YDYWEo(`|Gb|0NGt7qJ2E}m9aA6gEy zPEHgRofirWWDNcv+TH>zj%8~bMU&v3Ai-S+cMlo}1h?P}?k>S0NN{(8ySr;}CwOpo zce_K_J3Hq)=llQj-1}Ten4a!hUDc~rRj+!N)HVMk4VkE4ro=3SGUrDzA&*Q65>>5< zA2cYh)>>&cq{1N0z{T{+d9@I(zrmf&=;+mc7sD@jpb^v%WE+*4<|66 zR{1a(c8|B5=pM!&1zwbf3i}dD<RY>-%Qi02a|0D*;3_2=o6d(@#Bq|F<7oR_SfE5(1u|E#o=&YHw3|^J2umM3iClA z{o6JV=xg6^50ft-wM4e?p%nQEVj&4VAiusK9Kg>rABkXl>Hoq8(rs_nn*W6)i@^;8 zfk!P=o2g0M%h4n)#Aw7TFL>5U|96tJp=2X#uW7gTPfM$hEhkhHwsnSKeB$43jxT!I5P;&_HN~F{p#N(AsDcAZ?=BlQBxQv{~AI62K+{(3(TKDi{dp8k0B7sClV}9 z+}jbX^BpJ%mQm%cEu4owD)?17@?JYXLV$+`fj__Gi?x0gL)x@VzLBhBS3iW0acw~N zmq9Xk=$*o%R|td|{zwqANbizbC?XJ=SKW;tcv#@zUIRXfF8V`#1Dx^s3o-Jul8N5= zimwypvJ9=H33WUw-nMV$68OKADFbjS%a0pA{^*+~YF1bnr`AbGf9=Lc&Z+U3bzUv> z;hPNsxs!$!kX zxF$gLEro=}0&u$})NfVYO9p5lkLLWqAa&GNqV(r-_gKn+D%!h6h`cz_PNo=}$lU4b zw6;nQ>Vwk_HQye;c}@!4WX%ts24rlWD3j)}xuPH?;=hp1?yVDS$jrzu2@QT5{(j{X z_kO)*hn%EJ`K+dJSA{^>aTKx$DBVtdA={=d8`Oc=1NIOLnq#6UdTH5_+FekKZ`WJ* z&`=+F*Hy)w%NfQQHjMrK9ZE+36dkXbX`HVI8dE{M{GE6zlR3M<6vTRELx9)=NkkMMT-}G}jTN&# zPS46vr*s9S?J-#+GRi}uZhEM>rjo|m{&Smvmd*J!XY*!`xO|mQIbL<8ysqY|tkk(X z>uXLqY8~;q6Qah6c-hlr+>(Ks0PhlbAEJcS1CdwcS`OONJKh#8KZC=93;d-j z(W_L?RckL!OT`}ZM1Rx<)D(yeU<*D%@BU4cnD zaw;(0_}?HH0Qx-{cNvcf7|V$eiQaewZ)A=U79m2aTX)3 z#_b*%Q@32D3C?UMf4~Iw3v|rrMpYZp1d)v|A^CI|<4`|g9*!#0*IiQQU@cNY=R`T6 z`&YMMV&;T=FD2%5uN;QPMKF@k5woW(#+sx2AG@z(%<$J2VIaP!lAz+ie7R&$wVnDR zvb{BTu*yD)!z$;aFlB0yDCVqXtw_z1+GtVERZXL|7JQ9MO52OFl7$*C)|`A>)xWtm zo+W=(nLe1c(|{3p8TYVDF6*0;Xf4&XH5V6$IEFTX1Ut_X2yLMmvBG&M)q;t~7Z|4A zZfgrC!ObWBkbaL^ki5@-JF(z6-x*!WYR?ljmRz42Hr|HW{zI;OD7rrmwt)mlJ;aoC z(WiIJA6r_nkZ>LET26%1)IWWfn~ih08y(V%JFQkZb>F{Qez&5rObuB?b~n1*y68u< z6d`J25~SfV%FDQK-@h`}bdL}-)#XY@lV?6nx*3>UX!#F3@%f!j$KkbxS9~z zJeiT}ul!kiz?ow%&PyH5M8E&D&fYqD2f2=KVOXlORk!x%>4NWy;w7D%^W@DnMX1|n zi>=4)_*)Kij!+f5!d*ntVNKV4Aw$%Pe7;(ZfqjJ^9AZBn%F)OI)rPSkH% z?E^i_k&N-CyY)u<_B-p|&l$Mnbdgca*K9lQxolqz5k=gd870buE1K;1@SkP{~HebZ^6`00nWd1SPqaL`j_4d z@>2XCUYK$!BBCmaAiY=iKdHUX_V+*3-aoC$|1Z?uf359Lt@pQ`{7IGj-xOX((2l%+ zX}t6t1RSg!|BI95-|^DVfvCU2lL3~db~XT@m7TWfpW(89AO9-zFM9E_L%~0f{)=_L z?CVVI90X7Q=|KVA|4jt)e^=^%!#kff@Tb53Aev8g|Le-=zlc3%rvE1{_YcMpF#p!N z37DCFu?ZAJ|2MMvq@4d^+8@d}0SCk1YW;VIAIY15%Z#nEX_11!ns9}+|{PHz7a)S ztV{u(6k5tpm@F=w<`cvWT__eg=}}1$=5K|8{7n#cTvTvUP@Mb`L9XI^6FU0=2@CiDvHY+MsH2!y9|gG+>%s30hj1{oU`O|8ln_@jSEvv>WcdB|uxPk0 zx}nHU+oN(@ks^tg`CqLv+G2}-_nJ}cx%hyi?R;a^1OaL4mbhy>hSb%00v3%9T`0Y` zjd_C}sZK;sI^C&Ls*Eg7GCZK!Q>c@oBSh5Nsofg052oeip@44f-Q$l?{SFKb?jtFG zbfzxZJDTuFC9s(UOoAxnsJyarFgc$9jB-j_>{3#2Xu9r9Jx{EGAw+s{Bk{BDyrI^M zMX>Cs)*inh0#jMU?=mP<51l%5klC0Bi3>n1#QyfjXiw$0t!o`V9--2@Er;oei9&VB z=DV-9LJ-#q2ztOR+4thyiHTsn2zEaJs5rjHEBl9^zLOyh{5Y#h(i6yoB3g35gR|>Y zew;)mx2ZnwYhb3z<}IP?-VVj^uxFYg9LIfl9e`)|p484{yq%>dkoZd{MxByBnZE5l4UYfod`HE&XDP9==&^AD<>i0&;_)i%FCGS7!%z z_mhB8+-A-wYnz&#p{_ojDxQHKwG+UN-GLqF{r2t;yQZJVg4>nV?QOoMMkV|VaYT2_ zdo_ERCf$D~zc=^U(L}!&X#)>(j!0V5!3j<5Lx^@^Q$m>)#i4VSdH*?pu*2f8sxGIQ zt9aGMK*Ou3Mvx~)13P7GIFlEzvSoa%ma~LSD)YEbd=gPZ42E>(%|${|?5E>e>N3?G zooIPxj%9sS#SYh&5{Lcb^Q?j--C{i-#DgZox+Pynw9#36;oGq*&s&Ttm~$r%-XH!E ziqw&n<@lV4UIfu_Om^D!FY@0@peq^S^~Q^9 zAFzuA ztHaT;(zI=Ak0x#cR*6CAa41@4gJ!Ej7^G z*!1wqb#r3{QZpJ3g7*HIzwv(Tt@y5<=5PEX6QDTSm+P{3!$T&Xq3CMp}tq_BqUdMJ} zX`xR4UNcsA6&d~R#(+sT2%pVeY>}1S%*>58Z5wa8)LHBnDE2AM(dg&T+!I9Ku0|%A zNxyn_F^Oi*i3a|XV}HC7X}C{)1x?mg{FkaHO@f43mAB^vEMMi0hAN!4ua7ExsSCcu z5eyfSqBQ-Me2tgdAz$)@U{paVsj6FEh=Pad@XBG%joJN+foWMeoaw zJI*fm)lAiTu!flVyn&9h47mweK1LG+$G5uFQ{O_QY)~t_T#>d3FLSW1=@`Ys4e*Oy zN4tCsY);b$^kp7wI$F!(E5E_OzRMyX|Fo_uhqaoF(qM9k)!`9qPdhNQv*Uu4bOLYV zEtNCYpiJkBbcI8dLOU{W0aGb;m$x{a_IAd}Md);}gwoAN7g##1H!%nTUo#~|yo%=Y z8!nEc6|8_at6+U{9CR>(M_=Y*sGDNkm97S@&|0oWL^LkPk^BNTf|5)vhbO*%id??y zw#&XZ+RxJ;Fbwue>z>6+$qaB}!hX`0Vx9?+-hZ69S@a0IdCFP630$Q;P|kcxZy>!@BN-f-MHg)iySgvk4JhH%NSa zkI)a~P{?n6Vd{jS(9|d&q59V^1^|gn|Eq^UuA{#c+W&6~ z>k}Rg!i)b;zl@;lJM_PD@BE)i{r_?8Uy$rya`s>A(ZASF@K5v+5mhP%52&=|KV(mfsX0+5f9UK}`OSDRUV9 zg75zoEoXZgKtOW?TSHLB93~c!K>sJ*nvsKz^}pAxL1~O{@k9bdRLb>TM|E)Z_uhZq zS0+*ml3~_g!0Lz_9f%_>*OQJ5Dk9RuCy|Je>3MDT-u9gjO;*zD=s?>X&UqX2&0&|v z`qbNp2dC7-lh3J#~GfG>A#z`zocIVMSG z34~36qz8pjElH+>Te^bj>zHeqB2M|4zBCntA;4-q!K47gCGiG(k-20ggbaDb1kM%q zHi!rnoP-JrZXH@JTrf_Lo6ZB)P}#^$ml^!xrMDh8wlGxE#~)zyaZ1R+L|_Lb%y^lM zX{~M$;Fh;B0^mRSVa2jNF)5&4K+-!hV;sG-awHNuO#JLZ6ay7^N3SdR&aK{%AijMU zY-GtU6XxiqEzBQ^Oq%$0`ljT{1ccN32b^>_(i#L(recwXi!r4k+t;ns{xG%G0Nkw@)zIn!f!6 z2q+)gmjc+q%=O^E_2{9awR7R)F+#L!fs!|aV}bQ7QBHcJipy)jBBQ?NX=@;7T${rV zJ_F~WNh`w29a$I<(MQ9vt8;=jes*s@>!rJTd~7lbGOPAi{uo zP>FvjWqmiwkCmEEma?Q>F1$}@0Zz7GQa?J6AID7!;jY-MbBK>}v~ghE+$j!~MXPkd4)Uy75 z8CzySni}sLm^YsYLgxs>eZMp z{jpbKn#nMZED)ZGI`ifgpRrMn=HeTQ?PUcoTAIjkF8tJ5HN`xzG^aPlW8jwg^HAMu zHtUc)Eg?r)wN%Ot4pWB+sDp@bIRT`7>|rDZBtw=Y!7G`fP#ZrJ*EMm~(RPYEv9Rmj zjxfOF!{vW^gTX|tw?mb9M^q|kaj{n5nf{ftcAz_HxByz>)QL+tA#PmoL^Fo<&=>A7 zQ`5N}w8`E^E~YhCij7Z3jZltq`r2o%0gck@>JNb#VKcK+Lb4n zYMe}W;`=Z!j~I5@RTCQWjpZsF$I5kzeppz|=bO(YznoCVLOT1AZYz7crqcl{OC}(3 zliq0>YY<;vvov)5wRB9P_v|zvPVckYhG=$~Ez!>$D<|3B`Wkx0V3&&8iZa6Y{j>Wb zzNz&w!^Mr;*FL$he4SH!QmT*|C<#4SH+`F!`LLDP^_o-LW;kq7$4s?+&bJ)XcG5R z?adQon7g~H**>FYT-;Xq%Mkgg^xb2Gq)6q2L`q}GI5%a=o;HEw6!CavG3O^ISe%{yLd%SSV?T5`$Y<(FXLTf_6{o2)8dAbhAZ&Ds* z)QP3x7?!uQl|SpSb>^T_zeCb+cRo{z6gLEv^X4;O%$lx~)r|W`x`f5Ub;nI#185($ z^!F>%i8E>CGKku)-_7lKJYzN^ux|`{J4NzLUq*@Dc0(IQSQbwno??I4-7mM6uh~yd z9mzQSbRHi!0C34Y${*scwA>erUh>O?QW~zTGfwj~EEZKF;oOkYt1o11<*6_EA($T# zE)4exj!&+6dZ;rm$^z*lZi8ty-ejMqsBk-wA*Z>~G?H?u8%ATRtV<}%kutOV?#K5_ zx7ru-X?pg@!iQ`6SkPhn7(l}4cC-ZTZyD+v*!Ih5N5V@aWx z7trz~pTBHkjQVz@WELT@-FvxeI3-CGL5|{VPSSjT=ijB~b%Yf#(^3Di7}lUo{YUJVp}6{!hGa+zw?;YWuOicpA5FGj$w=kqXg@?k>#2WkSa0;+ z59rF|#qr!`4}YrBJbNS=MPB-$G0m7W%0)t>dktZ+B#<6ZqTk*NNA{(wJWSw?o2zjfo_Auzt8@X}lK#SIi@$mNCO-VSt50@FP@ zLOs+L_P%K2_idQhQkf&twKVb?!*QmcE&LU-% zc2%R_2~KWjF!zV|gu_9jG!SyNN0JG<>2(6YF&XSe$jw|Pkr||x>mTxlPL{IWI2N3& ze@qIfAuZ;4Wp}%dS)T2vF&Ku?@L4Mie^fmPWnWs2f#X4~oJeP`9#_}bZZ;t3{o zq5w|ZkNH_@BL=OE{Af4vS|0a@?hbj+T$!&L(^*Dv*1j=*{fX!^9l`e;DkjlrR~FKuwp4JP23Be56wQqmZ)KNKd`V=Rcn7dhq=K;dgu1$-4aa>~H&4r25-5=RZ) zz`!=1O54Ax=Dcnu14q4a0Uz8W&^+JLmf&6c0=P)bfv4d$xyE+br+0|a{xKh3Q0YFO zRh<_6@dleQqLypxu4hklQGnJxP%AiEMMSuZGZk%fSbnc+V#z-=8YK-oL2fk1$bks|;IFaTHpZ2nwX|5|+g z`CRP3gECp@89{DT&#wJ{fByfmze;KWQl>o(={x&E5>gd0j z|KB@w(F1<-1C);B_YxJfd)&_&(}KkQ?>5r^!UDzs(6g}B)_uzK4A3_M=$iucL5Y{2pb~(gow1&Z_y+?3r7ls`)wTxR)%p43 z`7fw$Q=pBF(NiOy4vYc%`k;THc7PfJ$`AZ(n=~@lH!?S}bpkvUc|K)e4b-*;r4#;T zyZj^H$v?3OAZWot&rTPVj@bxcV66>ml$9OmhBlxkn}USZQd<{<4ms+YYMVV@00BY( zb2~E~ptX&WfjOu_rl#7~PyTtoSfgzQIa&NT zp_8Q{(EM*_zh@RY1FbCpATItRF#vrFJ8MuUfSUR=mTW+bGza`j#|;gNpv|wo)3yZ&00aT=073v^fCxYoAO;Wzyaz}CBmo})QUGbd zM}Q1K79arFb0?aOaW#9bI{yi39tfK18e}c06Ty^ zzyaV0Z~{30suu*+{i@aa`P(10*&3PZfd&gB+uvdjI%Wq5+kqHpWNr%t^{(k3ovQ=N ziVl)v3y^UB?%7}GfTpHKmNrH<06lF31EBR^A5Z=M{5bliPdU1Q*0zQgcE7q>?pa6; z?2Jr*iOsJDN(%#|f8{B%*48u91=Xx=36eC&XM-@qA68-pX13q;|DyaQf1v7~pG?Qj z)D&n70Hp^4d7lD+X1_juJt@EzbZelQwzUbs=6|%{nbZOZn)ILIs7x)KK>!vIprU64 z8VjID10{m~V>CY5seehho`r)s;Flaf38yJ&2mo~Lte=u`I{}CF#~c1EZ&^fO-Hk zZQZ9~uLtTT&`aXUz=wmJy89igi+?e-&7XXdS)Qmv;#dI=q>bj`~GUW`BV2;gNUC<47E-5pR4@qq|NVf z^NUde&(np#b2|k75DtOo{t@`i9f7AA5Fj87c=vacgrA9ppNWP4AQt{jCH`DS{JD(y zA7#XUml3u#1V}wsC;ePp`nkCDAH}8rD)5`?HxMrUJaQGDNfn++75*Sq_)Vkod{N%e z!rB}F8W(1uSx(2)2Jpms&{U-Td|CSsS`d;B8jt{x{69+_2;O~SgEnZ2`kM_;gAzmx zd?p6|K@94;zo?9!%NRYE`D;%3H3*G7#BjO>j- z4YYV>g55Kr-7}%xAB1+lDV&}!f`&eb2~K~X{`2(;+RXJItH?7_{FHb7X{Up~QDo2y z`^h!^Kf%ZhjP#%lA)bCfI+l?sND>L2Ha)Nf3IRd8KLBAto5I@Ig5GInu#U6)_CWb0 zvq-YnKVhJ9tQ?+xuq86)k$=w5!@Tw~8CjA#0v)r|>N_o3=r?mL9^B2uYr0eqZ}SeT zD@`aUIP{MHSTjx-SW%RE&5uPc`ihAQE)k6X`%qguLgDh-x0TM4&O-1?t4O~%Z!il? zHb$1JOzM%hI-6@0Ktym@Fk4SWFv@SF9^R0xL&L+Nk_ch8))%%_6=l9)Ta_%f+gMof z50uvu&|1sahdqg;(?eY-{HGU7h)^6HTwu6_7U+*tUlRBUz;xiCl;=D>z{C|;T%9mf zz>*6CS@~aYy|Q(c5F8wY&@+JfSY83e>E(F_W`wLngk>`oo(UDnmnw0m! zO{0xz$TnP}^k5KY9(U{g5U)zhA-TKfX2Ta|Ubex&~Cg>LZFbE)+bJN(DiMP2+W?PvdoUnT?SCeSzj0 zZc#GWp6O$lS{=tD*9M~P{jJy5!w%L>4Z%QB(p!NPFzRnCj0J&cYlEa72am;lG>?l@Rq_dv850gdc9*7K5gzAE3v}t19lcu9R46AHl(Kiym0~ zYU=Nk!3$!1ic^Y7R^7|Y9u*Z`c47Tva+r{hEK+QvlM5eKkKRQ4_(Z;JO^i?W!*3mE z>%U+PvRLgIZd<=~x4dOTx#b(~+dx+0Lh>NQfy2S!TH3!{YUnLjoF4FnJ-FL?31BFC~Ppe76=3e+|e+Wd!fh8NBe>F9Nqay#F zg!rPIf7Sc(uKrq_PGecG7^gyMDT&j6fD1ly_k(*JIK_#(7&XNYbv2J1pNbB9zZZa-uIF%a#bJ8yL zS?iWZ!KxCG?t+YL_v_L1gKu!q>6g!%${rnPd7!J5*UeMPB}agAfM!Yl&%NWkqXz1{Ve{g!yEj~V%wP31E`ojLby z9oI=V*ylmuy+gDn?7B6}O4AivRA)1vmQpxy`$7pj!+%XH!api*d0I}y_1L;Vgh2Ya zzPpPl$h8%Z+~;)~>AU5VN|={3iqrwbNuu|Swo;X?J__XfzwYWM{>~IH{R#Yi*vC&42Y;x$KKx0f^4*G)3z>BS!lC0EifRP_8|T)m zY;g+|#?o`76Z-G4n<$&WtFt~9$ocXcn-Zm|op4wljX};_6zbEG{k-x87Nb3QJCvDe z@sLZk$!J==!QfDsPx8irm5m8y-vDm3fe$f}!yl;`^0gRoFCVb8Fz%68;o#_+Dl6He zd<~n zr5 zH91?c-=m6HI}#-sYDl;kY`@~$coBm^C z4V>WijqG<(l)q8P=N|9((FWc`hfCIIBwxaz<}lW;=$YZOIBVJbxTrJ_DXw|a5L!lU`mPKq4Dm7DMn?Y zz(W{kA+&kZCkMQ!j@dG^j!uPK=lJAgUdva*V~fK94R0x|+#RlXm&_?)ARybrS$>;k z(w2_T`({O@{d;L-3#7XHLU3n*2tS2PVgQD4~j*X6`HSiQJE;)0pq;z2l`vVVQt_An1UOx(vb6yWc&ApRG5( zJXt+hN0Rj~NODJRatI*Hk8+EM?2VOVDv!3GREP_T&?__&OqmX|A@z|auIYr@YD+qp zK^oBx4aquIj_CI75yZcMcnCX<>t|TI7p(O;UyL)IsBQt6e3fIax)*wXWk7|Qou$^B zb{J;u@0f1nf}_pj@Tjm>FZnsj3uOY>x98xD*jo{5$KEHuM1@EICZZ%(Bh9D61T}wo zL(Ype&TcZi&$Tm5-Fy(nAYQ!L!vS5mD?|s5EIw-Qm;%$guP{;UEsSH)sNlhxeNYBp zrXp3iS6x@fx#ruCc#=PC_N`|vkZ8N`<(!ly>;3xHgc-G6`YP^@3mw%Ma46;5g1VZ> zyEIlABB~dt#ePAIK~Q_EU+v+St&(OiHBN2fl^7*NU032|!y7!!A#y{|cl|VxMof;q zR>A4i<7$B{d$?F}U+A2?26TjqxHY(~Q&soBVdbjWv@b#J*y zF7CV-fXSKmb*b1K!5U>~_VeNc4=1wdO|0P(qdv8FH-mOiS1!^_vdCcF{P9nEG&;WX zJ}wU7N*)Gr#_`Jp>xo%A+K$Ms)K;93Rt;zsv`dLqG2N!%;?xcJZE_dx+f`12-Wloq zD`eBJ0}t{G;PR4 z@#D#QvnP7HHx2!MN?ONM`!>z|xJC-+L|G=iN~kxkhS~x8rhp2n4p~l@*r*@o^29a9 zFo*R?0Cyb`S1zVE|1lf6)fbnU)-s-ht2R?I-wXO8ZorFiR5R=;Eh%~}L+#*Iw{ z)!wyO2QpH$pUfA{rRHAWA>2O6l8Y$1>E+9m)RIH@eW#+&1n&sZEL7|;lX9z}`7V(@ z`5i_p_;GtaV^inu29!C=WJ;|*cpUuTy}RtJDDd-gm)!O}suLsQ>*yCC+be>mJb%3N z(xPf*m)Qw#V=@qi>L(`f=qlYie}|JeyQ8|s$32s&o1+Bv;#1v@oH2#v29HRuTdu$7 zmVGEwff$02R;4R4LU+oC*2z;uB@Vu?q}>PM3IzRjxmBP zn6*sNCwkA}_;cMyKbUw#VRWB+wMa~sJMFHsT*_-Rne(`Vv)^XA{2fYBD*Cl4{K~K; zZwNRfF8(RV_j}|kBEHYW+y@SgjN5br5`{e~c71OXAo6Ki!qKkxoW)&+R6TEXexyq* z;cebJ`xI`a(s5HaW!?#q*tuUYRA`$~HDZ(LrCUrTrtQ`ITi;z(dc?E(p3o)&)o}X> z&G#mh32&Pw7xp&VIt7=)GK#7TUe&M4HJ!BA<97)J2{FOa2u5~^9XErMp}RvgrEFdI z9q=cwL?!CGbkVd-ia7y=E8fIIJ6!No(F6DJt7x+4k54~SUw%|RQ7H_C*?;55=G)CF zTB>#>P1WS1$*VfyzVp)C>1Z_64K@9H2$QRSV|+jnQMrb;zxptmKs%$=fa9wcWr&-P zS3(+gt<2VKS?uURZ&rJ1MD94WSV))eucvn$-e4J{pN_{-JF#4nC8w36atL%B0rpucDmr)**HgQd zg3R!;j3b>L8rJ6>V7HaQr_wdYt?30`=6cR_N(Ry3@8{N9kr+^=-n*LH(3GVv08Wg$ zu#uZy_plJ>mpFT|e(irpZZ4bI75n*sRx zeIv%|+>I7lK_muRIco*35k~=_G{#c1#kY}Yf8k-;FOwe=LOgG3tf*|s+uJNV%i8dk zBxG0^=f>In{3DQpnjO1)*}2oYLCbi*E?*dnd>1Zq9{z^!Rl<}1lJ@h^&mat zC}AR&Dn|P~WnNCcbrS;`tg)Ub}GeeR&V>PTt&g=sKxE{U;*;E;*f6IkeRhB z1Jf%>`c7V5^$@#M*`U*W6q>fhWF#}|!KGaFB|qf6&x6L2H4WLYrstm(MCRkb3Xc*E zBi@}5gTW2&bS_E~e$5;8S8NSg9>AGZa2!69PCcyui0+rg$B5^XQYFN_Rj4xE!0PPk zkk@x7TW_NuxqttFZnA0$4stul_r^Xc)jq_TG#!B(mr6M@@ryX{44}1-bFLlAHy1q6 zF*7DKRF`A@&Mpzv9CO|5+E0!QhMD;UPE=Y zowayRLnEY?gYur`R8ipq>hewa`&OFMuMXbBiPwHZrTUX-hvlUoZ}UfzFf(EEdcVIX z9g;wkL9B;nmel)vNC-QM80==rSAJ;DFS6)6PdA)esvI7D`Xb@|*zmqHH}$vTz4l7WCIYhXew5R&1LfCM26+x6@#-XDsIuw%?kVF3i8eL&hkl9A` z=i3w|f-eGBX&Me6&=)>W^v~$!H|z=G$_OXG2qX^@RgdfoEA)vy;GCf1D^bv#s8|nP zRue2risBY)E^52Aal&plHY%r=Lvfiw+;!%X&uyh6GIBXr%)ibyf5AOL#HU6DnF(E5 z^U*+l{jBWqbJ*+1fc#x7!_yT`AR;!%ux9t$1)@ZY56= zkV5~el6I|rR;2<+03^|t!hZJ&->|@jjydUq{2-X?q)8@#7p@^hcyJTDCGH+xIzeWg zuWV$?3-1ELQC$hvT|i*SiX`JDN>9&w4>8fE zzNLhkQ{Ri#E0vAgIk^S7!Iy*|^nzwh zqrd803})cH4D$tAy%7~FqFLOY6!xfe39;iVGSP}@UBKop{7M}1WZ2q1yh^R!j&nX7Gw9)zM7^h{!w^dK-k z7`ud8m&N8XfY9_&C*5nrkI$i9QMf}6cg09AaMDCcJXhkZDMRgId2wF1c@i;0^EUbl z+Sfv%XE%)eD0lSxdRE*V&39oQVQ(2fh=9;u3vLr=K2hX`LmdA55tG0r%eUh@H9rMl zOoY9Y9dwjBcURA4ixFd7&8OmDq5;2YB9PYT-81G$X!jGV-1dYkg@;Oa>~LbeRZL>Z(TI4w`+6$B5ncZwjK_E zdyTVN9k#>GCKN3=t2pY<)*y8qVcLF}%oHY>ijgiB z^g5Y7j`~IwGi&|DS?i&;Y8Vk=2{u!T#CP;_PX_YcY)l~nn-C2Fxbb(d{pQ0L-(~Bx zhWo0TwxU_?bx-yBr=oPe5~JkRZs$h~;Vvg=j69I;av|~woHDcC`q7s_4uMR-{FPHC z4Law7)MWf~#B5mE5spSb-CdETk3}eNN9LyUW0(dzLJq+f}Gve{vpI2G!@T{m&B?O$=5XgH5t)T>U0-}LETLr?Jp2{o{+qcW zPOCu^>J;^W`V}g8!!S}E%8jb=XfxjRT$=@B2O&wVXoE4cMo8*BtX>|?(SCBtM~>mL zkIT%9E(dROU&J~;ZZwc9icL*HLxNHjso4^f7-c1o+3K99s_fOxSe&GqC{HOxiVijx zj2b2)nUzZF)R~k{Igz`&l^lm_Z9*xLe^eho4Cg>xhb8JaT$}fYK-f3F&LO#HWYE2! z>90vqk+#d-P8$}p4|!yX+mo_Dr5h4{HIWhq#^4+p+&;|QME($HhtIm8Yt+tPFvk)7 zErK8^6ad4c;Tw`O_w9zh=c6~0W=DJrs@JRj7gN!6ef7exSyNFa&R9B>p*ei)nW4$+ zQcg;*Gv!#~ABtgSmjqSswAE?7nAlOY%^?-f5`$X4D6zwI48VL>pO=F3B~||x|6WUN z_XQhOe>99Kj_^@TNZ6^XyvuqtBcIes8BWOfSDV-7-xpH;+0h<6II|qS@A672UdC+K?$qanvho z-*$hSgvT8}to4FcP!73o;VZ-0g%zSf_$oSC*v&@Ro-zZod&PN2l7w*WPyLpZD{L}g zrICFQ{hR7Df;wJnl54idko)E&E;R133Rh{p6e)8_Z8seU1(jZN> zUMr%S`Wu~^L$?&j)SrwWp6TdyWXC#l`y~W_IdkomhH#lq4QrM_j2dbpMI^GBLVh*L z@HU-Z zOIEjbjr524hkOn%GyAD0r}Lz5jy3RTTa;>#SXFsB;6ufZH_;}9+vra;dWsPS5emFM z^9u6|om`%mj*sNY5r5d7T+h$8mcdQqACOqV{!;O7!zC+`8Q|c`ZYxOevoTqe+UYv$ zhLBQaND+|R8>2{OQ1)(^Mnv9dF{Y(#o3&KaR3yTggs(OQeAWxo@rIOBN_=QU)~?AI zdRvEHuJheaZE{8g@#nEyM|v*sV9M{O)|dRmQ9lz2>^NpZ?0OYnmaQ|x_j9%gZi?>- zuZgn8bgwX=CG#FRuh&qU-tW=o@T?&84IHxt3>0J?p0w6|%yC;0V?GOdb46&qSKGnV zE}E$VtE}ZDJ$ZWz-f{6l_5A+eyP` z8ktV10+L*V4C#;Uz`OwL4hYnYJ)uH+%fzi5VEqGvkP|f;_^HQs{?4;tAnYF^WysBBjWkjmN!ySpl2)yk(%U04kK{32gZpqO;2*$kh zS!c6(_@+y6XL&FGvbaxzAT7@orh{9`dxyGgD@g^ZREB+4mXFfFl4L)1`O4EqM^k7= zhfo6Cqio8THJ+HR&wa2oZoyfq=R4UTC5-|KVcd|N^ydBrql9N@nS#bveicjWV*t#DXFI54)9f?l5!QM35c^_~FeUv?$ zq10e8x+i9T%DdmP3{Ma{ji)w!{74S-T5&hNV{l|^@6At*=@Ggkh))(s71OY)l9gWf zT9C6s$2_i6vvZvp9eQgWs~BG#Tm%aTGB5o^8m{F+%!xNLTr(Jq@mQ+ejO5-_V%0;u z?%el==VvHGzFEnf|28!ejvb6gEiQAwX| zc;^zoI>tcgTB>f?wUac0kSA5h(Hn$72ywZiGqyZ1MsXo%_nri#SC@B69)EIlm^+Dl zp*;(z&7{G^i`JGK{oY&E$m>k5&MJSWU@&`Ck?7qL`XK z_myTcd4z1C4VYlF?T2oCVot4~Zo&I4g6e>^bdNwdPGlIIq2MkeWa+{G%A_N@mU#B9 zD&1rX4CmBjv7sCL%2)d_R4~Sf9A3~;1PR)Vxt)Z${E#7oZ=)F0(9RA_5~u#c;E~mSag#6_NttK5q<(UMfIHx;KiF9J%>^r+y^)lWWBbf`lI<;N%FSk39@#xkv*Tf-v3_IP zv|?!Zz=l<50SlWfE%-MnfwlcRNa3%|b|?Kb0&%9Yk%I5TbIaDFGiQX{*0kT_=UO{^ zJFyC6rju3bXAaMX0(pyUi+MKbQ$~RdL2u;YBEsT8OP5h!d&}(hqH^Qe? zUWKgBE3W%|5kxLD7ZE&Io~dUjj1@x5H1*--9!F^im0lL#=5ufLch%n@2ddXr?BGha z9jg*=s$l~~#@;bVvS-{rB1X z+&FRXsfdcK%#~|ZROE}QTHk!0k9ZO+h7{^$!V1ocXqdcqNdcLlN&y&Dd3cfe6^>!2 z<1-^H+eE3`p?mX2AiV^5b2X2)E=+zNoM6%}avFu??Xglp+D$1Uo=q)%HA2{6T*f^R z)T?sO2!gEih0<-%w2YP3mnr@#lKIBlRoUv#B}&YB=?fAr{ziUDdBCqe4*$1>cvtc{Gz_^T1RELnL6QOy z+xQV_&|{#*!J9S-^mmEo>fmPH9QMe9%C(5 zm`N;Tyxy==^tY+MAO(&}VGiOlb~3r;(M0xVpT0shVu&QrLvCE=1gyu1^c%C=1e7bw z7Y^x%IcqA~{{&uo(31AmZ2Iw1tWP#CG+5W{zbJ~7m(`+2p=TJs&IU?Y6zZs?RFcHt zsJ;pXo7vx{-2vlk*RYM0+vWsQu%jL#r@xvk>$pDWxBs}uxT+YIu7_)orXNQ`ugE5& zdCIW|mw*GVDsGb1DgSZRe$!|IxG_j61*jofSqythY{0x@u3C%ZrXLioM^B*CRq>1^ z@N;&$O?Cghop?5#@YnFr0H`z*A1l>h+S?C!QOLr3{#)RZYx0zLXB!+28EoqXmJ5gG zS>ssmN22XjDjWHmezP^tckohUY7X+gA}&8k%d{m6I`WddKF4^w8@5jFc|ChEjfq}@hZ;GkSs`1s_UweFire>$?aeM$}uyXAF%x@EY~5F0rZ{r^cYQ26w)ny8JX3N zb0P+5Htz!?B{S@oP%Fb)Oh|)>mfvgLU-v!FC zET+=7n*2L#^1AXSYCIc>ByuGT8^o6RCUfbZn+L%KhkfctSXxaEQ%&!HZP}|Otx4JH zgXI8hB#YFMWm}|Gxo@=2rVIPnllVAG?_x0vsEOPeJ11_dDGwSh64*Gki%xQ087gpQ z;uR}xbgby}@sGN{ZuvIRtg8w#j5LwWJbp>KBZ!VF%at7PTD-B8>k>)X`+`CG+1>M; z9~$(tLOlGabP>m}zZ|V0O$$p#n5vWPU4?3o#pqi(CfS;v3mSj>$)GPhw9QRoQQxi+ zg`9=z1&{HP50S!MvNHo8_vsyN8AzYagI=6;R{)1M%j2JZ-vitcJD^q-Pf3xDHC}T* z*ke{*KUrOtA5yVG5j3KQ-8G@!0EG+!Ec0+_>t$oea;#jEyn-(sR zGpoZb0cL0K(-AMk7OPj*R93%hWQA)=xpovWbH_ulwcIevB}3I$kxdV0@aoJVQBIC+ zh_=2}I|_xNuKtcMU!#L)_n2gB)a0v}_frc&`{tfx&xMHmGc;E05i7U6#UnSZAh)t% zQE_mhJ+eXgk?t~Yp*Z2C^XXMZlyT7eTvyB7nL1WJ$G-CuO&k9NH#eATOb+!#7wS~1 zq@bx@-|pj7elm8p%6=B~e(?us~#g^%=eSZJZ)Y%DQP@teKpdc^gqyNnp2SSD?| zUnra+R9u~8yVBiFoeTqZlwan@YE`=xsKM$LgL~t(Wr%Z5H-V;=4%xXkZ3fXv^9yh= zU@Kd@UDJqXdr_$7=d2hjMo~6QfyepYx4`7hu$hOrNF2Qj37nP{Vuej#VR*Yv3k~U~+Fl)$(`%>> zh4Nw#5HuYOna+jW7UxlC<#!%UTz1Zh|J;p5PzfWfxAM9h3Z9d@|p-nd~TRw5Gax zz)TIl1&^ywZ_o-RNs%v~SUrQ}@u(Ew9N!g0M(eeAK49YD;wr3zu%V+ThBs8sh1z?L zgQ#nzG4%t_y01D$Z5E>m2>Q?8Wa=X{ncMkN_fiXAyy^r-UGjVhcr7(asE73H9G7|F zOd8_G$j$ZnEr}kSK~$GnNbf!^D4z2;#5ktg1ba)+`&T<8i7}tVPKhbKlG{h8jBZTW zrIU?y8=ivnURsl>5#Y%hv+k`+hi+D$21DbN=tMBa-@m$C%)PGK&d*iFpoJQL$oS5i z7beBJ&icqQdsM`dVQyzpDtOZTDmmRTj%2A~zB|kjRYcl-@*B%x(1^+;*0|ToaA5$Z zfbIk@8S}|E|3lVr$FP4(zzmdrGU`g(c0G*^*prZ7(iKpj>66#|+OH}* z9b_-#I8iD{LOw3qKVTe{k6Ku>PAxvx64cu!8gzdB(quv@G_dOe{xBDd1UqFW44rh6U`~9IfB7 zn~#1nu!-|Yr*h*wronD8>bEO2v_`3U;BI|lHm7A>_s_ksgVQ$s{+)g>Kd!=_K&6tQ zZL{5^a1QZ+?j9XY!^*}k%a{fDJI1Oz2oIH`H`ha?lqGN)d!eR81{l<7z%kOnfHQ6SP|@?_?yjd$!TE|d{cC0tn1~?* zFduNd<5ZXq5JQ@{bqG@LoG4RGAbLZF+{O*GlVNGc{WLDZsH+wDfWrD4h`$Sy1uQ4b z?Qv{kL+0e`w>v8i)+RJmTMGgdKeM=yqBKi(VN?X{sb_6Tz`|yzIm^w#AWo&E3QnS2 z;pZqYQFn+tekN#ZzW7x@A6~GbeQyai_~dPb#V}g8gmbL(xL3C6sUm$zLWC9M9Yfs@ z2UE*Rc+$%lV{%IL!m$7$W*RJjaQ!^Tl6+xuP5@5IxAB@^-5P??J-#4s^ z)P{3?rl#15Lh3qYoA6#xtd8<-3nPcOMa@6@E%{RCT#Uu<*D(Ah#vql*i9?SMyto1? z$&nlQ8}k|!U8CEWo6$GqNCQj?cYO67*q#N>6I;bx6f5ceLb6)B*ZRZPviyT6d7a^R zd#WV$eA5$4J?HOa(J+cK@QY<gZ_^4rEOrH+{g4|ly$Og*i=Q(ZE$d^VrZg_=2mF!n zjWl~4rgOCeuV;VI>GolLxo;ZLS?<%v1k;mjszNNhjYe4(3$F>o)HoLC)*1KUQCT*< zsBRh~O)HedHw%z>VWR@bxxAdqxFZs9f!o;7mL(HURY+ZY%3w!Qy&c<=>e%4LSj38s z1w%CpcVIUxwv*v1_g|mDT}sl-jHREAdWMl-jFViho^9U@J3!QFiIXaa?xQjJ7-CO# z?%8WU4(qQoxWlMGA1iPk4I-W>@C_0?i(at5S0ib^z~W3w+H1C%jknOCsWE$8&kh2e zQ?QPb#g`uxI_zyhpFM*qW$KkzT4wOH+FY|Rg888KUzpVpw{(lJ%q!7vW2VxZ( z5ieXj`){krS15E?9|OXtboQ|(4(N8}+)|SjCJ3rr(_2L8*@AU#;GW!&+`0;Nwa% zN^~*!N{YK&J|9&)Lu^IWZeEN>K?yxR*;5aux^AII2yMXdOQg9PbS@MulTFIkx)qi^ zOh>95kjg!A2I52+Z)r`W*^*?x#P9%8sa;CRH#lXp^=FDv-*KK0tp7-5sitpH9f^ZT zvZ6YT#CFaeh^9#6BzT`!G=*m%*p&?okaQ-gN{-b!m1BoJLYa&|7t7ObbT$JnN>nW1-2;#O;@=*Eb(Z zl(wLHBCc8aGOf&rh3PjzPJAq8mc&l}eFX@=WVLr)D3T-)N#+q%CJ%{V&;E|p7)J*I z;WZtkp!dc!{c;_rWyLu4>%OU*=7-s#MwD*GxE_lv#oEZG(l7PuD{285=|;n*xDR&) zXErDB=4b^vho;7Tt3(IO{pC<3V|jmWHg*yV)94`A1W_{yBRbd3)T(A9J~?{QE! z(zn}K6fvC`z~$``(nO{t6n9+jJ#yHFA$0}K!uS+L`yFtYPI!e{HCOK|ISf88b{X8$ zK=Be}H6>G7tIETW8!JFO1v0A+smoHsLb;FGkX1%4Ev=`q4CSj$W}^)S+|a(9?!xim zp}mjfPos*|L5uF-&TYDNz!3(H$Qnp>Qz>CRj@B%+6@JhK)V*Q7-3Bhn#)n2Gk@`=z zKgeeG&Nl?06#UEv%HDzg)f>XA55SclTf+YV+Wc?J{QsRg>F>_{|4p65`iFG<546en zXV3n>-AVsA?f=W2q%5eWt|mk!Yhh#P?5JpGBWuSYO`~XH=KPnZ{D+tP3t;}Vuy?Zi ziO=x=He~*5;NKkKzah@QI?w-tIRAG419AQ}ll}+d{Qr6T|Asng7+7fke6IfiJO8L6 z{}n_p1Mg6=D2uKR@HYVB!BWE5h+7yZ--@ z75QZ%kG+vhBYU$08>M9*0{jOSG0&+TA_4Yq|JOsvUg~B?*51u?JM%Y}^L7WH-O+OS zvWm{4+4!2(b>noYB_$(?il_lo4TL;fyhih&mS^582r%YkorbIHFtM+go*&dy-&E&_)t=2KPub8NpXPs zi+wb|AOTWcKiZFZ<{^v?z;e95cOe@9*4F_qGqwr7s*zOu_UV4xQ2aBQ~=%Dq>X+cR-qLq02^yPtR9l>V=&l1Ahm3qI zSBbCx4gjd2{;o-HUHNXGMmc$T_BH=r!)W`3IAp5Ng$3t}F@qha0dVo5i^%`(Q_ML3 zoiXwag!ml;{=r9h?IXA0vv|U%v-f@F^`&MGfrfy+gy>H#*5Ln1Q$H`i|Oqq7j^&_boQ4^X<*=_2+D|Pai*oW+ssI&qmg=sUa8B z>+~nQ;O>ng+UV$Oz;CbD?e?$d`)w{b;5Hx`1U1y&q7ML7iqq05mX=i^B*Qi@o{AYE zzo)@ROAt3+m7S|=3WD^GL(%C)KWP{x&+1BCD6uEHcE$$}A|7^D=1qy7dTl~F$hIx+ zhwO#R4QLPV3D80E(&03OtmFHiSoECQ)R-PxNMn?sBGdK*N|zVWcvIIWp5)s1o;Bol zmkOOS3FmpWT)eFO`U?kmI7-8K8=G^`k+5(uE_!`WSBQ+pB1H1H?R`1&A@A(Q2#{wb zDITJ`p!F(whL~+}MtE*)c&(7r20}KCWEj`W*e%L9ef;{O^J?S3ATUsgVV6-X>MaD` zz3dOS72;J1VeW#3we)STLX45O8Vx|$9GOGZHYn#OR4e))h|qRphBUSS#hPc)E&($W z3_8>y3}I2glLYbTSh+RW-^Tu_v6RH;e34ailM^eKm_WBcX1kG^uyeL%5qCse*}}D9 zJOG(U(5>se%x-jaCh=hnXcqTyNqiI;4ar6Qhha`W`eN4fX@07lm(~d~vQ>v+yz}V( zhVlyZW%Hx7Dvit{uu1`OQ(Yau38mjiL>i$gAN)u~c6}KSQL$G}th)n|b|`@Kc28O{dW)Nl7_r1t12{Be4t;>4K zg1o4B8#$$k#!A`V6jq9Tm#TPymjvlD0`mbSO8{oE zR@dfWg&~%BYdFR;N?U1ObCOv;-=aC%xcQ%*Q5qk$tX@XCaOfH8xcZkMPMAv+>qAir z9UZ}rL!)tQL)Q4I_P7j?!67l)*L8?F$8vg0%1eBs>Aq2$AM%tCgH^%2N--PuYcWfG3HH~6d~7zI|J%tKVUy{Q2R<|&wJD@4 z@QHFiF2iwH;X!6yK}SJnbh2F(P}kWzjoV;+p-lR^MajUe_}rBUg7{#G2)I47J}L?& zOhLSeS2ilhsI!V7=Dr*VB^GAImGqxdg7$pq)p77zh)!g{`q_zCRg3xA+&r@p`_Fje z=By$pY3|(?^obP@tPb`mB$@nTt{W+h4*29z^YlaGnT<0)LolN?okp>+(YS7ZF`iMu zyS?h!6TY&$AUiMLVl7_I1&#d#F`x?*MjutGmr`lP&HE9dUR|yqEG1W)+zqQcL>R=q z{X;{1c2(AXZorca9;}R;TQ>=Avv+iY zJv83~0S0svg^`hw+a$pBuWn>zkq+^JuIB}6 zZF&eQlPckz->S>-ro$~%cpxgI1hu7G5)tUX(}i20&9R6@D4Buwb*{C@M0VAeL)tQ0 zXcF{skTX@s+q1iE)1QX9roW+cz2cm5GzZB0VDH$b;ee#Wo&tc4j~+IsR7e%>aFh6* zhVxEIeT;QMkPvv0??B?IUT=j?3()|$Py%vfcJuV8CXF*A)(4Fd1fJKZpUGxg<3J>$unyAVdKySNgRvxF?~!L=wwiwr04H3ziwskw_O#}%-B z+wlM|`zFD`a;_Mlv{`~7ZG0Rx`Eb;1$* zwoI@TJZl_MOoTyD(4Ew+nfd!%Lj5w8Lov@Pb<(I6EOf6kzA3>Lb0RW?fU%Oe2&rBY zECPep+{0a~e}Q30IG2Ij>+X5;Z6i?>>lXQj0NGg^3ue=58H2McfG&lmQ1|LBt1VoW z?Dpoko~3QRf-pW3?>%;lz$n{IaQt}_4(cJhdcmeB6vU#`*3A|Z)f|GN#XG~rVGZGs zuT*5S(M{fqN$L$rYeTyx`)ufG0&$LajFP>Gh%sxxU_@j>tSTf5jg{mXJ3HB`GVXS9 zSs}sPAF``HhdDN9k%gDO9BACUt0%Ims#YqUe+W@gY{x{qBcDg_31Q37r%t}ZAr!!p zImO!*SD~e*=JaP35batV!278|Vw_CD3JE1@H^zPSH3Iq<|XKEmrxrirwO0XG4lxYpI z2p4kW#zJg}1xYiJ%i4<9Tqk+u!t{9ifaptl=O~(aIHWZfH`u@K&L z`!$KLLAS#1$9r3a)uN2CQ-Zlv`!+Jg1|-$!wD&=->*!KB_LWTN3StaelQ$_DFH#t` z!?+I|N4WN&lQNqjPj1ne%y&I*GzzFh*H zWJZY2a?5cs7{3@VJl-BDhp@z})7Ztu^H5JY*{B<+NGHhk=Dvc>Jb+U6)as$cZ~;!F zZB-MoJP(m+Z^CD>&WZIE9`hDDeHWrsc?kZG_?`l5>kaPyc2iW6U`rI3;7R{2DzzbO zN12EjHbKiIxO9Xr5X_8H5Oj;%hlik{Q1eqE)S@H+aFpF( zxR28ALa&(nPy7MbOoO^HWfWc)xs6Xp)c2(Wj9E=NP7z?KQG$w}_Ouw9#p{h#9_+=g zmb3Y?+5EsIR2mqI(5;@4^iXI@n?LU&CzAzF8Y3nt4hisvRg;kzHvG?I{2Wk2@qAWi z!cdH-wrdsqiJP_!O~BQ9%@(8ITv8?CT0-T1Lo|{KdZv6z zb~>3Dc&5M)kH)K&lU_XR7(8ZFG|2trZoxUsLy4iNzSs=+hHZJ8HxFX4P>wQyG}jHg z<}Xa4YIyK^8MWXTJmUim>eN$RxC^9_9`NSzPOPaR&JVMJxDhR-nF40!f>i1x5UV^M zPL~tYE*~QdfFrvpj7>I1UW%rPf$0hBswS0&rfmZuR?BQ+{*)SKdGy|O?8Oj$JY&7F zHRnYd3thNt)8Iguu5vraC(n~Irl+Cl{NM8f^?o@6q*#WFG1BCP@^jtTk~G_?Le()Z z!})T|5T|_QL4(XTQ>5lo+SAwfbr?=QM%C*|z(}zlA&1D-5>)-htloYx9bY48<7k!G-U131>74<7AT50x<<$b0RJ zrWDRB(9y8!tNJy7tk*(5^a`>Xyk($9nG90eGL)cEw7(}E;pXsGE-pFtK-2xj@zKH0CZ(Y zWwN)NNOUhShY@4){Oz>GU9clGTHHk_z6C3m=CaZ;p>XGtBHUKa-dd>43sj?}Y$lx_rkc`- z)9$+2IX`)Jafp#&LkyvPzPxKt*VfLCjLmql#zP*76e~2fR79G<4`rOKzBA|PMcHkB{ ziLLT?*>59Afj>WL><&91^^z-T-f{jEW6e<^@7 z=t0NbHKn+&rIz$4oCmE}DRgz#bH+(4Z1X(9f+yWj+r<%r-+zd)yEsiCXaO_RC#=KK zO|IlbD~Ju<{tCYzl=ccI$~4d1PgB7_?++shofGE?-|$XZ73uB@Bgo-Dl~w2}Etcka zf%-BZVPo6Uv%%B4*t=mIgSF=#8kmOt<^dt71EOo4aZ`M>2B<5gLg8k2##=NV4tr^66R1PV5b$y->k1%Au)xg*NIU#c6Sur$&Lypj_!bKoAaO%d8uScBb z0Hk>#N?VOjUUi5Gg~~$U0-^17{=*3SR_T2}f2bQ&O}^lFE}JI=GvRMOpLot4Il5}^ zRtjNX%O~Fs=wml`ph+IKQ({LiY~P?1uCub}dY`&i$)=YbhbG;mL4#w&Im!qMxkT-O zd3}G%!URhuLP$1__LZ4Uc%mK=?V|N@Q!u1G^I`C&9Qn~jr+hxKJ-L$xnXCJ9h_Px` z8I=-M#%#oZFgCLRr#(tcE{%CMSy>7B=N~O1J!m>RklH`<8nsOQTAi5_tk0@UK(z7Z zC6V)yYVZu%mKrpc9@ZjY&ASTqqrUtGvL#i_!@Uk9LcgTXCIu^F>*edd#ifR@+dtkZ zv}uIW`~1KFe0kL7T!C3$9r(kJS49aphtUkeJb5_}=ESd8FwQ8K0KmGW-5^Itn6+?t zMiVSdhfG$K=5ddO5{&z+Mnyf0?XR)|&v_o_M%?C7M0XKIE{wAH`^09)GKr`MR-g!X z-m#d?2wqz3ZLLJ!$kG(=a)0k6)XiGjW+4Y>8ptWAAYt(;s7#Zp|-#oRXOP3q5&>2J_oq{R2KPq#yTc-`D z_=(Yio}N}Q;5}CbSa|iLdnTVxC$UsYu4}Yb@n~6!N*jk0SH`vUsuG7k(SVF@SPfSL zF^C2fC%#K(iUDUiU?z?|ob`7sQD@1XDNgB9b6lQDR}gQwa-TsS?JrwxrchNHA#cx! zr7ZK#zQW40_<^>nbI{I=uN6|_^tuIxm~~IJV`eeZ%6o)8zkwPH&#`-b z!sTWmi$q$MDW@V1?tFk1>+)*H6b1zmw$`UY2IYA2d?-POqyUR1RSP7uvyHeh*0-?d zzq2>CQ!WPnW;iW-GP=a1+Io<)&fUl#8_CG?mlwP0*tjk@(;~Pddc&~@VZP#EBuAP! zI@)ws-r${|Ydx9avRhw#3=Gx0ZY8>dy(IbAioldklfeJ^L)B)-+A#hN&1u{XztpHE z|ISzZ;*hp6L7rt{$yx+IvDwHw)Lgr6x%EsB^C`(3-jw^bN{7UAodC+|>!<%qx)#$W zww^NS#aeCLRL7*L#`y}KZj8DdkS5vN=+GL~@Ux_Va?!AJdqWMDj!QP1V!T34BqQOb zlOW^jv9u07Vn3nK<8U8KNE%+dmLtKyFu|B6nqDvY5&Tr3B+;4NmtKX1=+dVfydW{B zrROs)Se=FbxE~HD-D+p%Mye|gzFCwN^lqPmo_FfcFt}>dyF#+f)l5hM!**_q0xN%N zJ1j9S{uaizv)CKC!xPJsByiKSz4t6EGxEjg5%CC@`wGof5g~V67i_Udtv-HjX`qQ8 z2wR>~*AWwxbs~a}7RFdpU2g8-<(9Bf+nCf!WH)own1vy@O=%Ik6L>hODdagp+91u) zJv=hDNO_kiS_<;g^u%JU7*qU{w3Mi5w_|0SLdARK=3{FdJ~eZkU*o)W%&qa4GobFY z5GLo5KVT!7^M;vBpk?Tg_p~I(%9ph`V?c&OWDu{hVWeA9Wbz4XT&9+G`+>G*$u53^ z|Cp}Mg)udTP~$DwcDSddFeH9D0RqN{Nq2iRyUMVrZkYW2G7S`_8KiELjV1530U+k< zp@a)|oViw%eGUXf>Xz${A*Zcw!fTL?VJe|@`f?1;ay&A)gH14Re^nrjPtw#0a@OWC zm9!wCHY6(2DAF?ndQlr!;r6Ckwr~pjOHm2onD0gbjX9XD;)U~|J&GBhJv?eoSbY0C z+xyzqtI_FmVHx9N=$o4E(wf)Wr-nVw%^50~ujmUjc>?wbU@OVTLx+zB)WX*7Lau#Q zfS6dd9>=>qz{r>6y2B`{MN`%HR_gG3Nu=gHJ!zgZPq9w$DoGcgyRXN%ntmPyS+RNt zQx~%eSSbBv)aqf4-|VZzb4wqZau%TV`ZmmKj?8jG9D%~F4J6HobpP4D*I1Dwy@p^M zdd!udDbTP3rcIs%uc(%AlOZ1U!TzXfFLo&POD*GGHFVBv`6OyZU-Y?E9I6h3w#zd5 zdJ8QW?Ljmm8RgRSSQXEdo<>4<#0@t6W~{H=r+vC)qAyi^+6$8y=>^=+{v)q$;zatd(0@TkJYbi zq@07VXe$ChSkBJ{pC#gs8wfmf+47`ezRUD`T9jQCqYR=|#FR6&M%!iVtngSAGI-}k z2$r6E-|R-oSLYv=kZHS~hwn>zI|nbLxjxV9jn<5xaEU2Fa&ZO-0eZi=>_TJq2nN;a zTj4n~SEZT!2^vHdP3AzUJv+*dkb_&R2k_*cP7ejr}rY-YFe0Gl&88T^VQj-^AEEPrXKs%IGy&g#Zu;3{A2vVYxd*M9m#vuvhD z#wBQ2^ul&h+*cvj4EwT6=o(DJPn?xe&1aQI52n|4bP73+U=J!@eu|Xz{bVC_a!Q=| z@VuR;0RC#g_Ks!0d8gzhS=NpAj0Eb`O(_D$izBZJHo0K(dcKVI{)t!neZ!d8;#(St zVvFnf6f#J(f&REwcIo=CZ(%SoZ$z(ZcB)P1s#i628n%~Z(71@YmXx!CP2hnRO;%7hn>cp zVL)}jfe2|-bPzz2$7ul$f`UjQVbt#FhY_v~%jKE(SbQ({5~wnYfQ$gMAIszeFPO^c zWK6l%V#E8*1U0irm^A+9Aj$OOZhvKI!oj{o=ENOsB@%2v=^=GkKvhDBTlUHF+i-@X zJ~SpvJ+D*hspWbt)9W1#kd~ER5X@?30G1h93PYT?#B->doTG?;bAe1;7Dqalsn?x^ zo3%K8Hdh1K?L>ny#xLGCGcK>UC87#ap$JBUXu|!VYV&+k7Xx~ou+5Fc_9uw;qBUaN zD@NWHP{2Bt4&)~ab1 z#a7Xm6aHJ%;=7I>`Y^hI6+{?~ww}tTXoum!%j_$JqQmySCTcyz2NY0|J43fheDjqa ztjITOD6R^r%^ul*9rH z0FiTX{XAd1ynX|g`C0OZqHhq#)D7_)F$=Bt`1kBXC6Yk0?1i4p}SL!+^eU=(L6 zkdx zY&+9$<&|fYK8aRl*0jnIH7lp)IZt#U&yx(nArU;gZ-p|FT&|YIyb`Jgx?qjovp|4p zgX_Si3(iG5RsJP#@m!y?f74F(vsu9JNYPKd!=2TgCt7~hD7PwLNZ`|2XU$}4bBDKJ zh^|*DCBQVqTuk&$NTu_GV=8z00pKB(A_3m@>mu((9t`?u@Vz_;bgvYHJu#%18jxjv z<_@s63q15Ke1+lai7m#D(9owZ?X1>^16213R_Vv65Qm$WAoTN;!J+e$D|?&f^ShvY1T!jn(~F|0w}iT2^5AkygV{p)T66wGNQJv zpgD;BF*mN@bNxwF{!0qpByVQxA30H6!5pHT=u+t_ItEpfsT0OD5AmBu!=d4w==tcc zcX71TC464n2$lFhiQpb$566%$2T@9ZVO+3CURD8bas^nRI(ps$6)l*Jh-LJ7o$ojO z<&E9uDgvmF)q_GU#Ii6U(Qw&c(pH?5ZTjWnlu*de2+T&THup1D3d#P~Sue5kFeRks zlD)G;Cty`P3?6#G;oAGyI+;B*YhsBOd8QBcYHWo+S)ft#kBi2~i?DxlnQaD0u;lfj z{MnSM!5;Qnkq$K+)URFzz`mw>#1zklN9KUAwPqXykuXBKD^Uw*7gEa^fsTGa8Z8-| zK$3p?YD6eR5%@|X^BTg?vX5aJ%~iOuiK7>je~=xLLrd}XQrMcZ(tDiT$~*vxymiap zFw5(e(v2#2PRw>kmg2?C97d%RZJL<5Imi#*s_MCcL9`bsg`FkyQ@kQeC$2JsP@HYw-4XPyy2wmFq=K7^Gow;^Qg*y_D*?)?zgo#Ln)o>`YF7-U)Itze0+o|ems@N5ONI4DzgTOWZHJ7W zb3YlJzbm4Yj0oJAQdbqOt*vmAp<`_5$5CCtUE}jPpxsiaI2tg%s^!`8i56VwE^efl z0%w+z(vw%~;$t}|4$Z@_!>fLA`_0M5N&Mow3dJ`dI17lqDj~&==QkrWzci8m!*qz{Zg2jz&JG=$l||!iLLQ4|{t_cE9-k zK~G#?;Fp;tz~A!u?T2YED3kz!1)StY(K6A{XP?yfQY3u&UUq1k2At(kc@~g3jta?I zVq6ialz37%Rq*^H`CAL$LZ@u7MM>sVY$7A3vkqaPh)e}Z;a%_ug6F-L^biTPUV=2x&5;8o`$-`OyZ536|LUex>f$w1W>6|3wi)V_a?+ANYOg#S*S5JlB@+*Zemp~VT?1_ zqsByii{%MUUSk(osWu}C%S1Bc_K~$$c**8Q$588J;rgBKCnX>2!4`LZ<00*L6FqD! zUzPCKh{f$|zod=ZG!1DDZ#S(;3+bw~X9YKM z$V@_)jUc4j1Zt3vkG=9a=BX%jXREr~3-JitUJQmD?b;d%`rE8>Sb5IZK0AkLa+LM4 zHSp*Co?q*oT#RX+sDhY;W*vP47b+P9N{&Ji@L7TAz%JhExC1<2dJ9epucOUeUXV=H z=UjTXsYRG>fOHo(#ysJNIGzC2NKA5?tG{rDOLZDS0DPTR6IJGbGYA`hvs3}MV2Rf9 z*^xWO#USCAq@y5-{auFujCK2{8K;+f~-&)YbP> zIqpBmEMn`jNGUF%Q%LXYL@*hRQv@n4)dgOfL$OC3%}J0aZv5}!m~lHW`ptgP+_^Jz z-~Qf+?E7vwG-ic&8A9^8;EX?4gwNb$hA{-p)Yindp(aM=n8q_jR2ZOIzY*tAO8)Mu zV+?trTs~jNAwgXMG$Cy}f!LkrH7s?-z>14pTNsvO8va!iO0|*L-P}tk8{_L1OQKF) zq2Ha3axA!BEmq!AzXG;8l8H+pBBTWCQzCdd&U(Lvw_;O3bT|{~Ek0>ZyGJ^x8keGc z;?z_FKJkbfT$~d(0=YWPnkh+Ue2$HZ)m=`T z`dGM$N49KMI){)U(=%b%)~YqufI|fYuWl<`;BFY1lR{=e_Iyanh`Q7~v-|UY7rdU9 zIa;3zX8NT&uX4#OQIKsauC~)*LJ-AkW+Tn&^C)ZAAXa+>M)~kmYu%=A@d*A7^)ZCA zectMW7rBfL#9M(1zcnwdU+nrkwRvf~q@sO!TP1)a-J=!gyf)4Rg3TV}bCtgq%RP?8 zId(7E^SlyO?B?bK%K~(r`yFINw5&wZ{Ktjsw8wHSR*D>tk*W&);1b}~!GeL@dkoA_ z9-D%iW{f$>P?SAdXJH=sLAMoF$^z(47a@h^ay35zdWDy7mt)a7BmC{g(I!8nD*}IB zK{EG@WhRJ#svHc8u+(wZHZM8hTGp~(cHWdnhUWdViS<%B%&SebDXYvN_ECR_*mG%0 zfHJf5*=GMscsU$o7FK~j7piKkYIOHPNK>#&Pd7+S8B~T(P*Zvky2iDeZYY~QGP+c# zaAM@<*F$ku&l514O^CYNac)s2)h`)OFi&xV9?A{{t`-Ju@o+v83ks6(mqzK(iv3qi z)b6KQn!1wXU8eD8yFbQ&4k-x_r_?cXRk3UrZpH9}YNzTPZT&?06!tCA)OcPBFYz^v z+`#^mzCo^ugSDB$Iuy0U*wFe0A85lFiCZ~?9sfQ>gN=~RSpsxn(uz3*%+bt(-sM|U zfh`<(U_1NmhMVhsa{2W`zJYdco!2Mj)SG^Bm0SF1Ywcs_ah=UkE?~_8+OP@_EL`b4 zti`u>ciyI1GD~I7mo7hz_P6I!8tqy`uo#BmIA_U};>*Ts&ZaiRBGAW;b4uqd?QdFP zM4fM7uMNckxA3Lo+Rz|VnQ|E8^G;;-tKJb*khVOoTeh=??M;P0h!%Y2>@WU;2`Ti+ z`mHAEP4dulmH2lhZ}S73g?puvc&h_&iLk1)A1Rxxff%+9w~4p8Uwn5U+aZn${vQm{ zxZKpIk8oIqW^7qV2Avt9?FkB0xwOf3K71z*vB>2L%pEpfpK*-v!P|sEw@Mi=oX@pW z*kU0=j46weZ=sm+HqK@b%~&PQ6~GDMmC1mitpmiQKpLZCD-g|C;aW)P5iX2Sg9vAS zinxMu1T-WX22#E}GSacQfCk@QT#!=(db<-3wt>p8Gh7ZDDK%#fuW%vki*b5su|VA8 zdkfIda&s~vT;GEa0aj-f4?Gxzq}{&TrA;9?lqBP{9X0 zx=mjIAGqYd%pP!`T~#(SPIVeeAeX(Fr?QgTV*=?vTzHp%{^EAxTP2W5g3t6)cXv-Z z$GE_x3QX7uc86o>PNOs1oEUhqdRAckOtp9oa_r4&r;k{}NmbJ1TIsuJq|~z!XXc==I$uCzyAW4V1=LAZ`AVu;F@8>}!DKPY=mv*kns{}2b);VeGt0lo zyi`)ub*)T?rg5jj^ErtKpS=M2Q+hj>#y=EEun}^!56#`|i29*y>Jv+XGo5xp&yU?0 z;N72a0p{lfqxu7OCAO6~;blLcgW*OM!@QZ61jyVO9h~=|x;nO61(N!8?|ZI1tG->f zM0$HFb%m0SJo5;nW*(SrXQnpqyo2J#m#7@ksUk6OR4|swQT22?8uioh_vvlyWk6^j z74H}dytl4(pYf+-!&$>+Ta!4g`JrFFcfafA!rom(;kF>_5`xQaoxcNSlX+mC<>7j;j$RP z+k_0iOL)*s2O&3AJ0^Qqyp!v+QBtGM9McKndf~8GJ;KI}-qqEHC;k>oQ!(LXg52RF zUXm2wR=U8IK?!OmLNmc>qp#xVxaKd(3d*FHO;#K}2s(mivK6#cqz=iZBQl;e4cVWZ zF6lI2#9h~ma>EZGvtXDt%iUiqs`ypEkU^I(@2i#6J?O+Wz7I*oa~Q8R6#u=J)>721 zRQ@M2gakf+z!TdIY&}K2A@If#rndr~DX?X4sT(wVDie3*DGboLgT%JL1W})bIOV0k zACZ+`ISVp)o*%CE0wGA%=!!j!WMcYcB;Nfs@+xnOWpg9Kf(}pDB|-YIqF7E8270}+ z%#e6E5OHSHL^ea!Fo^RiQ!DzQFZ)~-J0E9HYbIIv+5 z2$M+bfhMN+IAkp|;pKs}(P3)Do$7#BR3D!T^oO8uUV_88(vRJL63=mHkf7ZS*511` zhpzWTY{v<)ODd$37wQV_WzdfgSKV>(lPIh{PH)}r-vxe%tD&VDKijM=K3O7 z8P!Zmlw3g%=(H5MA;ZFM4ZojlgDzaTNSqB?M`6Z6e|{TITKKz=`_X3*^xi4~AOkA{ zo>*oR-y#S_$&gK*p<8KB;$iBN=ArgnkEB*7u>L21%fl^P7NT?^xLcEiz(HrE=ue-Z zPM7J6nFWgwID;y??XmTr==tkrI+)Xswv^v#Y3mj89@gH8(dKDIPmMM?Y3=!|jW+=U zF#=IXwz!3Gr8oBnvN~3@WJ<=B^)}SU*~&)Vq;W(zk7f`cpbta5qkt^-7_55->Y*sA zoU935?8Fu8<3p!(p#oS7`DYRpny&Sn%4dn{?;{*3kc;jF z8T#F@ud`oZwF=1#Q$1c}3YzVc+H&D-&_w~jDfJ;gNCZQtmCh>TOHE6b9|1%Rcl@a* zzFhi+M_!)U$?7S(+o2(lQUuJ-q?8yQ{+xp&9NBK|6hYZXfuuI6i z*}7;=UKm_GoFIXildb8*Z;@Qx$$pup$7W5t&2%l9Y0xXgLXMwGib)cToKE_*3jiDY z{T4ady_3Zn<*BG2rx-tYwIe7FgFbm-`!4VvVbF2)bxHIIVqN5vA^gLP`RY<;<5L?$ zw0;2u;|w%UUMWxY*I5e`F>+hq8rgmfGcV0{ajNHXlb}q}lGpLam0&lWVUqJTlObjo z2Vy)>@DyJ-rfx72H}}Y>Qv+K@AI>Nr_RX!kIFUjUr2?7-i;Tx{kHg$>eln8kheQB0 z%lgudpv`Q1Uvw7mQ6W?(OC|w<`zjJ2D?Xz__oHTW>;J>qJqE|xE)1KFZQHhO+bhnB zZ97@9ZQEM0ZQHhOPoDkOel_1rO-=QW+oAoe(*G&FWAU@VZ&#VSHJ0X9kf92Pg zu}jvOvh2v+ZmES6_j|^{B zGxeTN|F=s{8xzX_BPepV8ps{mZzLyn_U6jRWgsRqMp5^_jpYHplYPq1F)V5y7ya#s zE{nObgSmZdw|3eXe%(W(ZkW-bbE=7BeHr%3>3b^B#e>>gj%Sm6Nxf-8DKb@TM%Wo6 z^jaArj2INzu)^`|mqYhZ5x%V6O_JP}i4^_v$kr8I+A4ofPUJt%a=o~2UV(2!XkrIs zoUJ%`vIT=A%vFt#5doy6N3SckE&{piaVc+BO)VH7;?XwaQ``Z|FzGeWxstYVO-N-` zq&62DR5#O-EX$CjwJ{^JMG;-q@f+(t*!e@h@qb(wfHHP&Z2|Mj(#kB>tuG+wF6FQP zgX{W7_59n+{Qq=aEdKzTp8%Jznf{N(V)|iE|8`yMKPUeoU_w7_sDC6B0llV}$}c6E z|K+-5f8sR%chmL1)A0Y2N&mjnf157OpQhe_GhP2I{-^0;V)!3nzW?*#0->;vk@9X8B3c{1cexWMlY0W3GRNmW=)%dt?6*6#LJ5*ng$N#Qzlx zQ~04@D)j$FzWyuh^LCG$#xd1|7VF9CO0>)r( zZ{HgWC~|?zlSMO0s|}D?E_J5D!qV_v_Bsrzckqgz+#NTSeB=Uf*Ntye%=QG=RO~|M z`$NHilVoK9>ClP+n5D6m|Acn<7bj+d{818;LnY9+Fg-Ie16HtOt*d1L8&Su~SmVr4 z0-U(W0$}?_0~mU8Axr*lIFk8Bmma~?gRpa9U~T%qHaXL`I=hJpL)+0iGqOCr_;|+F zJB49zWomGI08akijo0LB?c0lTk)@Lvl|_TA4d7c( z6&n8CE{6^+oZ{=it@XtUd@=duk-mc6{xv_>ZRM-~rKtl$dzlGHSByvZeZa&7nySvl zy@KKKHTj7?(K~vlYuv)6wU+j63fcfbuIwmGj*P8rdfd(6Tl<|h<@*HrqT9yqWcT;> zL#^SnyW`6gHkod!n9byYL1x0&5v%=U(%Qxxy#HppT4FVA6*v{+yNcc3`2{{Bqint# zOyqTXO5u~XZ)RX?Y6w}+zyhqF!1Vf#o%GM$ceL@_H(&fWHpQ1M;Y)YW);GJuH?{cp zIPsUS_w+Za=EmZX*woC^HPFZV5Wp86rZ9KUHaBoA;D@7`6-?HbFJo|1GF$d{N$K}l zmCf6=!#BL15?!$GFp-hzR|=Mx$B-{IZPp+yuZ%1TjZP#jfJrc$ujvzgXL(jwSwd7% z)~T+|H>)ZDE;8{?8mLTN9ZPHdQy6HyTejGR?7K0b+v&5y2Mke>)tr~yGo_$! zThvbR*6BrS{rg00Y3slj>bnO5dfgMC<1}@J6VPcQQ^t3Dd)vPyRm1z6o$?!W;3223 zGA|;b2wdRZb~{q$`|Qj2<4bw&lb*rAW$20QyE3{iA}?!n+xk5x+;?KAT29Va@@pCJ zW&P22_cv8i??vxc z-h;QAL*;uLf;$SqKpEnX?J6Ci(m*?8JCf8zEN3&ulMaoQ@o8i|#pIn~;Z29DZn6$i zg_lk|uZs@t6oYqp zx=8vnrhbT$T_gHsZw5K#O23A1t;UAr;VUv+km0y~) z!7o5C4Od}44@*DQ;?I`WjJt3D)_9vvBGNv}Zg#^In5B8u^NN>k*=3c{YwUZQIa(`E z3yN$I03p9&nM&i$ks#T;3#{Pqd8MA!L3`xE)ixqU>e^Q(n`GddM94?o&mdgPhEIzF>Uevqm7*WdA-M%0D4!dw*+9}}C z4_jU(T!a4PF-l`K_ZWK^9|9>p=PVCS+y+nG3sjuLsGcNqEb_1v?Zrpp*XU``L6YK6 zwY=~8Fvz@1^f#r|ned*>BI_A(gGO&CPY_D~C2k+q*Hv@tXg#Q&fJ%L?*U}){#1n8? z8R9k}IcEq34BxB}@7JhiFGQz_z5$E*UI4k3ssJy0bMtR5UD%2&<;sz$l* z6Q>OIb!p!xqfagmj@6hchg z4s^`F#Gox{(X=OTJ4iKxxv!*Jsy&Dz1R;f?zlN5=b-GDKRAed^C>hezd?5_W#r+dF zMcnQRi)+`(Z=2jx4*Ap=kBp(mMB+q8+*}~h9HZ9KavX5Kuxo~W!oilt@RBrg$ErJQ z)nb`=VMTbA{&%5nb?&6~x+YE=uK~=)|%wQCB5e6~1hlf@5W2i717v8@g|k zXw8%J_UxIm$cAe>mOpY?r9t88{&~#ss*m}7EH!WrMdMMOAycteNokHeE4Qna+}Rna zAMRGgqS3yS4=?M`q8=fh*bAtlTw?ePU|quwg5rqA!mqEHNiqfK($WKKQ=r(a_HZ#% zsOQ<4tXb+F6G_#M)z9vJ-SRa?nS3Zm*<5a4$fdg@&6N7n9>aIsIswP?ikA+THwZjyNOpY2t9! zu_B-zYp$n`G?~un=E^c~fxsYq9<)bA7)~FD@tFH<)xufNITs396DBg`(i0dY1nEIe zp!{ipWyToiQRN%3SJiK%M6~C5b02h3(l!(gXOn)?SGK7Nc|%P=dt;*27Nj82+hv=}dI+7Fftb9@IBl_c;TB-T zZ5F&n`K1R5>KD-#Sd(oJ*U9YRRxk1`XYJgwxC83KHJ;XAtAS>4T`sSPDb&u| zFzDT=G6kCa@%oji;P5BMZ>CJ+EE(>nq@ta}J1Z;4oeRulylYnvyOn5TEiR{h{ro$YSSIfoVzOp6X-D7t z$2@jTi__h&hsNtS!uyv8p~8qBbexFnxP~9}7Y? zlJ+CRBYk{wdJ!SPYM*g7@mnhUDg%{{9HsvClJU3E2Y?+bnOm6!Z^%u+_=Ju!7>_nF zUL#1l6v?MuR?n&U>&*g_0LN?ve#ss!o)#b0@mm}ot^jT!jYESTE4cJ`thHpXYMa~< znoV*c_DK41PuPk9y6vs0yjwtAoBy1xSm6h>EFR=%;Rdt{;+e+Z&HfvqCFxiRFfsqx zB?{whp^{kbV&1il?bp_jEN4NMaNCM@XF^feue^Y+K#E3r_ zm_4!B)Y-B|g07#fnXmil2)mZXAx0eA#LAvrRag~vj}?tI8Fw^=UdOJUNSvdlq-MiR z)Q1sqf$dsJ;NytlgBzF-9Qcw04JM%up&@WFO3p=VTv~J}P$pIy6Pjbe=0JBCl|!yw!U&my_Q^t7V|tZ}wRoB11b7 zJ1RK!`&M-hA$d0Eifo*u@v#bP?G_3Uj@%80z`$E;LHP{A`@$5|K4E?r1$TQFu2JK_?Fi{7m?k+}abmQ=t^_ube_5@a7rNt+ z-hIuhvnnPMsS9HByVSKA`ehG}1S6nt7x+FEJ@}U%b9M_1i&!r)ONnSZQ~S#j*;w@2 zA`Ifd0<|l0gTM940noKLHff3S;eDAgCN^~YuchufZv49#=nu%*^2Sq|B zA6h`1lwc`80HYhxy7uI3Cc-dRPnt9E>(SpY-brHzgm)x_b?HK-@D+#m?;+0K8=KmW z`j8>CkeV9`u|;pDt97PLOKm}Bd7r!2s}DXp-%Nk%r@Cwp80ri*+#V$v%16hBc<6G7 zZbLDz;<(QJ7?Glk1B4mb5Y$ZPHj_%`WwP9qP%*5XGG8up;JR@V*sK@YUZWUB=0qDc zspa9Uj_9wCY+a_D+~xt3ny_7aaz?AGX|W8JU039XtR)ulKm{@G7MSxDuPeu7kgT4o z7gDL!>ERfZHXqYgAYY_?zwEdXLhXy#_A|Q%ZmpMh81E{T?bP_9kT`*5FJw5s;K_Cl zN0lY$681HnOKfz+IJ>A2x-5=SBX56Mg8hEy^@zeBDSK3o$@p7pbJWdo>yeX$s?`T? zld+vw7n7$nn6stlSyz<3#<0rwBz2q!mn-B67v8w1X&6{0G1HeIN3K zXZe!c`$`ht&aMk0ARt&mN|A|tB!rJ7w-?YJsBYL)cURc`P!x%tNK+>Ux8v3d4?yR< z$tZrY5o+r8Byv?0c5}r#GKZKL)MDBwQe;ok-E~TN>lO1pNeqGFnh?mpU*XjB@(|70 zgv|nd^>YL#KAt@sacqtB)F*Um!rqvlg#}M%>bCn0l6sjuT&L>#jqGp2SW}Wp*FcD1 z%0U*{36*1DHQ!uA4gia2J+l#brs(c*&45n}S>Grd?_EK9i=m!Chx(;}jGCsyk6U+SVrgxW-e7zm zbv1=whsc1a{lF+)rWnQXI4Cu7ghB|-e|cyYK*o;u9aVI}T|T4x)25^@)a~`;fsrZ* z`hLdhdl&Qq(0e;}=~oVg8J^Vke#arNJcx)Q$dxZC++XFSj)j$;fJsZyw=u>%zmxRV z5q1J16x7&Ki-EJuJ`p%)^5Be!w2?fTt68N_^Fv_F2FaSN+VnB>94KtXFWMRup{DVq5i>Ji&SO7n~^}hW}wgKoS)7q{cS9BZnp7s}9@m z2|=>gQt--`wH`)>iRzv&(~!-#aWU0w;b%(ZA4;7m<#AP%NgjDThVO`Ez9s@J4^k%J zXmu5M(zj8swQ%TcFWm+k1Vn$l@l24(%$TGoYpk1@O@gXYoPJ%HmPR~lNq)R<+mxs8R&@rYhH)h9ev0J3uy zFedCZf3h~+9i-a@zn`JW3PM9^_YOX{Q7-#e8+{6YMRsl1|LX6IIIUguq=-;W25Vj2 zE+bqgi_aN4n^S#30)N)RNc*7LHs4!ni|0~UA@-oiY^if)F|@mt7Mt-Im>l8B`J zt@yT0@T&r?DYXFszu}=?jOrDaMQi8UJk^HEB05SL^5Qm;w9{RuSNOP$mj<(;9UD`G zmzPAY(O}qX$+BLLNi6l4=!23rK5KWuG{NV}Nk5KPUK2Zw`Q0K(PQ~OwwS=)L7yY=| ziGa;B2dqLSq=Lb(!E$pH$x?ebI|i|Ubq5D-gjI3j<>J@XI^--5Nsx)aH(g#&H~AnQ z@#jLj3Ribko6@(Vil^h>l>A;{GRsyqK1QZ3nEDssN`URnRt>Qo95q6Eym^GJy&}y` zWC1%JpCHW6#j|1GzxkVfU9e;tUOshL>T$@eIw85XCO#V4uySk2LBK9E&8wFD<1AkA zOtz;Bz9T&>9H`KYoFuj`+fC`wth}Hj7A}S^xn9@#CAI=z0I61m-G+uM-rJg$w?!OD zo{hraANJvfq?oG{4wrG+g7YG!x9%W-8doEc+HXe}+Y zeNNrLR1ZmlXUQ_zqPzMdga{Kt&?vGlJkY?1F(05xcGl>f-P*|%=vp{C!hb9mwn|lT zqrD|=^@FAVs#CfIsCB_>Fd|F}D=@*5L(pRuqy%-7zT~7xZg5 z4lUlz%*KdK9gM@f%XkcO(fPlUk^QOgJsoXgwNPrL6LdQNLR3`o)ATbY9$8D}fB1D! zq2O|xn|KSgnn0q9D*_aPRRttt2~J|@u9qMQgKbWBKAo&&Sze+|=;fn8PAtHC?FOCk zE@hx)3l>x^<0+adheYu(^MEyxy}ki=XCX>^!WcK+G!To=juPZ3QV4U}!RAlh&TesY zYZ(L^4-(k~%7|ajBAz@4#@o#rWMj}N5%?ra`J~1DE8}$Cp(V=10)XW~jEUwQy|@H# zq!@@U4iBftuYlP=YGdC_c8;Qs-Cj;EnG5*9l;XeAg@@}|Ky#9g%e@`n*|4m=sg?R(EjLgaaw zE|3P_beLRbPSZ?8PlK&&hNAH#lRgBnzZKy&NW66rM|_lJZ)ibSJ+B?euqRIKJZk*f zZB#mUGu}|i(i80scxnmmuN^yPzIH|6L2=L7t5Y^3azQnA%{m4B zN+EV6=YefkNOLjqwC*Ta+lbqk=v|`lp>?s$O1Yd3oy!#!qPkIdZ72#;PyEA*Ly^6p zVPIQgGH?D4UDDkfwe55#=Dbe&k~GTCu7lo9R--@=j3q)(}9n-0ga zFEi1C>Y>do+X3Xb>FE5?U|eECk#kv&Zt+hJ9aVn~Q^O9uv^Ime-!oqt2;cQ&_OndA z9=QCj2`sq+>AEbed~kg;|5Mr7D&#luKH^2i=Ebd8i;WnnIZ`B7pE%(G+?wYMIA?Sx z&af~1;-2KLi^2n3vgnrPELItHzWcy7`jSV9INUl|9qF63bC$ekA+($U%ls-5CiQyc zrMNsx=mgg=I|8YDv>3E#64_g+u1_4!QQ(2D@?pkk^|sUT__bNmC@Rc5(-bQLz(Q&Q*{eX1+Mv_sPeN*Up^8& zNMt^NI*W^OUrM*F_&ta$Tdd!eVHvTz4?H7%4r6h?;d0q2j?5UMv9;xy5Ux|kr3H;F z$qkzZa!#5?=NG~s9cP%hDeny$F2$c)kskq*s+9t9K%7jW>Xc?=SMD=NJZB1zVz73T z6`{o$gwwnA4ELmk}{`8Xns$F2wm@XQGMQ!=4q>KV$Yey`B{(@azLJgkpG=lzM-u;B^c<#eA^w4`;wj z{|b;wzkpvpk)(~J-JLbeBwJ#CSBOTag0VWnge>Gx*v?}&2+9oTSeUT*!4WhS9Ppr6 zSKcIq=OOD8&s?`m!y6)`lvlQr<`dyOU9k-S?Yu)xDSH`O#o2!V_mB`jhR^J} zeQLS)6o|0kEy~o8P$n9K~iGVDx!C(yIal6owNOyW&;wmx=W#NKa@t7F#4t3oJCrflRTQck%P%Yi310!-i6WzM3- zfPd*;(MieX#CR%DE{JvOl+Xh=Rsc#qyHf$exRqh0-66?tso59oKr;uuXM@Hti9SFt zr#pTJprcyYbM%6`HTiSZwPFc7wt*h?o|CJ!?$hYZM`4lzU>(gpBRyHuCCw7-e+=JT zVgO5yCz{bhEoMg_=LFD? ziSB&9!va@$@g(NEdz}m?Ovnd1_egLx1FF}!?GV;Ql8B0>Z9+h-W2vCCiDl*>b`%(=2!0%vQ3zJ zTjkm^S!WLhoz&%MaT)_>+;ZXC1X2 zIUZ>BSnBR>oUb()zHq|*1szMsy4JzOO!g`KtLGxmPP|y6DO_V!LG#z2^`Y@E?oOjRwFpRfHVtJ9%V!DZSc9E4E?qOI#t@w~A_x;ZO zCc!>uEa0uCBZAANePw3a<4Rf~M&7rg^!c$siLgN-rAqlvQWt-AsmZ2O0`WL} zR86Jo!kR4@nGcLLcDpY-&@nU@ zWaHODaiW*u?V}lqM*&;)GvX=)MDK|fqf9`ZUpUM#ucsKVmM+Dgvbhs0Nq3dVXGp1R zUSPn~gha~mF~~Dlt?yp7+|}_o8KO}u<$J}>*SZBsIi2?cnG?gm$)eLWE%Tc z2!?Ne9KLkGow`=v!QQZ# zy&$)U-EkuN-R?8Yms)B@Wosd1tASZYfXF8sLX~9B!CU`^UhI7{>a?2Lw@`!5#%M?ic7Py|FYTr2VyFRl(#F{A&@EfH_t9%XF0`-q z>sy^_{gGO);g|FvStD^W^UK}QemC5~N=a!oGESp-ri0cKS&uGJl8;NNpVzhf>7$dB z*}t66PdjmEj$n42(Hc`Bd>b&agONslJu3xX1IRgoZ}V0o@VVuGG(uD&@;$Z8nq7t8 z5|oAMrif+(oq3Cw_}tEY`{{fnc(mxhPR&(w(}9+Hm=2wcqM>F(zB<9B#D;x)@G*rX z!{DzZJ;-g%pZ+TCxupFzBQI)uBQZx@j9f>TzjT4&Q`qh7^oJ|OR^W-MPJ8M`U3p?b zw0JL+kou4@^6#_C;Nv%C7`tg#pDiJ&sfOI6>h1ExRGD$R2%=el5TY(eR!nd#-<@2l zkT)YrX$oFJbA8PJ*3Y`2Z7*{!FzmPTcn?rv41w%dMQ*4LZ`(T#Bu3pEo3KA!p|qF) zlQ4Cg58e+wXzHk;Kg>ey(E8{QfJK+GrrR9NBuiai(3Elqu^H|!>Zne{#u(q+J_pb9 z0xuJDxUxh=ha$}+lIrq+$h)9LAZ4S_PIhrH51J@El&t=Ucp(r;7aAH|=NpPl+YcPu z1prb^%EUz52RcGVa>_cwQJUD;C65JKx<4)r)Q=V#qx5!>Zw$qBncD;zs zE05309hAjg!_o`b^ztaROAv}WtG5l5ojkLCAXffUnOMlOHk~#zK!lrHs#R1G z5!0=8-V`2oa|MNp8=AWn#&O?9k2`pgmf$TYuC`{Jz@FU!f|)-2}+eT#GTkpeVSZGK(-dR!kpTv~QOrHA_Vpbq z6cmL(fWLP3O^)uim00)Nby0Yky4@vuTdVWOZe^pfBT#&#nrCrNab^g5lV>vKb-2eB z-DbL~j6viL#kGyM@7`ONlYR8PqlYvY_hYh059kghKxPJZ3Cj~y_t)bJ3QXAnreFZbAkIMyW|5S>78 z)Slky;S{WpHcGP?NlY)UMJk7yNi=s3pBEkEkS_C;+|yNg^3wkOL*TF=zCm|J`h2qp z7nulj2Fe)UE;qq{CrfNy*g1_hm?khnLr}GCk}Tv%qe^0QS;cWA7|ofmtLlpE0ex~2 zSLDTGSUVKj9;DzqroR$$n1sT?lo0!hz3L!C<&`8vUf6=>%clIrlyk*0(?ybcEAO&?oMFSPIq z7=fo#)59(J3X5U%pWGKrYq5+R1uGFs;-P#19!~30p0{*XbY{LUA#3DqC)~Is*wAS6 zLQuLWx=E;iRO&X#O2$OKAaTY|%tX$QV!1Ey@;@8YX$;#q%SA^Hz3?Kd;VqfH!fN~W z3R#+%m}Y5)wKl5loUyiIfatwosS!mJJ~lyA#a+>p%Q_ZZ5AMrF<;!tS_ZkJNAJhSJ zbEfG&%^n}#QeuNwP3@Gr8LdNDN`N)p`>J6c%?rMq3ReG?r*wVt7NGYvTTUZ_-Oa@- zryotxzgI%*6^vy(!nU>SM=3T?#6f;F6(~XB4g#k=CAAQ28>#|oDV((GoP)2x6~FF* zNGTI&E}It?3Sts1wR%`)kMrnrAyg}*^pxYw z$t{n2I=BBBO2j;=z;}3cR8jI%1k~3E0WP+K(l*r^CWpBYaEZNYEA~rP;~p4G=%Av* z-hrs}JWS^JQZc>x$_X$- zja2m5N->LQ>YzYq8E}`OKe^b(U4;Zf^wY`&uC2ey!7CenQFf}9{@<#Ml@A*0Z~w(u zNVwHks($VyWj4#f^~U-GsKUB^PPi~;+@+EH*_bWEGJ6f7bnDVjnkOWWh*&FE znkHso{z!le+g^&_@O%<9pkD(=kH5b#>bK($nj=dEbaDEbz!^{$TVVsF?s#>G0F^SZ zqQfA0N5c&F9rF~XC;5;{goMQmAkKyO|CqKkkdo(k^)n{iStaJ7knG)JW;oe^q8fYG za6}dQsF$^v&zGZqD+2wIHKeAs=>JhjlFsu=7AEYg!bm2OmKr@R~DCQ zTP#I5p-(wkV?`r~ZsG=+Z*|gnP?Mt=cv2(P@2#~*&jj-T?rU`VrS`_pr2mk$fVOZSMV z?@KYAX5s>=EM-EBx1IooS%0KU=iv@)K86#85X^aZyHGbg#Y4#z7F1`<(#G_(VM-Ae zmEC4Xu&J+u1Gj+JTG2r!Z%~=2(m_-1X_McvXZz(B$W-4t`2o3-Lo@7MRbzvFhY;LI zPR2yx2bl(>YSADX0)H274wR%(=k>Ry7jOPu0B6JSjfgLfPMex?u8nBZLs&|+!o`QJ zQ}igT<|!Pg=XCi4p?eCmIBP2q@^VDKcYez~%BbN_X_kN}`CuO$Sso~Z8&9)TpBm!~ zg^(>5Kza*HU8ePh@vIM{B^*GMEW zE$DBRX~quPhanZIvR5C|;*NY8A`#YfajoKgN6@kp#T<#)+*&7NW}3p|L=s4HzKdvJ zV*_n2*7chbM~EO46jMN3iL5j{PL{1c58jNmEgdG{#s%MtM>W>TE#5SG6;xnij1xpY zh8vQ`xpZ3(NywmaWDfR;f)0g~c&XXcx!Yv|g1%nk&xXeIt$$L%-8PU!Edh zS_ZU0$L}{QkR_VS%@VLxEv!eDUMhVPoLRlzl=VH`J$Sb&5)WCnwIhpjZ(mTV2(q?R zOtC`vaxhH&TTu(T&t3EVo{|a;5J_niB_IS_K4d5{4UjcnGbUQI#Bs+|NJazY$l(< z0>2El=Qy4t$2;S=O@<==j)zE4LG}gjyBKXMWKi(ryxb{UiJ+xn*{>YQRTJho*MDpL z9HBZQpEP{5Eit}C|C_}V6Xb8}yd6ySgC=Z}6-H{u+a}FrWTk9S%B=Oo$v}uea51;lDK*nGa_2i}JB{al|sl zx?$s&bj;v^pRN=m2q(LYuau+Lby{xHg-NT}_$Acj17;IRLD!X-AioS1Yp(FD+ejY+ zok2(MWip~Atb|FY!6mFs*rfg{135w0E9{4`6=)K%gBOsJzC0x)1ANGix0ErqVjY;j zhP|lEnwu`!!dhi-5%6HMoUs&x?q>oHj~le4SdeTKTAk7pr5Md7Pru|&0G^k;kb0cl zdw8%B++5{O#h6|uknmO(FT6svMufMd@=Z6A&xSzXBt}AEQ=egIASo1&!JjsqXki|W z`N^DjZ09wQJC`@#D3X zizmE%Vk*Oe(qO1z6Q*3uYCV?!=JP`|-=(-U)+kjjehBCdOa1F}M0u@SX`Je(>)9CQn9au!Crmu2-BrIdvQ{x;l zD+_;-5n2aDmh7F5i=zE@{>n;^{KM z&x>z01^ZI|1%(czSMk40ld#g-UPs!+?DjOH=HGfzYQs~U(Q>JT$d$9}U6wSDWj5U@ z_ihdrWAHjo*0&%90VAwgbd0S8eesOA;GcE|CBDeCc~Rt8wpa5OCL?HFH7#w6wiPOe zT}{YA9!lxy7P|$`gK)$`$dkx~0bM=B3~7lRh|>}!+&alRmc1Z3^iFf<^x)9!bNRIb z^Zo)F(-<*0zJ^!Ngo^!!BuUuE}T4H+t)ae`iY5IoAFvsA0HLy?QF z>jMp%4e~WRQJ4!@<^anmZj6vUwS|PGLGOR-atx02`GAQ{vGcU4 zbh+a+{e1CF!PnIc9V2+>jlwIkPTj8JGXx*-Cme7mnGP-vR4PyRd^QQH;A1zsY$G~b zD$!WCoy3jV)n*TvKo@bzXbcF>o+qGjhf9RWrxPK_6+i#P6#r{M2&$qQ%!)i2xrA(*ByljTKBSKn8Mt;J@xD^_+ zE*@|IW?-2CAoTmosW*y2k;VwNfV}me~LRN@)f|a9m$#oHJ&>p)Tv^wNEl_m?Ll0Bu^6hc0 z^T%`D^u@_?D&}7`f!s8V-7?Zi0i3zqU1fBj3F{+XI(ksP9Fplwv3(;6N9v;0-B03j znHqX_WE!@ht>&iO-*XU**v9Isw;2c%1zeL$U)Qkhy7e6irlCVzs>Ns4A*Ka-y84oi zlFYMV8wKY?)Xr@90R(*0 zO=tcS2eMlcxC9`OJU_QKRq9`Nz07SvcN`K=Ysh@OE?HI>iZXauSW&3 zktK|YDdkjYiCX3$!oSgML7DoqWG~>crMc6zgLjVR3m(f$P!>ZnUH}pUhH0bd#iE

o9=*`tet#V4=$PXXDF{27^nGPu2dhpk~GbD2HezcGl zalyE2x(@!U!qGdK^R13cao0#!AD5f0PaF8ow(O3qJ@J8grm9tedpmTr&@gXc`lSsW zW?#ci88FQ6zOJ(S@cu{+G9$k^WX%c+MT< zx%C)`@x1j{!M+O#;yfF&V7Gz}RGXN3Dgr2DCP+~aBtN&l(*Q@}L+}Mt#K&z;(a->=pvc`islLQmGz%m1h zZ?ot0%MbRTPAla^=rm_Bj@;o{T*QZySGJK|ZAnv`>=R`AKX(#i%MQ8Cn)nE4P*^bG z^aJ2@mGH%aY&F`4{5fJ$fA0w++;8_dn5E;~dt{zAg3bdmC=$umWtgY{L(>lKw_gHd zd$1#313GS}tI`{oG1=7{8@g@RNsf%@6SPDVr8LZE=H3pEIigDKz4Pa_hI1PzakFGme9xZxF$U_lzylRsE1S2Z#fhqL;OPOyo)@q#VwhVH=HO!lMGJ zxZ5JVn4SZRRx8D>8aq7X3ESVhhLKT0ufoasrG%p4wckg*8J9!3G7{+rOXxWZB)2|4 zP$1nT1^883IykTGM~!yM*g11Ey_@E5wtiaug`AH)QR5fZh99iPkWbGny>oBn>G+Z{ z!)K-4l-?Tf)FbR3@7~hX{<&sn6*{u%vczab+#jF1j*#aG_>7qy!F_V(urpi<8W&Yt zb&cOmGibnn?MNqnWiI4kaA@I0_drV4oUBJRhlL(}#rWB+#zNS9?O$)q^w=@4TZqeA zZSqiSa#-CZZo~O!+ALt{B*}oH4|@nAgP_|wWldWkvby$QbBGb)7CrKvDqX2PV?zt_ zT1S_F4Iipm>CyS-*lx*)=T-i0=Z~5Y$3a_{4nkhM!Ym>v(=i)AF&xdR=lRH87Yx$q zCz8}5syQqohTNy1$Bc=(@`h>2<7R>-tQG~6|l=m{RX0VlcsYzSD z(fH4n0h2YWfvwuH+KQjTdMNtrftYSmBlC32U#_EOS5qzS;2xq#gN)bPE-omj33Vk5XLUKCxzKobA3|cuQaq3ajslJ zsGL-eN=fn^c<7x*HddHb{DSrh7Fj^!&~ZlAQxS2FGJ&#@t2KeF4iWSwehm5A^A;1o}zdy`ReN;XdU2+XS#mL^5jzn{D@y2R6T?a$u!T)#p?@ zzqz8J2js5G2(xkMl5VPh(nKN>TIA-$%;p7xxyW$j7cZ(i>*<^9$N?t0z**QhaAThT#fX1_~g7#NJ72S-;v(7g)9bnK!` z5d14xm{#2kJ66uTK<1-U<<;k&kPf97!(R`GMi6gRmLD6=!vZgY`*r0A9*!Qt4V2R) zc_iLV@)Nta-@FQZy9CQz^s&8-J_qRbqZx(jX)c27;EQy(;hk6A4^pV~{gnv_w*aNV z2=Htn{;$@~JSvJK4dA*O6CsO(7e7~XM&Ad5rxr6t8-90LA zMB&A&ZA({mvukKuhs(N;SQ?#fLbPh_O`c0YtjeV!#oAmL8gGP_c+`x4XZqs?q#C|AV{UrEC z{-W&EVtL-F#}%>OON%C;&4hI0m~FCqyYnCPcWc&-_39eZ7$W^l@zfWKnieva${qO7 zn#<72&Z^%TnqP;veU+1@U7S_Wtk|4UMk>^4BT~Iz7UDK}HPoUNZm+|486;f>uH3!9 zJ_GB$$J=+_i{OcY@36$0m09WoP8s#Ru1q+zye^mB8R?u-xF>K;>g+w0CE+(6_PDIL z=au){q5L5ypN;8$p~z=%ADd1y)@<)odOxvbLxTUVq|(Y}_uk10+q-LPN7Q}(q<_lI zx0U-pPp${9+^;^#Gbb;pZ`w}m z;iS@P)x_X9+p~i=QpICa4AWij2h=ovSzp>^`)a453)f**6Wo^dYN&dNT!{(|N+3He zsr7pE-evLSs`8)ChSlh+TieEr^AF%2)I98S%Rie^(NB&|>Nd4CIVS#D-qwS%jrMDA zzVII8_+5Hb_+!nhg4ErYo!{Tt&RWkXx{wz8+Nznjej})P>IQ4l<;QJIc;LLK!vh*z z)*gzBeOWtz&AC&0JvMB{l)yPjP3h6!?wF5mbbhRtHrd8)Y`#2GSM9Q|ug?mdciDFb z`p&-d{=%?-_n4WL!WkM>PLq9KJlw3?%wEX8>F|6=i-F$%c=P+rdxz^{pB!q98j{mo z@AJ}YS} z_=NkS)x%!?dbWP=(z2w%DK0rB16;q=pK5!v*Y*4_`gcCV_a$6gu%=(|g4?;335_kw zk55@!?61tNE@xI5j+6())IOTE<6^h^(INlx$X5o3J_x$JE#g1Nf78{hHgNrvu<^%Hr!M zq6eg}4hAejj-=0@ky;zoccpXNZr`nCM^0#mjdyE$nx0B>>gMx_1zA-@d8m3-?veX; zvs~$Wb1#hWbp6|sdn5kdqg(Otqg4wowOnr=UefE%hCMy@6=;^Ri3f(ieNh#*o(xP$ z+DC5EXUz?LvtmVNkJ+w<8*|d_FI@>3_|0wSvFCnx{>(RZdKatCzh-qlb#igt&sR@p zB)`3NIz!>u>CUM}S1~^3|8OceWNmza$IyVvVTQ**w1@>f#@%D;ME|h@cnmxgTm+91 zo(B%Eh3FU-oYma{9Yf_tGdHLH|JUC($ty02BE@j)5-0rQF<9dL+mJ zX8<{dkeJCazjq9{OpeaeskFRW9v-1ZqorzIso-VppG?9~RaBG|jhG)D!7I^r(u_tS z)kL6iyju0U&>4+fk81cBFo!p;t&}Ty)I_5B2%z!oa02=FC=9e2cEwU?KWd}pbj`5$|c~eb0{~%Z{Qp_)_it*NBE9up6M^N$MXDjD6v58 zfNN-(*%SB<(LO>?;Ck@Hb@Mp*J+#O?4zAhJJIl{zUo532OH4E2Iv=n-?Z6_$+1Uy; zfvNnY;k*VEtx5+_QlLQnU{z=lV34sMzB<{ zm8&ZPb`#twAch~?!zWaMYW}1u+Sq0g+O#fXTo++XLL>CZzoQnTndT<+2`xBiKqeQA z)GWkkmBk7ijGW~P?ozE(p$dlvg4mct@zFI78fBj1r&fjOLU}b}9~~y+1Ni9f!I&uLkM?-b)+5XVMt`OR2!k; zrAW+&DNx=aPkJ>kvjVg&!U{mQ+FuAm(N@z1d zFcP5-f}q8@1c4UXM}W`^^F}bBDGKzGz!70SNRT(7EwJSX{U9j<-li;aNwPR8+y^AX zisB3^^%MPok_dA|5tO)x5u|9JQs8DH^n;>tOlS+m;iCLf9O(E0KPZl5g*jrtBa~3a zvMeUFnWH7}8Nebg93!rCAQR=6V}O>AbG2%zT*0fYoShMLiad^o_fXVdrP3nCXA1CN zmX}hdLX1xf@WKNLa&~ujr*WDf-6Z44ah@KWCr9G$G)>_IF%}0q*%kToA;E~NtCdD8 VRcnp+ZVohl(#qC$oUfGD83W literal 0 HcmV?d00001 diff --git a/doc/macros.lyx b/doc/macros.lyx new file mode 100644 index 000000000..1e57e1675 --- /dev/null +++ b/doc/macros.lyx @@ -0,0 +1,294 @@ +#LyX 1.6.5 created this file. For more info see http://www.lyx.org/ +\lyxformat 345 +\begin_document +\begin_header +\textclass article +\use_default_options true +\language english +\inputencoding auto +\font_roman default +\font_sans default +\font_typewriter default +\font_default_family default +\font_sc false +\font_osf false +\font_sf_scale 100 +\font_tt_scale 100 + +\graphics default +\paperfontsize default +\use_hyperref false +\papersize default +\use_geometry false +\use_amsmath 1 +\use_esint 1 +\cite_engine basic +\use_bibtopic false +\paperorientation portrait +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\defskip medskip +\quotes_language english +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\author "" +\author "" +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Derivatives +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}} +{\frac{\partial#1}{\partial#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\at}[2]{#1\biggr\rvert_{#2}} +{#1\biggr\rvert_{#2}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} } +{\at{\deriv{#1}{#2}}{#3}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Lie Groups +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\xhat}{\hat{x}} +{\hat{x}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\yhat}{\hat{y}} +{\hat{y}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\Ad}[1]{Ad_{#1}} +{Ad_{#1}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\define}{\stackrel{\Delta}{=}} +{\stackrel{\Delta}{=}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\gg}{\mathfrak{g}} +{\mathfrak{g}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\Rn}{\mathbb{R}^{n}} +{\mathbb{R}^{n}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +SO(2) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}} +{\mathfrak{\mathbb{R}^{2}}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\SOtwo}{SO(2)} +{SO(2)} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\sotwo}{\mathfrak{so(2)}} +{\mathfrak{so(2)}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\that}{\hat{\theta}} +{\hat{\theta}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\skew}[1]{[#1]_{+}} +{[#1]_{+}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +SE(2) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\SEtwo}{SE(2)} +{SE(2)} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\setwo}{\mathfrak{se(2)}} +{\mathfrak{se(2)}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +SO(3) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}} +{\mathfrak{\mathbb{R}^{3}}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\SOthree}{SO(3)} +{SO(3)} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\sothree}{\mathfrak{so(3)}} +{\mathfrak{so(3)}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\what}{\hat{\omega}} +{\hat{\omega}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\Skew}[1]{[#1]_{\times}} +{[#1]_{\times}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +SE(3) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}} +{\mathfrak{\mathbb{R}^{6}}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\SEthree}{SE(3)} +{SE(3)} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\sethree}{\mathfrak{se(3)}} +{\mathfrak{se(3)}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\xihat}{\hat{\xi}} +{\hat{\xi}} +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/doc/math.lyx b/doc/math.lyx index 05a7296ae..f585d7a5c 100644 --- a/doc/math.lyx +++ b/doc/math.lyx @@ -54,350 +54,18 @@ Geometry Derivatives and Other Hairy Math Frank Dellaert \end_layout -\begin_layout Section -Review of Lie Groups -\end_layout - -\begin_layout Subsection -A Manifold and a Group -\end_layout - \begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\xhat}{\hat{x}} -{\hat{x}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\yhat}{\hat{y}} -{\hat{y}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\Ad}[1]{Ad_{#1}} -{Ad_{#1}} -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\define}{\stackrel{\Delta}{=}} -{\stackrel{\Delta}{=}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\gg}{\mathfrak{g}} -{\mathfrak{g}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\Rn}{\mathbb{R}^{n}} -{\mathbb{R}^{n}} -\end_inset - - -\end_layout - -\begin_layout Standard -A Lie group -\begin_inset Formula $G$ -\end_inset - - is a manifold that possesses a smooth group operation. - Associated with it is a Lie Algebra -\begin_inset Formula $\gg$ -\end_inset - - which, loosely speaking, can be identified with the tangent space at the - identity and completely defines how the groups behaves around the identity. - There is a mapping from -\begin_inset Formula $\gg$ -\end_inset - - back to -\begin_inset Formula $G$ -\end_inset - -, called the exponential map -\begin_inset Formula \[ -\exp:\gg\rightarrow G\] - -\end_inset - -and a corresponding inverse -\begin_inset Formula \[ -\log:G\rightarrow\gg\] - -\end_inset - -that maps elements in G to an element in -\begin_inset Formula $\gg$ -\end_inset - -. -\end_layout - -\begin_layout Subsection -Lie Algebra -\end_layout - -\begin_layout Standard -The Lie Algebra -\begin_inset Formula $\gg$ -\end_inset - - is called an algebra because it is endowed with a binary operation, the - Lie bracket -\begin_inset Formula $[X,Y]$ -\end_inset - -, the properties of which are closely related to the group operation of - -\begin_inset Formula $G$ -\end_inset - -. - For example, in matrix Lie groups, the Lie bracket is given by -\begin_inset Formula $[A,B]\define AB-BA$ -\end_inset - -. - The Lie bracket does not mimick the group operation, as in non-commutative - Lie groups we do not have the usual simplification -\begin_inset Formula \[ -e^{Z}=e^{X}e^{Y}\neq e^{X+Y}\] - -\end_inset - -where -\begin_inset Formula $X$ -\end_inset - -, -\begin_inset Formula $Y$ -\end_inset - -, and -\begin_inset Formula $Z$ -\end_inset - - elements of the Lie algebra -\begin_inset Formula $\gg$ -\end_inset - -. - Instead, -\begin_inset Formula $Z$ -\end_inset - - can be calculated using the Baker-Campbell-Hausdorff (BCH) formula: -\begin_inset Foot -status collapsed - -\begin_layout Plain Layout -http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula -\end_layout +\begin_inset CommandInset include +LatexCommand include +filename "macros.lyx" \end_inset -\begin_inset Formula \[ -Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\] - -\end_inset - -For commutative groups the bracket is zero and we recover -\begin_inset Formula $Z=X+Y$ -\end_inset - -. - For non-commutative groups we can use the BCH formula to approximate it. -\end_layout - -\begin_layout Subsection -Exponential Coordinates -\end_layout - -\begin_layout Standard -For -\begin_inset Formula $n$ -\end_inset - --dimensional matrix Lie groups, the Lie algebra -\begin_inset Formula $\gg$ -\end_inset - - is isomorphic to -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - -, and we can define the mapping -\begin_inset Formula \[ -\hat{}:\mathbb{R}^{n}\rightarrow\gg\] - -\end_inset - - -\begin_inset Formula \[ -\hat{}:x\rightarrow\xhat\] - -\end_inset - -which maps -\begin_inset Formula $n$ -\end_inset - --vectors -\begin_inset Formula $x\in$ -\end_inset - - -\begin_inset Formula $\Rn$ -\end_inset - - to elements of -\begin_inset Formula $\gg$ -\end_inset - -. - In the case of matrix Lie groups, the elements -\begin_inset Formula $\xhat$ -\end_inset - - of -\begin_inset Formula $\gg$ -\end_inset - - are -\begin_inset Formula $n\times n$ -\end_inset - - matrices, and the map is given by -\begin_inset Formula \begin{equation} -\xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}\end{equation} - -\end_inset - -where the -\begin_inset Formula $G^{i}$ -\end_inset - - are -\begin_inset Formula $n\times n$ -\end_inset - - matrices known as the Lie group generators. - The meaning of the map -\begin_inset Formula $x\rightarrow\xhat$ -\end_inset - - will depend on the group -\begin_inset Formula $G$ -\end_inset - - and will be very intuitive. -\end_layout - -\begin_layout Subsection -The Adjoint Map -\end_layout - -\begin_layout Standard -Below we frequently make use of the equality -\begin_inset Foot -status collapsed - -\begin_layout Plain Layout -http://en.wikipedia.org/wiki/Exponential_map -\end_layout - -\end_inset - - -\begin_inset Formula \[ -ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\] - -\end_inset - -where -\begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$ -\end_inset - - is a map parameterized by a group element -\begin_inset Formula $g$ -\end_inset - -. - The intuitive explanation is that a change -\begin_inset Formula $\exp\left(\xhat\right)$ -\end_inset - - defined around the orgin, but applied at the group element -\begin_inset Formula $g$ -\end_inset - -, can be written in one step by taking the adjoint -\begin_inset Formula $\Ad g{\xhat}$ -\end_inset - - of -\begin_inset Formula $\xhat$ -\end_inset - -. - In the case of a matrix group the ajoint can be written as -\begin_inset Foot -status collapsed - -\begin_layout Plain Layout -http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group -\end_layout - -\end_inset - - -\begin_inset Formula \[ -\Ad T{\xhat}\define Te^{\xhat}T^{-1}\] - -\end_inset - -and hence we have -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\] - -\end_inset - -where both -\begin_inset Formula $T$ -\end_inset - - and -\begin_inset Formula $\xhat$ -\end_inset - - are -\begin_inset Formula $n\times n$ -\end_inset - - matrices for an -\begin_inset Formula $n$ -\end_inset - --dimensional Lie group. - Below we introduce the most important Lie groups that we deal with. \end_layout \begin_layout Section -Derivatives of Mappings +Derivatives of Lie Group Mappings \end_layout \begin_layout Standard @@ -632,25 +300,8 @@ name "sec:Derivatives-of-Actions" \end_layout -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}} -{\frac{\partial#1}{\partial#2}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\at}[2]{#1\biggr\rvert_{#2}} -{#1\biggr\rvert_{#2}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} } -{\at{\deriv{#1}{#2}}{#3}} -\end_inset - - +\begin_layout Subsection +Forward Action \end_layout \begin_layout Standard @@ -719,12 +370,30 @@ e^{\xhat}p=p+\xhat p+\ldots\] \end_inset -and the derivative of an incremental action x at the origin is +and the derivative of an incremental action x for matrix Lie groups becomes \begin_inset Formula \[ -H_{p}\define\deriv{e^{\xhat}p}x=\deriv{\left(\xhat p\right)}x\] +\deriv{q(x)}x=T\deriv{\left(\xhat p\right)}x\define TH_{p}\] \end_inset +where +\begin_inset Formula $H_{p}$ +\end_inset + + is an +\begin_inset Formula $n\times n$ +\end_inset + + Jacobian matrix that depends on +\begin_inset Formula $p$ +\end_inset + +. + +\begin_inset Note Note +status collapsed + +\begin_layout Plain Layout Recalling the definition \begin_inset CommandInset ref LatexCommand eqref @@ -777,341 +446,462 @@ and the final derivative becomes \end_inset +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Inverse Action +\end_layout + +\begin_layout Standard +When we apply the inverse transformation +\begin_inset Formula \[ +q=T^{-1}p\] + +\end_inset + +we would now like to know what an incremental action +\begin_inset Formula $\xhat$ +\end_inset + + on +\begin_inset Formula $T$ +\end_inset + + would do: +\begin_inset Formula \begin{eqnarray*} +q(x) & = & \left(Te^{\xhat}\right)^{-1}p\\ + & = & e^{-\xhat}T^{-1}p\\ + & = & T^{-1}Te^{-\xhat}T^{-1}p\\ + & = & -T^{-1}\exp\left(T\xhat T^{-1}\right)p\end{eqnarray*} + +\end_inset + +Hence +\begin_inset Formula \begin{equation} +\deriv{q(x)}x=-T^{-1}\deriv{\left(T\xhat T^{-1}\mbox{ }p\right)}x\label{eq:inverseAction}\end{equation} + +\end_inset + +The derivative in +\begin_inset Formula $p$ +\end_inset + + is again easy for matrix Lie groups: +\begin_inset Formula \[ +\deriv{\left(T^{-1}p\right)}p=T^{-1}\] + +\end_inset + + \end_layout \begin_layout Section -3D Rotations -\end_layout - -\begin_layout Subsection -Basics +Point3 \end_layout \begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}} -{\mathfrak{\mathbb{R}^{3}}} +A cross product +\begin_inset Formula $a\times b$ \end_inset - -\begin_inset FormulaMacro -\newcommand{\SOthree}{SO(3)} -{SO(3)} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\sothree}{\mathfrak{so(3)}} -{\mathfrak{so(3)}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\what}{\hat{\omega}} -{\hat{\omega}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\Skew}[1]{[#1]_{\times}} -{[#1]_{\times}} -\end_inset - - -\end_layout - -\begin_layout Standard -The Lie group -\begin_inset Formula $\SOthree$ -\end_inset - - is a subgroup of the general linear group -\begin_inset Formula $GL(3)$ -\end_inset - - of -\begin_inset Formula $3\times3$ -\end_inset - - invertible matrices. - Its Lie algebra -\begin_inset Formula $\sothree$ -\end_inset - - is the vector space of -\begin_inset Formula $3\times3$ -\end_inset - - skew-symmetric matrices. - The exponential map can be computed in closed form using Rodrigues' formula. -\end_layout - -\begin_layout Standard -Since -\begin_inset Formula $\SOthree$ -\end_inset - - is a three-dimensional manifold, -\begin_inset Formula $\sothree$ -\end_inset - - is isomorphic to -\begin_inset Formula $\Rthree$ -\end_inset - - and we define the map + can be written as a matrix multiplication \begin_inset Formula \[ -\hat{}:\Rthree\rightarrow\sothree\] - -\end_inset - - -\begin_inset Formula \[ -\hat{}:\omega\rightarrow\what=\Skew{\omega}\] - -\end_inset - -which maps 3-vectors -\begin_inset Formula $\omega$ -\end_inset - - to skew-symmetric matrices -\begin_inset Formula $\Skew{\omega}$ -\end_inset - - : -\begin_inset Formula \[ -\Skew{\omega}=\left[\begin{array}{ccc} -0 & -\omega_{z} & \omega_{y}\\ -\omega_{z} & 0 & -\omega_{x}\\ --\omega_{y} & \omega_{x} & 0\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}\] - -\end_inset - -where the -\begin_inset Formula $G^{i}$ -\end_inset - - are the generators for -\begin_inset Formula $\SOthree$ -\end_inset - -, -\begin_inset Formula \[ -G^{x}=\left(\begin{array}{ccc} -0 & 0 & 0\\ -0 & 0 & -1\\ -0 & 1 & 0\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc} -0 & 0 & 1\\ -0 & 0 & 0\\ --1 & 0 & 0\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc} -0 & -1 & 0\\ -1 & 0 & 0\\ -0 & 0 & 0\end{array}\right)\] - -\end_inset - -corresponding to a rotation around -\begin_inset Formula $X$ -\end_inset - -, -\begin_inset Formula $Y$ -\end_inset - -, and -\begin_inset Formula $Z$ -\end_inset - -, respectively. - The Lie bracket -\begin_inset Formula $[x,y]$ -\end_inset - - corresponds to the cross product -\begin_inset Formula $x\times y$ -\end_inset - - in -\begin_inset Formula $\Rthree$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For every -\begin_inset Formula $3-$ -\end_inset - -vector -\begin_inset Formula $\omega$ -\end_inset - - there is a corresponding rotation matrix -\begin_inset Formula \[ -R=e^{\Skew{\omega}}\] - -\end_inset - -and this is defines the canonical parameterization of -\begin_inset Formula $\SOthree$ -\end_inset - -, with -\begin_inset Formula $\omega$ -\end_inset - - known as the canonical or exponential coordinates. - It is equivalent to the axis-angle representation for rotations, where - the unit vector -\begin_inset Formula $\omega/\left\Vert \omega\right\Vert $ -\end_inset - - defines the rotation axis, and its magnitude the amount of rotation -\begin_inset Formula $\theta$ -\end_inset - -. -\end_layout - -\begin_layout Subsection -The Adjoint Map -\end_layout - -\begin_layout Standard -We can prove the following identity for rotation matrices -\begin_inset Formula $R$ -\end_inset - -, -\begin_inset Formula \begin{eqnarray} -R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc} -a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\ - & = & R\left[\begin{array}{ccc} -\omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\ - & = & \left[\begin{array}{ccc} -a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\ -a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\ -a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})\end{array}\right]\nonumber \\ - & = & \left[\begin{array}{ccc} -\omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\ -\omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\ -\omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})\end{array}\right]\nonumber \\ - & = & \left[\begin{array}{ccc} -0 & -\omega a_{3} & \omega a_{2}\\ -\omega a_{3} & 0 & -\omega a_{1}\\ --\omega a_{2} & \omega a_{1} & 0\end{array}\right]\nonumber \\ - & = & \Skew{R\omega}\label{eq:property1}\end{eqnarray} +a\times b=\Skew ab\] \end_inset where -\begin_inset Formula $a_{1}$ +\begin_inset Formula $\Skew a$ \end_inset -, -\begin_inset Formula $a_{2}$ -\end_inset - -, and -\begin_inset Formula $a_{3}$ -\end_inset - - are the -\emph on -rows -\emph default - of -\begin_inset Formula $R$ -\end_inset - -. - Above we made use of the orthogonality of rotation matrices and the triple - product rule: + is a skew-symmetric matrix defined as \begin_inset Formula \[ -a(b\times c)=b(c\times a)=c(a\times b)\] +\Skew{x,y,z}=\left[\begin{array}{ccc} +0 & -z & y\\ +z & 0 & -x\\ +-y & x & 0\end{array}\right]\] \end_inset -Hence, given property -\begin_inset CommandInset ref -LatexCommand eqref -reference "eq:property1" - -\end_inset - -, the adjoint map for -\begin_inset Formula $\sothree$ -\end_inset - - simplifies to +We also have \begin_inset Formula \[ -\Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}\] +a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T}\] \end_inset -and this can be expressed in exponential coordinates simply by rotating - the axis -\begin_inset Formula $\omega$ +The derivative of a cross product +\begin_inset Formula \begin{equation} +\frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1}\end{equation} + \end_inset - to -\begin_inset Formula $R\omega$ + +\begin_inset Formula \begin{equation} +\frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2}\end{equation} + \end_inset -. - + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +2D Rotations +\end_layout + +\begin_layout Subsection +Rot2 (in gtsam) \end_layout \begin_layout Standard -As an example, to apply an axis-angle rotation -\begin_inset Formula $\omega$ +A rotation is stored as +\begin_inset Formula $(\cos\theta,\sin\theta)$ \end_inset - to a point -\begin_inset Formula $p$ -\end_inset - - in the frame -\begin_inset Formula $R$ -\end_inset - -, we could: -\end_layout - -\begin_layout Enumerate -First transform -\begin_inset Formula $p$ -\end_inset - - back to the world frame, apply -\begin_inset Formula $\omega$ -\end_inset - -, and then rotate back: +. + An incremental rotation is applied using the trigonometric sum rule: \begin_inset Formula \[ -q=Re^{\Skew{\omega}}R^{T}\] +\cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta\] + +\end_inset + + +\begin_inset Formula \[ +\sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta\] + +\end_inset + +where +\begin_inset Formula $\delta$ +\end_inset + + is an incremental rotation angle. +\end_layout + +\begin_layout Subsection +Derivatives of Mappings +\end_layout + +\begin_layout Standard +The adjoint map for +\begin_inset Formula $\sotwo$ +\end_inset + + is trivially equal to the identity, as is the case for +\emph on +all +\emph default + commutative groups, and we have the derivative of +\series bold +inverse +\series default +, +\begin_inset Formula \[ +\frac{\partial R^{T}}{\partial\theta}=-\Ad R=-1\mbox{ }\] + +\end_inset + + +\series bold +compose, +\series default + +\begin_inset Formula \[ +\frac{\partial\left(R_{1}R_{2}\right)}{\partial\theta_{1}}=\Ad{R_{2}^{T}}=1\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\theta_{2}}=1\] + +\end_inset + + +\series bold + +\begin_inset Formula $and$ +\end_inset + +between: +\series default + +\begin_inset Formula \[ +\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\theta_{1}}=-\Ad{R_{2}^{T}R_{1}}=-1\mbox{ and }\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\theta_{2}}=1\] \end_inset \end_layout -\begin_layout Enumerate -Immediately apply the transformed axis-angle transformation -\begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$ +\begin_layout Subsection +Derivatives of Actions +\end_layout + +\begin_layout Standard +In the case of +\begin_inset Formula $\SOtwo$ +\end_inset + + the vector space is +\begin_inset Formula $\Rtwo$ +\end_inset + +, and the group action corresponds to rotating a point +\begin_inset Formula \[ +q=Rp\] + +\end_inset + +We would now like to know what an incremental rotation parameterized by + +\begin_inset Formula $\theta$ +\end_inset + + would do: +\begin_inset Formula \[ +q(\text{\theta})=Re^{\skew{\theta}}p\] + +\end_inset + +hence the derivative (following the exposition in Section +\begin_inset CommandInset ref +LatexCommand ref +reference "sec:Derivatives-of-Actions" + +\end_inset + +): +\begin_inset Formula \[ +\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\] + +\end_inset + +Note that +\begin_inset Formula \begin{equation} +\skew{\theta}\left[\begin{array}{c} +x\\ +y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c} +x\\ +y\end{array}\right]=\theta\left[\begin{array}{c} +-y\\ +x\end{array}\right]\label{eq:RestrictedCross}\end{equation} + +\end_inset + +which acts like a restricted +\begin_inset Quotes eld +\end_inset + +cross product +\begin_inset Quotes erd +\end_inset + + in the plane. + Hence +\begin_inset Formula \[ +\skew{\theta}p=\left[\begin{array}{c} +-y\\ +x\end{array}\right]\theta=H_{p}\theta\] + +\end_inset + +with +\begin_inset Formula $H_{p}=R_{pi/2}p$ +\end_inset + +. + Hence, the final derivative of an action in its first argument is +\begin_inset Formula \[ +\deriv{q(\theta)}{\theta}=RH_{p}=RR_{pi/2}p=R_{pi/2}Rp=R_{pi/2}q\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +2D Rigid Transformations +\end_layout + +\begin_layout Subsection +Derivatives of Mappings +\end_layout + +\begin_layout Standard +We can just define all derivatives in terms of the above adjoint map: +\begin_inset Formula \begin{eqnarray*} +\frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T\end{eqnarray*} + +\end_inset + + +\begin_inset Formula \begin{eqnarray*} +\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}=1\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3}\end{eqnarray*} + +\end_inset + + +\begin_inset Formula \begin{eqnarray*} +\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3}\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subsection +The derivatives of Actions +\end_layout + +\begin_layout Standard +The action of +\begin_inset Formula $\SEtwo$ +\end_inset + + on 2D points is done by embedding the points in +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + by using homogeneous coordinates +\begin_inset Formula \[ +\hat{q}=\left[\begin{array}{c} +q\\ +1\end{array}\right]=\left[\begin{array}{cc} +R & t\\ +0 & 1\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=T\hat{p}\] + +\end_inset + +Analoguous to +\begin_inset Formula $\SEthree$ +\end_inset + +, we can compute a velocity +\begin_inset Formula $\xihat\hat{p}$ +\end_inset + + in the local +\begin_inset Formula $T$ +\end_inset + + frame: +\begin_inset Formula \[ +\xihat\hat{p}=\left[\begin{array}{cc} +\skew{\omega} & v\\ +0 & 0\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=\left[\begin{array}{c} +\skew{\omega}p+v\\ +0\end{array}\right]\] + +\end_inset + +By only taking the top two rows, we can write this as a velocity in +\begin_inset Formula $\Rtwo$ +\end_inset + +, as the product of a +\begin_inset Formula $2\times3$ +\end_inset + + matrix +\begin_inset Formula $H_{p}$ +\end_inset + + that acts upon the exponential coordinates +\begin_inset Formula $\xi$ +\end_inset + + directly: +\begin_inset Formula \[ +\skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc} +I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c} +v\\ +\omega\end{array}\right]=H_{p}\xi\] + +\end_inset + +Hence, the final derivative of the group action is +\begin_inset Formula \[ +\deriv{q(\xi)}{\xi}=R\left[\begin{array}{cc} +I_{2} & R_{\pi/2}p\end{array}\right]=\left[\begin{array}{cc} +R & R_{\pi/2}q\end{array}\right]\] + +\end_inset + +The derivative of the inverse action +\begin_inset Formula $\hat{q}=T^{-1}\hat{p}$ +\end_inset + + is given by +\begin_inset CommandInset ref +LatexCommand eqref +reference "eq:inverseAction" + +\end_inset + +, specialized to +\begin_inset Formula $\SEtwo$ \end_inset : +\end_layout + +\begin_layout Standard \begin_inset Formula \[ -q=e^{\Skew{R\omega}}p\] +\deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-T^{-1}\deriv{\left(\Ad T\hat{\xi}\right)\hat{p}}{\xi}\] + +\end_inset + +where the velocity now is +\begin_inset Formula \[ +\left(\Ad T\hat{\xi}\right)\hat{p}=\left[\begin{array}{cc} +\skew{\omega} & Rv-\omega R_{\pi/2}t\\ +0 & 0\end{array}\right]\left[\begin{array}{c} +p\\ +1\end{array}\right]=\left[\begin{array}{c} +Rv+R_{\pi/2}(p-t)\omega\\ +0\end{array}\right]\] + +\end_inset + +and hence +\begin_inset Formula \[ +\deriv{q(\xi)}{\xi}=-R^{T}\left[\begin{array}{cc} +R & R_{\pi/2}(p-t)\end{array}\right]=\left[\begin{array}{cc} +-I_{2} & -R_{\pi/2}q\end{array}\right]\] \end_inset \end_layout +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +3D Rotations +\end_layout + \begin_layout Subsection Derivatives of Mappings \end_layout @@ -1130,18 +920,17 @@ inverse \series bold -compose +compose, \series default - in its first argument, -\begin_inset Formula \begin{eqnarray*} -\Skew{\omega'} & = & \Ad{R_{2}^{T}}\left(\Skew{\omega}\right)=\Skew{R_{2}^{T}\omega}\\ -\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}} & = & R_{2}^{T}\end{eqnarray*} + +\begin_inset Formula \[ +\Skew{\omega'}=\Ad{R_{2}^{T}}\left(\Skew{\omega}\right)=\Skew{R_{2}^{T}\omega}\] \end_inset -compose in its second argument, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}} & = & I_{3}\end{eqnarray*} + +\begin_inset Formula \[ +\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=R_{2}^{T}\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}\] \end_inset @@ -1225,220 +1014,43 @@ Hence, the final derivative of an action in its first argument is \end_inset +\end_layout + +\begin_layout Standard +The derivative of the inverse action is given by +\begin_inset CommandInset ref +LatexCommand ref +reference "eq:inverseAction" + +\end_inset + +, specialized to +\begin_inset Formula $\SOthree$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula \[ +\deriv{q(\omega)}{\omega}=-R^{T}\deriv{\left(\Skew{R\omega\mbox{ }}p\right)}{\omega}=R^{T}\Skew pR=\Skew{R^{T}p}\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + \end_layout \begin_layout Section 3D Rigid Transformations \end_layout -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}} -{\mathfrak{\mathbb{R}^{6}}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\SEthree}{SE(3)} -{SE(3)} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\sethree}{\mathfrak{se(3)}} -{\mathfrak{se(3)}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\xihat}{\hat{\xi}} -{\hat{\xi}} -\end_inset - - -\end_layout - -\begin_layout Standard -The Lie group -\begin_inset Formula $\SEthree$ -\end_inset - - is a subgroup of the general linear group -\begin_inset Formula $GL(4)$ -\end_inset - - of -\begin_inset Formula $4\times4$ -\end_inset - - invertible matrices of the form -\begin_inset Formula \[ -T\define\left[\begin{array}{cc} -R & t\\ -0 & 1\end{array}\right]\] - -\end_inset - -where -\begin_inset Formula $R\in\SOthree$ -\end_inset - - is a rotation matrix and -\begin_inset Formula $t\in\Rthree$ -\end_inset - - is a translation vector. - Its Lie algebra -\begin_inset Formula $\sethree$ -\end_inset - - is the vector space of -\begin_inset Formula $4\times4$ -\end_inset - - twists -\begin_inset Formula $\xihat$ -\end_inset - - parameterized by the -\emph on -twist coordinates -\emph default - -\begin_inset Formula $\xi\in\Rsix$ -\end_inset - -, with the mapping -\begin_inset CommandInset citation -LatexCommand cite -key "Murray94book" - -\end_inset - - -\begin_inset Formula \[ -\xi\define\left[\begin{array}{c} -\omega\\ -v\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} -\Skew{\omega} & v\\ -0 & 0\end{array}\right]\] - -\end_inset - -Note we follow Frank Park's convention and reserve the first three components - for rotation, and the last three for translation. - Hence, with this parameterization, the generators for -\begin_inset Formula $\SEthree$ -\end_inset - - are -\begin_inset Formula \[ -G^{1}=\left(\begin{array}{cccc} -0 & 0 & 0 & 0\\ -0 & 0 & -1 & 0\\ -0 & 1 & 0 & 0\\ -0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc} -0 & 0 & 1 & 0\\ -0 & 0 & 0 & 0\\ --1 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc} -0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\end{array}\right)\] - -\end_inset - - -\begin_inset Formula \[ -G^{4}=\left(\begin{array}{cccc} -0 & 0 & 0 & 1\\ -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc} -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 1\\ -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc} -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 0\\ -0 & 0 & 0 & 1\\ -0 & 0 & 0 & 0\end{array}\right)\] - -\end_inset - -Applying the exponential map to a twist -\begin_inset Formula $\xi$ -\end_inset - - yields a screw motion yielding an element in -\begin_inset Formula $\SEthree$ -\end_inset - -: -\begin_inset Formula \[ -T=\exp\xihat\] - -\end_inset - -A closed form solution for the exponential map is given in -\begin_inset CommandInset citation -LatexCommand cite -after "page 42" -key "Murray94book" - -\end_inset - -. -\end_layout - -\begin_layout Subsection -The Adjoint Map -\end_layout - -\begin_layout Standard -The adjoint is -\begin_inset Formula \begin{eqnarray*} -\Ad T{\xihat} & = & T\xihat T^{-1}\\ - & = & \left[\begin{array}{cc} -R & t\\ -0 & 1\end{array}\right]\left[\begin{array}{cc} -\Skew{\omega} & v\\ -0 & 0\end{array}\right]\left[\begin{array}{cc} -R^{T} & -R^{T}t\\ -0 & 1\end{array}\right]\\ - & = & \left[\begin{array}{cc} -\Skew{R\omega} & -\Skew{R\omega}t+Rv\\ -0 & 0\end{array}\right]\\ - & = & \left[\begin{array}{cc} -\Skew{R\omega} & t\times R\omega+Rv\\ -0 & 0\end{array}\right]\end{eqnarray*} - -\end_inset - -From this we can express the Adjoint map in terms of twist coordinates (see - also -\begin_inset CommandInset citation -LatexCommand cite -key "Murray94book" - -\end_inset - - and FP): -\begin_inset Formula \[ -\left[\begin{array}{c} -\omega'\\ -v'\end{array}\right]=\left[\begin{array}{cc} -R & 0\\ -\Skew tR & R\end{array}\right]\left[\begin{array}{c} -\omega\\ -v\end{array}\right]\] - -\end_inset - - -\end_layout - \begin_layout Subsection Derivatives of Mappings \end_layout @@ -1635,696 +1247,9 @@ in homogenous coordinates. \end_inset -\end_layout - -\begin_layout Section -2D Rotations -\end_layout - -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}} -{\mathfrak{\mathbb{R}^{2}}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\SOtwo}{SO(2)} -{SO(2)} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\sotwo}{\mathfrak{so(2)}} -{\mathfrak{so(2)}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\that}{\hat{\theta}} -{\hat{\theta}} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\skew}[1]{[#1]_{+}} -{[#1]_{+}} -\end_inset - - -\end_layout - -\begin_layout Standard -The Lie group -\begin_inset Formula $\SOtwo$ -\end_inset - - is a subgroup of the general linear group -\begin_inset Formula $GL(2)$ -\end_inset - - of -\begin_inset Formula $2\times2$ -\end_inset - - invertible matrices. - Its Lie algebra -\begin_inset Formula $\sotwo$ -\end_inset - - is the vector space of -\begin_inset Formula $2\times2$ -\end_inset - - skew-symmetric matrices. - Though simpler than -\begin_inset Formula $\SOthree$ -\end_inset - - it is -\emph on -commutative -\emph default - and hence things simplify in ways that do not generalize well, so we treat - it only now. - Since -\begin_inset Formula $\SOtwo$ -\end_inset - - is a one-dimensional manifold, -\begin_inset Formula $\sotwo$ -\end_inset - - is isomorphic to -\begin_inset Formula $\mathbb{R}$ -\end_inset - - and we define -\begin_inset Formula \[ -\hat{}:\mathbb{R}\rightarrow\sotwo\] - -\end_inset - - -\begin_inset Formula \[ -\hat{}:\theta\rightarrow\that=\skew{\theta}\] - -\end_inset - -which maps the angle -\begin_inset Formula $\theta$ -\end_inset - - to the -\begin_inset Formula $2\times2$ -\end_inset - - skew-symmetric matrix -\family roman -\series medium -\shape up -\size normal -\emph off -\bar no -\noun off -\color none - -\begin_inset Formula $\skew{\theta}$ -\end_inset - -: -\family default -\series default -\shape default -\size default -\emph default -\bar default -\noun default -\color inherit - -\begin_inset Formula \[ -\skew{\theta}=\left[\begin{array}{cc} -0 & -\theta\\ -\theta & 0\end{array}\right]\] - -\end_inset - -The exponential map can be computed in closed form as -\begin_inset Formula \[ -R=e^{\skew{\theta}}=\left[\begin{array}{cc} -\cos\theta & -\sin\theta\\ -\sin\theta & \cos\theta\end{array}\right]\] - -\end_inset - - \end_layout \begin_layout Subsection -Derivatives of Mappings -\end_layout - -\begin_layout Standard -The adjoint map for -\begin_inset Formula $\sotwo$ -\end_inset - - is trivially equal to the identity, as is the case for -\emph on -all -\emph default - commutative groups, and we have the derivative of -\series bold -inverse -\series default -, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial R^{T}}{\partial\theta} & = & -\Ad R=-1\end{eqnarray*} - -\end_inset - - -\series bold -compose -\series default - in its first argument, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(R_{1}R_{2}\right)}{\partial\theta_{1}} & = & \Ad{R_{2}^{T}}=1\end{eqnarray*} - -\end_inset - -compose in its second argument, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(R_{1}R_{2}\right)}{\partial\theta_{2}} & = & 1\end{eqnarray*} - -\end_inset - - -\series bold -between -\series default - in its first argument, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\theta_{1}} & = & -\Ad{R_{2}^{T}R_{1}}=-1\end{eqnarray*} - -\end_inset - -and between in its second argument, -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\theta_{2}} & = & 1\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Subsection -Derivatives of Actions -\end_layout - -\begin_layout Standard -In the case of -\begin_inset Formula $\SOtwo$ -\end_inset - - the vector space is -\begin_inset Formula $\Rtwo$ -\end_inset - -, and the group action corresponds to rotating a point -\begin_inset Formula \[ -q=Rp\] - -\end_inset - -We would now like to know what an incremental rotation parameterized by - -\begin_inset Formula $\theta$ -\end_inset - - would do: -\begin_inset Formula \[ -q(\text{\theta})=Re^{\skew{\theta}}p\] - -\end_inset - -hence the derivative (following the exposition in Section -\begin_inset CommandInset ref -LatexCommand ref -reference "sec:Derivatives-of-Actions" - -\end_inset - -): -\begin_inset Formula \[ -\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\] - -\end_inset - -Note that -\begin_inset Formula \begin{equation} -\skew{\theta}\left[\begin{array}{c} -x\\ -y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c} -x\\ -y\end{array}\right]=\theta\left[\begin{array}{c} --y\\ -x\end{array}\right]\label{eq:RestrictedCross}\end{equation} - -\end_inset - -which acts like a restricted -\begin_inset Quotes eld -\end_inset - -cross product -\begin_inset Quotes erd -\end_inset - - in the plane. - Hence -\begin_inset Formula \[ -\skew{\theta}p=\left[\begin{array}{c} --y\\ -x\end{array}\right]\theta=H_{p}\theta\] - -\end_inset - -with -\begin_inset Formula $H_{p}=R_{pi/2}p$ -\end_inset - -. - Hence, the final derivative of an action in its first argument is -\begin_inset Formula \[ -\deriv{q(\theta)}{\theta}=RH_{p}=RR_{pi/2}p=R_{pi/2}Rp=R_{pi/2}q\] - -\end_inset - - -\end_layout - -\begin_layout Section -2D Rigid Transformations -\end_layout - -\begin_layout Standard -\begin_inset FormulaMacro -\newcommand{\SEtwo}{SE(2)} -{SE(2)} -\end_inset - - -\begin_inset FormulaMacro -\newcommand{\setwo}{\mathfrak{se(2)}} -{\mathfrak{se(2)}} -\end_inset - - -\end_layout - -\begin_layout Standard -The Lie group -\begin_inset Formula $\SEtwo$ -\end_inset - - is a subgroup of the general linear group -\begin_inset Formula $GL(3)$ -\end_inset - - of -\begin_inset Formula $3\times3$ -\end_inset - - invertible matrices of the form -\begin_inset Formula \[ -T\define\left[\begin{array}{cc} -R & t\\ -0 & 1\end{array}\right]\] - -\end_inset - -where -\begin_inset Formula $R\in\SOtwo$ -\end_inset - - is a rotation matrix and -\begin_inset Formula $t\in\Rtwo$ -\end_inset - - is a translation vector. - Its Lie algebra -\begin_inset Formula $\setwo$ -\end_inset - - is the vector space of -\begin_inset Formula $3\times3$ -\end_inset - - twists -\begin_inset Formula $\xihat$ -\end_inset - - parameterized by the -\emph on -twist coordinates -\emph default - -\begin_inset Formula $\xi\in\Rthree$ -\end_inset - -, with the mapping -\begin_inset Formula \[ -\xi\define\left[\begin{array}{c} -v\\ -\omega\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} -\skew{\omega} & v\\ -0 & 0\end{array}\right]\] - -\end_inset - -Note we think of robots as having a pose -\begin_inset Formula $(x,y,\theta)$ -\end_inset - - and hence I switched the order above, reserving the first two components - for translation and the last for rotation. - -\family roman -\series medium -\shape up -\size normal -\emph off -\bar no -\noun off -\color none -The Lie group generators are -\begin_inset Formula \[ -G^{x}=\left[\begin{array}{ccc} -0 & 0 & 1\\ -0 & 0 & 0\\ -0 & 0 & 0\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc} -0 & 0 & 0\\ -0 & 0 & 1\\ -0 & 0 & 0\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc} -0 & -1 & 0\\ -1 & 0 & 0\\ -0 & 0 & 0\end{array}\right]\] - -\end_inset - - -\family default -\series default -\shape default -\size default -\emph default -\bar default -\noun default -\color inherit -Applying the exponential map to a twist -\begin_inset Formula $\xi$ -\end_inset - - yields a screw motion yielding an element in -\begin_inset Formula $\SEtwo$ -\end_inset - -: -\begin_inset Formula \[ -T=\exp\xihat\] - -\end_inset - -A closed form solution for the exponential map is in the works... -\end_layout - -\begin_layout Subsection -The Adjoint Map -\end_layout - -\begin_layout Standard -The adjoint is -\begin_inset Formula \begin{eqnarray*} -\Ad T{\xihat} & = & T\xihat T^{-1}\\ - & = & \left[\begin{array}{cc} -R & t\\ -0 & 1\end{array}\right]\left[\begin{array}{cc} -\skew{\omega} & v\\ -0 & 0\end{array}\right]\left[\begin{array}{cc} -R^{T} & -R^{T}t\\ -0 & 1\end{array}\right]\\ - & = & \left[\begin{array}{cc} -\skew{\omega} & -\skew{\omega}t+Rv\\ -0 & 0\end{array}\right]\\ - & = & \left[\begin{array}{cc} -\skew{\omega} & Rv-\omega R_{\pi/2}t\\ -0 & 0\end{array}\right]\end{eqnarray*} - -\end_inset - -From this we can express the Adjoint map in terms of plane twist coordinates: -\begin_inset Formula \[ -\left[\begin{array}{c} -v'\\ -\omega'\end{array}\right]=\left[\begin{array}{cc} -R & -R_{\pi/2}t\\ -0 & 1\end{array}\right]\left[\begin{array}{c} -v\\ -\omega\end{array}\right]\] - -\end_inset - - -\end_layout - -\begin_layout Subsection -Derivatives of Mappings -\end_layout - -\begin_layout Standard -We can just define all derivatives in terms of the above adjoint map: -\begin_inset Formula \begin{eqnarray*} -\frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T\end{eqnarray*} - -\end_inset - - -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}=1\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3}\end{eqnarray*} - -\end_inset - - -\begin_inset Formula \begin{eqnarray*} -\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3}\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Subsection -The derivatives of Actions -\end_layout - -\begin_layout Standard -The action of -\begin_inset Formula $\SEtwo$ -\end_inset - - on 2D points is done by embedding the points in -\begin_inset Formula $\mathbb{R}^{3}$ -\end_inset - - by using homogeneous coordinates -\begin_inset Formula \[ -\hat{q}=\left[\begin{array}{c} -q\\ -1\end{array}\right]=\left[\begin{array}{cc} -R & t\\ -0 & 1\end{array}\right]\left[\begin{array}{c} -p\\ -1\end{array}\right]=T\hat{p}\] - -\end_inset - -Analoguous to -\begin_inset Formula $\SEthree$ -\end_inset - -, we can compute a velocity -\begin_inset Formula $\xihat\hat{p}$ -\end_inset - - in the local -\begin_inset Formula $T$ -\end_inset - - frame: -\begin_inset Formula \[ -\xihat\hat{p}=\left[\begin{array}{cc} -\skew{\omega} & v\\ -0 & 0\end{array}\right]\left[\begin{array}{c} -p\\ -1\end{array}\right]=\left[\begin{array}{c} -\skew{\omega}p+v\\ -0\end{array}\right]\] - -\end_inset - -By only taking the top two rows, we can write this as a velocity in -\begin_inset Formula $\Rtwo$ -\end_inset - -, as the product of a -\begin_inset Formula $2\times3$ -\end_inset - - matrix -\begin_inset Formula $H_{p}$ -\end_inset - - that acts upon the exponential coordinates -\begin_inset Formula $\xi$ -\end_inset - - directly: -\begin_inset Formula \[ -\skew{\omega}p+v=v+R_{pi/2}p\omega=\left[\begin{array}{cc} -I_{2} & R_{pi/2}p\end{array}\right]\left[\begin{array}{c} -v\\ -\omega\end{array}\right]=H_{p}\xi\] - -\end_inset - -Hence, the final derivative of the group action is -\begin_inset Formula \[ -\deriv{q(\xi)}{\xi}=R\left[\begin{array}{cc} -I_{2} & R_{pi/2}p\end{array}\right]=\left[\begin{array}{cc} -R & R_{pi/2}q\end{array}\right]\] - -\end_inset - - -\end_layout - -\begin_layout Section -Rot2 (in gtsam) -\end_layout - -\begin_layout Standard -A rotation is stored as -\begin_inset Formula $(\cos\theta,\sin\theta)$ -\end_inset - -. - An incremental rotation is applied using the trigonometric sum rule: -\begin_inset Formula \[ -\cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta\] - -\end_inset - - -\begin_inset Formula \[ -\sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta\] - -\end_inset - -where -\begin_inset Formula $\delta$ -\end_inset - - is an incremental rotation angle. -\end_layout - -\begin_layout Standard -Derivatives of unrotate -\end_layout - -\begin_layout Standard -\begin_inset Formula \begin{eqnarray*} -\frac{\partial x'}{\partial\delta} & = & \frac{\partial(x\cos\theta'+y\sin\theta')}{\partial\delta}\\ - & = & \frac{\partial(x(\cos\theta\cos\delta-\sin\theta\sin\delta)+y(\sin\theta\cos\delta+\cos\theta\sin\delta))}{\partial\delta}\\ - & = & x(-\cos\theta\sin\delta-\sin\theta\cos\delta)+y(-\sin\theta\sin\delta+\cos\theta\cos\delta)\\ - & = & -x\sin\theta+y\cos\theta=y'\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset Formula \begin{eqnarray*} -\frac{\partial y'}{\partial\delta} & = & \frac{\partial(-x\sin\theta'+y\cos\theta')}{\partial\delta}\\ - & = & \frac{\partial(-x(\sin\theta\cos\delta+\cos\theta\sin\delta)+y(\cos\theta\cos\delta-\sin\theta\sin\delta))}{\partial\delta}\\ - & = & -x(-\sin\theta\sin\delta+\cos\theta\cos\delta)+y(-\cos\theta\sin\delta-\sin\theta\cos\delta)\\ - & = & -x\cos\theta-y\sin\theta=-x'\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -\frac{\partial p'}{\partial p}=\frac{\partial(Rp)}{\partial p}=R\] - -\end_inset - - -\end_layout - -\begin_layout Section -Point3 -\end_layout - -\begin_layout Standard -A cross product -\begin_inset Formula $a\times b$ -\end_inset - - can be written as a matrix multiplication -\begin_inset Formula \[ -a\times b=\Skew ab\] - -\end_inset - -where -\begin_inset Formula $\Skew a$ -\end_inset - - is a skew-symmetric matrix defined as -\begin_inset Formula \[ -\Skew{x,y,z}=\left[\begin{array}{ccc} -0 & -z & y\\ -z & 0 & -x\\ --y & x & 0\end{array}\right]\] - -\end_inset - -We also have -\begin_inset Formula \[ -a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T}\] - -\end_inset - -The derivative of a cross product -\begin_inset Formula \begin{equation} -\frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1}\end{equation} - -\end_inset - - -\begin_inset Formula \begin{equation} -\frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2}\end{equation} - -\end_inset - - -\end_layout - -\begin_layout Section Pose3 (gtsam, old-style exmap) \end_layout @@ -2424,130 +1349,31 @@ and with respect to \end_layout -\begin_layout Section -Pose3 (gtsam, new-style exmap) -\end_layout - \begin_layout Standard -In the new-style exponential map, Pose3 is composed with a delta pose as - follows -\end_layout - -\begin_layout Standard - -\family roman -\series medium -\shape up -\size normal -\emph off -\bar no -\noun off -\color none -\begin_inset Formula $R'=(I+\Omega)R$ -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset Formula $t'=(I+\Omega)t+dt$ -\end_inset - - -\end_layout - -\begin_layout Standard -The derivative of transform_from, -\begin_inset Formula $Rx+t$ -\end_inset - -: -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -\frac{\partial((I+\Omega)Rx+(I+\Omega)t)}{\partial\omega}=\frac{\partial(\Omega(Rx+t))}{\partial\omega}=\frac{\partial(\omega\times(Rx+t))}{\partial\omega}=-\Skew{Rx+t}\] - -\end_inset - -and with respect to -\begin_inset Formula $dt$ -\end_inset - - is easy: -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -\frac{\partial(Rx+t+dt)}{\partial dt}=I\] - -\end_inset - -The derivative of transform_to, -\begin_inset Formula $R^{T}(x-t)$ -\end_inset - -, eludes me. - The calculation below is just an attempt: -\end_layout - -\begin_layout Standard -Noting that -\family roman -\series medium -\shape up -\size normal -\emph off -\bar no -\noun off -\color none - -\begin_inset Formula $R'^{T}=R^{T}(I-\Omega)$ -\end_inset - -, and -\begin_inset Formula $(I-\Omega)(x-(I+\Omega)t)=(I-\Omega)(x-t-\Omega t)=x-t-dt-\Omega x+\Omega^{2}t$ -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -\frac{\partial(R'^{T}(x-t'))}{\partial\omega}=\frac{\partial(R^{T}(I-\Omega)(x-(I+\Omega)t))}{\partial\omega}=-\frac{\partial(R^{T}(\Omega(x-\Omega t)))}{\partial\omega}\] - -\end_inset - - -\begin_inset Formula \[ --\frac{\partial(\Skew{R^{T}\omega}R^{T}x)}{\partial\omega}=\Skew{R^{T}x}\frac{\partial(R^{T}\omega)}{\partial\omega}=\Skew{R^{T}x}R^{T}\] - -\end_inset - - -\begin_inset Formula \[ -=\frac{\partial(R^{T}\Omega^{2}t)}{\partial\omega}+\Skew{R^{T}x}R^{T}\] - -\end_inset - -and with respect to -\begin_inset Formula $dt$ -\end_inset - - is easy: -\end_layout - -\begin_layout Standard -\begin_inset Formula \[ -\frac{\partial(R^{T}(x-t-dt))}{\partial dt}=-R^{T}\] - +\begin_inset Newpage pagebreak \end_inset \end_layout \begin_layout Section -Line3vd +2D Line Segments (Ocaml) +\end_layout + +\begin_layout Standard +The error between an infinite line +\begin_inset Formula $(a,b,c)$ +\end_inset + + and a 2D line segment +\begin_inset Formula $((x1,y1),(x2,y2))$ +\end_inset + + is defined in Line3.ml. +\end_layout + +\begin_layout Section +Line3vd (Ocaml) \end_layout \begin_layout Standard @@ -2588,7 +1414,7 @@ d^{c}=R_{w}^{c}\left(d^{w}+(t^{w}v^{w})v^{w}-t^{w}\right)\] \end_layout \begin_layout Section -Line3 +Line3 (Ocaml) \end_layout \begin_layout Standard @@ -2788,26 +1614,10 @@ where we don't care about the third row. \end_layout -\begin_layout Section -2D Line Segments -\end_layout - -\begin_layout Standard -The error between an infinite line -\begin_inset Formula $(a,b,c)$ -\end_inset - - and a 2D line segment -\begin_inset Formula $((x1,y1),(x2,y2))$ -\end_inset - - is defined in Line3.ml. -\end_layout - \begin_layout Section \series bold -Recovering Pose +Aligning 3D Scans \end_layout \begin_layout Standard diff --git a/doc/math.pdf b/doc/math.pdf index 7ec262132e81ff6264812e026ce4b8e0c15565dc..247a9512235c389ad62882dafc1b2eba8519caf3 100644 GIT binary patch delta 101207 zcmbr_V{m0{w=ewIwzFc}b~;AKHafPG729UVwr$(CjZQjA$M1bVd+&GO`=j|kjRYROaW@ve|lTM-*V+F?fkK0==WV=3E^sj?jPd#1q zu0OpWW0`*0w>4?1dlIgvwL;kK#P8iblwQifYvT7+pan9rMEj23*Yja-&r9D6Cdn8~ zD|wIh_Xu`Zc)zW_x9qXuYP|$FO-RA3NISV;orJ;1nhF7y80evBNj&cUSWRVp=QRuc z&72#jw-+LPEUWs88)Div=QjLlR8Ddfn8wC?&U%bNsezi0sjM!~sRve(cxUmw(A*Z_ zgv{)Y{7w7WdQ;W*YnZ#M>n$;#{#I<3lO2q3amqzRm<`^ol1^lxcLr!C*&*a zQIF&snBTx;|ELDGY|8KiQK;d-f{o5lvkrMrOG8E0ep9YEm6if>V@`wk(4kpZRXwWGJ!K_um^a+PKNeNNb-W7Gy_D zMd-izB=6^ylcmJjHo5zpbDIJ*G~HBpM!g!wYiR7mYzOpMLUD@BIh70K2sg`NRZ3bb z4yt3xt=WIYiW0g@U$8O)r4jYMn{K*6c)|CG6F>3{yb${soGRaX=do)%HIe?(W9+OJN zkV5_7yx{eP5yK>KLQV=##^#0d3n=vXxhiFO20MUChB&;4_bO%pbnkyvf6N~U8gE$v zRiu^N=`9@W3lWjrmd71JVaXm=BQ|5SfCmRtk~<*7j9fJu6Cn}ip#qv8_fgS?6;AM= z*wv=TBUw}FLC)CGwuqvIlc=4Yh#$y@ok{g5(-iVGXBu_TJqS{X30%Tm!IG#TFy^7h zY%~3^2%LfAro^=Zg4QyBH8n$GFk&8=H4~y4Fp4VIH|Fc$L<4OqZ;^(0s~>5!B`m zY&Wc9J2Kc(wckS$*+<^HX;g8=6kBh|&2?itG44AveyM9-w0_k5a+lHgs;bos)P^kJ ztUd}>j7T;lZ;2MMzblxaD;a?T^O<@gvX zLM4r(?q#r~L5HlepSlD(JK>#HuWsqq z)vc4m8#BbKKbgkF&=Z1LFN0YfjPUdZsGY3WjJeALqlTMWc!gu{wT8lABA8X!VxeWk zB;P97INxZht! zJJ?|igiM5@m)1geznQKywlctT9N8)0&fGvun@#+FwVp1Vc&8y#VWML$<$`(=O~9$3 z)UT&J3E1ko&{#EtJl~<&1Z)Mh9-IP;q zBJBVO)VGi@&q?8**77wVK`q)6k!a_8Q5FaC9K|JAlhgf)YVN zw);qcte!N-ccY6~iscsPKj3K5KF{yb{V5-tAZVcY&0-2a5RpK3?&gehpsgpulNgxP zsm1xV1l=o%z)2?ZXOBjB=oFSQwjQdjU}JO*3(m`AFS6Y{3U*)Q5sp$yq~|F7ZfZ&q z$fMLRRaOy?a%DzBYz?6{0XS+bOvfN2q%;c?lZ#Y7&cfO2VbJ|KFsC10J6)4DR05gZ zIQ}X(AU)SE#syO;;+q<6mY$hG1R8{4H@op@jIwb`{v?~RnK>EDFJxNJWM8@TU6WVW zxMKt#YqC0;(-T)Z;z2rFZUEQVmsidlc+M9-Z0pxFN8*V{5x~N>Y2YMHsDy3AjdV#T zV;XTdjBLv{S~0wBx3N@5`+y^KX?K;$&u+dQT;Z+>+WAqUBV0B#=JKHoM3W`>X}qaY z4Crvcg8dXzM#?OwE{UohehcqMx@}y=>Lz1|w}y76>G0LxE}oNxJ*S}<-JApfX-tFs zI6AAbToLfc-OAaO0D<23Zi;)I(5o#8SF`YP@x)=4Ci2Yp9sT(z`~8sZ`UCFl5ao*(-vP_fd)?{l+(7RJ+wCX@*UI^N3A*vs+Ypb4hdanAS(yeCrMZTn=hejN>9b zd*H1`qWy-qJdbWzg;MMGiH<0D0#Cecwvl%9u#t8rGU#t@fR@Hk?^)p~4vdi}cBCtv zG=qv{+axV!0xuG;L(4~l9nt;8SnPo>YA~n?Bb{VqC68rjF2wX1xC9P|A)`0#r74S{hW1nEIeR}R@bXtBIh%n*(Ebkw zF6T2G2)%)m`m`HDtN29T5GwM+fs#QusL>g|w6E>`O_w{5oCc^GbuExz{*gL}SMRQe;ab3E{`PVeBii&T@vC`pq6P=8t#MWXL8xQ<$TSoPT z26v-5`LIA?%mq0jj*BUs4CE{!MEqlyf=fD3Vf?bB<%C{<+ZRJacRpzQ_a~qd)^Ht! z%kKTdjXm-12NJBXTyq*z9VmHHEeA3>3p0Qj@EwlnyP31StCNYDGk`nEA(0a0UtK{# zfSH}Cy|ESCUrl{XO)ee)3)|nH0GK5IR{4LH+{^%$|G#Dju<-m>p98?k`kyryJAjqr zKkL6T3M==2eTNmm#`3rB!PwZ7_R288m|6anU#7KXozZzvdfqfV>>c|pAFTw|Ho!69 z>4(kIRIfp~(>7U;KSEkeN?I%k2^YrpMAt-n|3Rw@7f-GJrAv0Zi2 z`uOl-<>{QW2_A=-?1{_7=DnA6VAStJ2#jK!n{fF4(>9gv>v8(n+|QRsC`pyLlEBrGA$i4+II6=tCQYzJN2dl#kTW)*J zFKm}^#%7uhkTr9RD11~aKd+enm~kvTofyQ(6}0=8f( zQv^{Yn?9~Uf+)3FB!kD>2Z@!AP@q))BJ)L2_^97Q)Jw*$z+QWHO|QVO`$K9P900C% zC^8Oi31#cEZaIA@yGmG&VI#HGTN3AGAe$sGCze28X(!!UYz-%x0xRhD%Ide-?;CK! zSxJ|7ui!B;MY~_PV#vd~F~P!~1HdkVZo-d6DOxLK3G&N~Nxlfow)t>#9AJ=}B#JHB z+z`x`F#PiPyiLlK18$-n(`Fe48$%|jsnGrsbP>K9!@Iq)B}^*qS}IqXpfy7(V`j@^ z*yPJ8Ezj$p2bNbJt;X(jyUeMh!CMo92)S0XHGg%Dcn(p6XH~N zmJt!LFBr&u2coORcxH46;dVKy=(vutx#@;LRC94zrpz;natBqyqa$Z*OEB;9OB9~# zBq+9YXVgGVQPfDDYG}qx7!z%+s<0Gf)HgtGQ#*uQF@usRAtO>FEO4~TLKQm8!$^Xh zVUS9OI$b>>zWeSs`Zw2UA|HU7QcNNplVmi zXxTAzpmC@d-%OXui2k8o_y-X!o`_*Y!*T-xEoMThM&44GFilv%_t8ALr5fq-d8ia~ zturedOmcTOimB6}R-n|nSro@%Dqu1%AHW?4xMAxXwP!H0CJ%ASiQ)=TH>`mh2@hP0 zt`9&-UlKR>*-%cS;^f8I0a_FRHUJLSg+3ua%=R9;@YF?eLFg07#s7GA5Od(HR| zpLpMi0+_3eDGUt(y$Au=w+H!vs_-JUJDCAVr6vTKl<#OLz@G9?hEdjn1EW#acaj*u zQ#63PAW$G4wW|(XvhMC?~qFQ}lei$WU{U{mZG3gCooEP|APRZPUv~PmU_v z3qeq!vbktlvxZsVl;FTh`x}cK8qGe{{5sK3GlSgeh=i_EzZK;cU~-na1G|X|%hBX_ zez-He8tSHTVA@3>&i01&?5YE_1|2|HZCM7k@iOCf1xgaV@Uvq}z`NvYY085170AX^ zI3Hj75qG?PU$OtYNPMmUFM#{ns2BBpIg%GPr3FkD2z&8UA_rSte1TPh5D-`|i3&Fu zH89I`K`)|4%bV(MziCDXWc^@H7ws@FnRQ$#7#REjQr-pBBlRvfylzucrv@Kr)}EJX zG*W+S&uCC{ef!OC0@9S^N+XS0{aa}lEBZ1?<1PE@WN;&5N$~JwlQ(Lm|FwRvZEnf+ z=&3+AB_k#z>j^?(@+usv*uiqtim^=xO=jXMIt$!Oq4mURPUH{crE9YN92-S#b1e`k zAfV$1%!a;?esNfg<~KifZBMUW{N>s~<~D(aB)9EWIPmcnN{fqg7>HhpMEl+>);9mg zndiwPxHzAU`rBWj-*C<;%6wMZZf}9^&*?LrJCoj)r>o$T*1agpptQsaD9TGtD1@aV{baOomWH4vQ)!bf^Y zBRFANbobymyR%B~m22&dCeLQOWy<&i-|@cOPt-QFb{pTRjoE7Gi1MnX7phZ7m=sOi z@A;Os5jl6OdJ>flOJHlf?Hi1!U3Gr*3?#IU-pb8PJX?&$?s2X8)c^w`lB zoDPEk*0L~zfD2laE0+L7%*D6D`G*}xo{_vowcicjR`o*Gdn+w>NoeF4gTU2+uu~ER zZ%E^?m&lqVy4n2+s9CAwP~MQ`h4HR!q5g7QmZ?P-6q+3N3Of*d7avGdItoheg+EAp zIbxn(Al%cL+-ltrh`~?v!RoPcW-GPl13&HNa|f@wjaz6Ck%p>n;mnK}F00I946NX47Cc}U zr3rn3V=ks$!Tkj!XBQ_kBip~Lzp2E=mK1>jeXW7dj8jb=m+n-WEYL?2IQ1=VFa>B? z|1hUHx3chdVKk3ZRs(7|zq1Rt4@VAlv66#Ab->DAnf|Ct_mm1+017gVRI07NH(1_b zeVS-jVI8KOymM>C5K|r+)#J@tpkgS1suY}vkb2wmFNA=uGXoe*oq-B>+?RTz@6>x% zS(`P)kTdBgpKdYBixR6qFo?q+Gkx5SFtwoNG(*i=^w8q)fhU}Mr!PIa$*8)4;5ruU zSXv>`-KgmT1UOO9SpFsAQWSg%F=D>-Kyw6dvk|ph9)li*Qi^l4w#po3t&adL9_>mS zY*sO`ZwqnaN;3qQud>dwL31HC&A({w^#ko{4ajECwd)6GCFrJsy9vx4x5#WvtrX3} z{D=J8YdPLz6Jn#`3g1h0!Crqa{k+g063(v%Qki%b>wi;aLmK;#jaH@o*07;UJ7PuD zwq2KiZo02U0fSXFk5K_34dC;ERB8h$)+rxRVup@wJT&SO_c@yISEdJX4zARQ4Ck5e zKyZ*9AS^&q5vv{rW~yqUNOGAJW#QM_W7=ZGLPY>h$f-W{Z2yoos^z>~WYC{}x)`XE zozs|9Xh?1nLz{`CxYoDm$Syp?!76wteS{NmG&5cV;}^ElIy)?sG}W?;x3Y^a|5;d5 zj@e4Oz*kKlE)8GDt@$zz?c%6`VcwiBzEucwmNrts<89{$;sSr!dA=T>uonfZQCS`~ zmX*C@td(56KAZ9NVjWtI38)EKe*HS_xVm_I(PPGXX7r;!vyOfO5nITkeat#RT;)Z} z2Q|6|jyvBM=c-~V`hBmFAdGWKd@@WzDjlyqdc|5)4m?*A&4MVu$(UhRqb6JwXXRzz zr5t}g+T2hB?z~R$%`jF72pGoW8<$K}VLq0v7oa>V;Z)LRib^^sBG_{_R#$(wwNE+u z6Ttqb?<1O&i=DP36wb92L6cbv<3l4T7HOzLAmn80je{!gn1+!zG90RN34z|zEBCCc zw(F3dlvnl}-S={os>absyF2WHLEnP6v6$V3k?)WM4Ac`%Tj;XEcoEsUtn%XN)3I8| z$H<&mep>(g$YJOBYvceh{`ENjkD0^H{&$!|{nse^?=bgw_x~`>{d2nfn+fzkCe7ay z=dM^9k!wNTx#4=FC(FL5hqO;wQ!bCt5cMF=%x%_5j3HVs;i@! zN$bZwTrL7Y;PQkM?y04ZjaAUrgx!H3k3sLBe)pY1G%6?|)TqNBX`=I@MlsA`ij#^e zf^@JW9x}l66xF?RJ>P6%jmIbEH=nPh&J?nd;%-cAiotN8(eaJ=&@TM5lKbW$ZpVzG%>&swP%g4zKdvhv_zq}}tYt7eDmG8_c4OfFTgj^j366ax>JCWwNY+FDqv6T+g3 z!mzf0zxqXNME3~}DX^Abh7=rW_{;-!Qax)CEQlGXQf=ahlnXJq4DbTrjS{-x_)kVd zI1mhVgnr>U=GO*0jRI|gzsA&%x&riS900eDd+y*nouE^a)S0ftgBV8iXkXp@>Tk4U zG0Nf_Y)lWl^{L1V-fM=r-gb&(B}M_MHd_s0t|6?rMMr(heJIgn{XSUvf>G~E*BWer zrMM}`ROZY zrjnw~!qq27n#C8|0M&f4^zD33t23RrA{Hpm9vdr0gMmQn5BfB_FVTm#1J!T-V1qiJ z?IAg|GznZ=o$VatOVdb)sOKHWez;!Xc`0`KB0gn{R3zQQceiTORNoD*-ZcZ0Cfz>b--EHuRxD4(C8Nz-sk_yC^B&5m8V7nt z^IdIVCJF5*(qo9oiI8-%n#0-Q9F%CF2}U*Dy(RHK%9JOS%y z2?#2wEi1=W2cu;jc2!p@;OVeB;d=0fJVmxl z{!9S}TYu(Qogi@NX@a5$Hh=^_rMvK8Q7?iFDh_4UYS44M)j>A5uTW!KrLiR6s7!_UCl!JzAVCv+ z*+XR$pgS~h?WLPp_DwT@F^+W*ILL_-!*Lm4I}A1{;&bvNw~1^hzIi}JOt+L#sK^I8 zSMztaqn`MPs&H47P;AfegkNU84})i2I>onrWl80kllV}H0snP@5YHsQO!Bj~A;@P30}Ul-Bx0r=ykT zCY>*SJ>{_|BwrQpCB0oI)LP$*7-JDg!b4z@5qQ1mFQ413VyIy$sAMyjON~?yr(O>F z&b%}G5BvN*D1n|DqL~Lq2W}e84GK$=0UMTVif-ADMETLubS2 zx@pH!G-6P*00<!n9_WU(Tu?hZ8Rk>q z?`X065rCIx84F*r;AMv(SkA%)ZBe08gmYP@B((^Nzy0`hmq2uJg272nI6YwhdXP%C zom~ES3}p|L?xUf-@ID2jk}b}jI@2?c9+&=dm|1tQkuF5Nw@ZJKENv%dW1u}cIg(p{ z2gBsH`C*H^E1eepsZG53n^nl1PA{;`#EXP?A05b31^V2Ejp1b@!^U~t692@O>`vOG zlYFYIcufZl1$$F>*X(Ht5d#k!7oAO6%X8saTdo8(t=AbdmYN}{dEqEd90oXt?=Pii z$fkF8SCH#LZEoztkY+ch8kg6;8@VPttJK;EBgf-f0}Xe4{jyy_(u`idAg5T6acM44 zs07xF6=*yopiQ8?5lR1sxwlqu9ODZ-!c??&8rkwj9M6Yb$uFv3)JKvCl<&B{IyiQ0 z_OQXP5vzH-)5BypeCp0Nu_W{>NoII@?B8wNT%9}}M(sKNA+eSk)A{J5ldm-{{5wuw zE7J%b^2sK&LkZx;{}J}*fRZ5l98=|%CmR?uq>M&r51!bDK)!)4QpCnS2OI5#73yE) zWRsRH%`?)=!f&=oR8|IC-0~IBvRwYuz$eD3cpB#p zO;>6P_ruv;ZnDx@zhzxr_rz=`1G#um2{B|D_u-)jj}&RzJ!cJ)dBHZFHrnHj1Q#ef zl$6~ESJ}s*e*cLAh5Lp(zZho0Hz-B*orXTIW3Xn{miEm4lE_}bmfPFd*jrB>MCMwo zY5xS3(Zk^3%q)eWz0fL~PEm9{bH2Gw*TunIV>0P|9P}!VCNHI&}ln{Y>7J5!Q<|?QI z_q+J3ZEQ)A9JYTQ^?Bi-{I{X_pY;4k$mRYwLHM7W4gcJn_$O8WJ6!+IP@L4qi2=^a z&6&h(@b}>&S?5hjw7>MaC$$XK$R=Q4>QqO!K2c(YTv=y@9E;opBReHSF8{qC+n`qf z+1~>}SgC-(f{7IZ5$_|jwzD^2SDxwf6WNxn1eQ5NUdRlORUR=P44BoMJ2siEEJJm7 zXoi%iP=m!4<=K|4Z^g1cmAa{z2B4~({;+A)1TwUy5tsBrWCS|oXUk9X>Ax(MB!Uv#X6YE%h^0KYhNYOyD?sCB}lS&WOL8$iQNMYg|m@qBpsT?BMO zqjrf~IvqHe{0cEr9s93tYPw>)@(|;0!WIV&*tE{;!xP{ye~#Ji7Kp{*-&N* z$Al(QDG_W9q)K&Z()1Y7^tXp$#YOl~t~+^L>iraD|I6a>np-A8gRU>(#uvzGzxF(F z%cSdHnP_{QoxLC!VG|(+w~T(>f7~hPfJ`CB96xS#dpNG3&0t$;Rpe0d*oHQ9*-(;7 zEzJcEvQe4grXk_{UXW9mF6<}(BpaT0;)A(uL&-HBe6?6O#wm(ABaWb^JY>8bE}1Zf zGZ2}xbB3{(^R3k|D{5TgYvcfJ~gFwk#G5m^}BQ{h_?UICF&7be0Y(lY+V~N`?d$gz$R$Bs_Nnv-9ZkO|Nj1 z%^w8`;o{CIEHY*DFSiPYn7Efu6?v?KmG4a$uKBAFIEHxJ=%<#{9*cxFn( zAwt&b?81wBBzheCq+ zDa`_s{XWjlck9`pHdn|x0YgTSiRfH63KOJ#wBH%*RjU>_APMc*k$z#zj&Br5VrKr- zSOib?4v0)G=NQ$DMgF{;q*&RQBunybHwBcHd9eu zu334Ghbo$Xg1R$g$JgY@pig=>J*-Y{$@$4Vmjn31NyRIT=o9FV-RSK*R-8-RSe~kt z3cf34Leqk$7<8`t;NLK`?C@ng3z!G){{Ba}LABXcx9=%&1_fpuk+Rekev?DY9q_NS6`>8v7sIoMP_kQ zpr>S621bM_2v8=gsUE^_(?agW+(AC*$tig6M9(zY4|u#y7r`V6qQ} zGQFex{2Uu!MU3^WP3!?@nGrK`q+#5vF;htQc0i8{)1!H?HvRzM5ZZt_xHq%t72kF- z?FnL(&+G;ggR(p8mNl$GYQ(*wsXZ`1t4G=gG{zhAIw^7EMk1Z5Ue4UUrY9QNM?rt{ z4|}Z81Hxe!QFR&6yGO0-X<6aRyJSJ z+Ub1)+i!Ki2&P5D_#}A%eW-+PRZto!baWb)1A3$Z_Klb3qB(a;DdEH&K?Eg@`_(+a z=J5+08{Q6kLxILCK|Mq{i4>$I%*%zkb{3thyiNyQrR?_+6x4Xi$g0UZt9f`I>zSL) zB_)qKTwio%>HNUGa18$@0xtouv9hK${SzZWBa&QjZPR))DkE<~YaW78~|5d_F}Xl@j$%!rZxeqVm-*HWOp-fvo%JJO|zBsQjHe z%XWTa5ylj%IS5rki5jS%!5Ao_u8*Et7C;>U8>6!n6J%lqnEAOt zE|Yh)SxcsH0Bvm1&con__>fH8RR7HU^ar%b+O(OmQz7#zDV@)$f`R`DXhwcpY~skH zk&d2NZ!tfE2rlZr%7Zfh4St3YijvnZ*v5kXbGvDvOo2llF1H@Ns#1U z50lB#S+w#uHc4L&ncbvbV9gI-Sa|l>1#Ge89*4I)ZI{RNK(VTRZI}J{M;4Yha($wu z4`)1&{fxLl{O_Z!?fpIxqu8nE_kRNMNs^+Q-}J$apzy6hxIg{`BIX*bNpX+uKfpWh zkU8=^Np&R*Xv7I@XPxX41yDgjrT#?DMs4+Y>r;G+FBV_`$E&Q+2fC%HhBz+&Q1$kV z^mQ_2B{Ix{&9*!NaSys6x0A^mwlN$bZa(wa+UrSsI6hu+6qn`}?s`16zX_rgd=l#M z5!~s1PT)F$JVIPtu#W1?aPq))SNZ#;jYfQe2Y}iH+QM?!kUO(gSPSgG%~#ryAa72) zR(I%+=%lQ6P-x#vC6%4A)uDY$H~potb2MEMNT!oWD4itr#B&PeM6F5IaGG2Q$>Y-G zAX?(Ly%=_va+#4%4|QhxY?kiw6*9`CMuG5woY9B#mEs`DJos)VM*k;sqB!3ztus6=hDm?U{dGQ=VCdd;KJxZ%$yzu#fKnz^u( zMRV&PrBf4APNUp=z&Kfx;#2p+3ovTG>DV`6(e-CQhNS|bqvnw;-MZJYhLBRs^)IyF^(gj?19Y8+`*hw( z(>W_Je99mtsv>AetR&uE-E(+Od#k--I{Qhvv>0C$Z;-ugC&c=6zZ7NlGy<}WYHPc$6u>u1lNLpmFiDr(v+&K63<)`*H0(^pfI>K=%~?ppH%+wD4nvd= zLZjlZj>Ogf$Q@c3LX(@1 zWDR%Z*XyI|2Vt<~pn;;aHJ0Z0A;9XpQ+gzwg|M^Mn~Tr$=?S6*gw-LSz=1yB0kK>v zcHZOzYn0u1&yo|Vi)&$dJ+t!O_8l08QhobBH8QejWip)vv_TvEYhaLvmK>9h)IZ(UHYB24%$Y@wiBxpsPf3hYbk z1X~oupPM*%b}_kr`k(_z`gs%6E|x&WbiYHw@&|CavL2-Z4>tr1CxtNgiBRb(9S>{R zOEo}9K8LHRa}>77rPs<$Kc#BHOVfBRhwGxFQ-9zX#Ki-Y#dhMnoPQ`)|0s7H7r`S< z(!FhQG1Hk+k0Bpc7e^~hjF=0Sn!)S($nB@c3DmkLFqZ}|jsmF%h0ul6j;Z1QE}56g zF;yVZ2dXR!+>Z1k{#IQ`e#`#B>HE4JE8_Hn0iNgTfRFp9G=p*b2HqheFj@z$n_Sjd!bDrogM-g&+2Vn1UF}2NQc= z&lo&?9S0y2llmrGb4E+}k_f-^*smFEelS464+;w!l&ZDivW|8{$^12-_~@4gpnHNa zMDo$jp%9wtpq$CV16J0pS55UohEqBa6j_ z{#w~(w8Z#Hkm-|@UhbNMlwscAkE<#f9m{&w(Y{9)X3W1&su^8~-~NdD-dIcRzKfn# zwT41zo**F!nrSARdR0}$$8f|^846%B2Qo#S*W|6SIE}X)QXPOJ<4OGTrgY;dp~eyuKPMsNJu)!05=bX{Z3J32s@1@zXS7kE2< zG`KQPlOb;R-lIP`KR`NJf{Jq&skb0KG`)J4p|&Aja%z@;71fK>L)D+W0ynoNl6Cn< zzmPtz3H4nvY!kU^A1up`qoLQRtX@Vdnl4a%Rgt%{# zT(Can(<^lpUBul?s;Z(d9yr>M%`jXrO0~S?d-VJZ*^-0qw&RM zzWJ^bbDw%xUiIQ@aaE~4^7+U|mWOh{M-~kHrZ>=zc?)hY?CIv!ocU~m&&-91nxrul zw{F!XaCJ&0G%nstVj4Cof~u+g>=@5$jiCO9~CSn4~caI((Vh9R6HUx2}wHT|9Wxv zpYr>M2>+ktCoY2l!OG12A7{*uwdC!|+EKgzvfmcDVb=chD3te@G1nSB3Pc7={GcgP z!%|B~^D>dN{_N4}Y5lle0-8>u(JhDwBigbtc4eemEm4$^zWnEJjYC><7>kOIj&g)r zgyvwGcWuAyOs#3^VwGQuRVR@OyR~*2lgwS2xIEiatD9N48jEfZ%)7wqjYqeq^NUr0 z3K~gsnslYM5@{JMDQuJ|(2BDXw{UUy1A2#OWSWzHekb^^GX})O8kd{YIunsB2g#8Q zJXDd8uD~BFQ74^u3;b}N`qwuDQK^(ncp?ax9=pBIM(UgALI+i<{L##+!&+Y@kyxtn z;_&#T;eiMe+4bJ2SJA-mvQKC9>9wK$jz>Q~Bq8<7KlXpTY+C7VKklqoLvODy_J4g^ zvyy%KVpA}7e~~=6f9-$l#$;r22EBz%6Q~}iy49m4hY&UFHchwCq*EFSrUlvd3(#ly z7c;wIfy;CAFTX@s>us=;Rz)?`9DG$Y44pI1(Hm*^XNb0)*>(VT>x@!I`ou}L&E@=h zGMV}NWH7N~HHSh@0xc&hh6j%xjt;4`8K|0GT}2~;LuYXY;Wdwq1`w6gvHf-w1?4_@ z#wxsxTuHCL&TytjhE=to7E_f-gvWeq zV#FareaW$lc_cLu9Qy_2jRg~d(67a1so{#eH)fV@^A@@m5Ec&KX_`_d2&D_y1I%3P zC|B$SW%5as4c;%H8cq4*ud*qWDzbp*u81*mZgS%#w$1`)UR*DoS>(sEkf=4DQP+36 zy-$A~b&9644kpNUqhnu#-}ffxzz9tK7X0h>t`5L<9JBQMU(83Yem|Y(Yu!eA+E5!| z_0LeS?huqXc2rQ9Yq}s;te<#@^N;;z55r`cu&e7 zs0%=Fq{aZs+pboi%`Fkcnw zJwp1c9wdiIcn#Ib+`RuiA0?+j>L&|zBejkQdcOqFc#aElpg`o_6^cY1qiIv;xB28z z!no28vyg_XUIme6VNvd(u$ zfOYGA=6_v2H+wj|uz%C9`N{qGxc+>aJ|m({A|&szKbya_4S{|%NXF=-8rW8x2+eaL zuE0_XE73dszy1JHqLl_vEO6=MqS;0`>9>kco1yS5GhaUzTXv~o14k~9kTSZ{&XL<% zbiK2;*Hv8Y&&}a4xg4aII5MQ;){#Ns;-sS zy3F2TB|a@h^To{qQ3R1x(!wIfx0TFY=s@g+TGX}aDfx@#0*s8rrrEW{U17(E1TQOt z=#-jLXLaY)&cm6MHxH#f;)zpitUs0+R*HJq|E#ZIq?G zG5;~Jt}sDi#`|Ukdzs77bH&x{6xi!hAuB`mb|_nlm$i^{1$(B3Rg z{cAK$fmfZ^K#Cyjlh;@mm6oAk#|6mG-n8y%(`aD!u_OC>4b&p9emCwEfHJ3Ak39E5 z?VMFd(mQ--hbNAz+Wd5G-<)BxZ0Tg1c607nw}U+vSc5E5D8M_0p&872jBTsb;|L$ zqmmccOmk?qozq+Bw=ZAy{7c>&NPNHm;`{1%c~wo^D=V%}SAclC zk)lnovtz36Swc5seh6$u&MVB)UDOIbym@&d)5I%^)jfdXaYa$R=%xk>)e89b{hYC_ z_wjkF#lhG6$s@})9iWP@Xr4XhM)weK2q?cGB?bgsg+mu4JN|!+{d0^he;DNpx80|0 z+qP}ncAvJr+tz8@wr$(yY1{TaGxO%&-{j5Q+<$jcJC#(W^7*dyto0xaL6`EzYaoh% zrJ_j?VO>jd(T!xN<_A)HXDwTm>_rE@Q#p(^lsY6(zugNboZ(}d`^7TQ-~s8bUP{e6 zVxS6mOvwVcdN2b9)1+#hA{{_es)Kvy3=P8qPS*KJzhTD$m?sm7m6MJBKa6d2{-50H z{{YSZ8DbLU!|4(QRnS0KITQ1#ss6_RrTxJ_3;ILj*3xKDzL%hJ%*-Et9~Zq-ACyZL z0#>|$&emo=|Fr&O*ZwI8RSJ#F`cjA-BLZ1xdHLz}ys}_tSJ&sKFbT_Kh$?w|%RJN~ zR9l$LN87i}M?clI{ng{anVeK<$vhC#e6ZSptMGf~ML>H6CEl4hZS4MQ0Fc^dT?bzn zOr1VoPr8vh6b{U`pCKU{P9}fh0?=A^ZT~kJQ@Kri5~N1-q1SC<26 z>Lgz0MC#?*qju3;0oqzNl^^FdUeddeK*2Ag){V9s&2m1wHr-z>NU(zz9`29#^)=rb z^qDcc%-3i)yUEKU>r1)2bWTRLKum4veqCWZ{z5K>8R((*7Y&yrcMav|day&4(+!sF zo1MVMwd~Cr#nOFR{;v*qidzBu3YDZa9WghPuJzqCQi{OJ02L~ZxdT2*8qVITmY1^% zDnA4rm>FW~Fow!em-=5YACuf(hA((NNsssK(Y;#en;t*yJFHi;tC@OT)NYPyNCLkm z<9;CM1VH{~GIP-iK+p&<$$=p&0C6e`+}p`1cdj*4lYjNER+gG2PB~>R#hQs)N^q); z2Uhg15|Vwa1Da;X9D&ymNGF&KZ*#aikbynUpg0ggoBjv4*BKPcE1wL@d9@w z<{G4sULG}LCLN(pFhF@<6_5A@VU9QVQXpXMiwUWA%OT+u^3E*xDRRcv;lYsH9OW|}>cHI%G ze?RuYjDA!F9oS>=adb9Gg!6>Xv)Z@*~G_->`%hp5h|h@ndeq4)#+fJ&izyNa0U z7~4)i3Wxp3*r~PjD|gcudkK(wvB>Fp7q(C z8h%6h)E=hlejXeTh_IZ32-XY+poXMCA^W{K0PaSI!{S(V^yV&4UWi)mQc)=mmV6?jmO8iMwF8G2DwM_+YiEQS> z1-up?+4I-^N z_EEPA2ZJ6KPaDbFKSjZ@}*5dCFLi-3#f&y z724-6YadArxDYuQ^d$7{Oe!t=5Kd~9kyk(X&B_9v95yZ|F}^Lnjz$c!AY88$W>VtS zZg6W z91m}7L|{%g#t^j)yqwctGw2qL0BB0^&+K{-oiN$6xlv)za z{fFt&W8|?BongF5<}+QsUPZoNnwtfe67|;SM3}*;p-9KyH&)|OU3~{76rkz?lLSeP z*orIeZ`)NW_2GD=-r4vC>hpvW@KAoSd7moR%v zirY{@4c{%$JG~tN0fHSn?)YdPdE|>%+$(H4ZPW?}Kj1*|%+pH&832(uC&KkJw=M9M z;=K8EHV7>-rB&EL^T^c*>|R0@*sN5YxvHcHD|eQog@9>^a|?>c8VuXW@^)h08IS54 zJ-};VWH0@R45H8{&B5p`L_j;Qzskmz#FGQwz@eUTY5?EFU5#z)jE#>4`SQ7fdS!EA zwaWK)%^iKz(Wxh}4M^p@gWz1u8tqL}drpWmM;zY5<;EjG@toT;7}^?PTgkLfR-hEaV(yR1LnqUf0OExdAP^ zPAG5xXgMuyLNx3NExY|mM>Kly?lXd@P zCn*&TP@lje6;E)|CeI&wH*lZB3dWTu%OtS%f+M#1E(7GiXb0;%=6qzU^Q4`ts$YfbT58G31UnX^Dk*5s z!Ziy6yHindn2W>$5O3Yt+f=K*N21cf>7i0pZk?*K?-wLAzLP9y0_T1xTHaCv z4E$6ZK?<9^cXmP*C9v34Rj~Q4=l+Ii-2$^s@|(-3$zV`qhmln1y>Lj;I;g%mqqweX zU=PC&7-d}^DU>?EVE0`^Hw5ct#aaIG`lzN`()T$tc5E@4UdV$4DnKS1|cNXvd(ehxZMj!D@b%8?Ll%5;e?}( zAyT7MPu=X#xS@#h-JZ2XneoPvODJs0)-l=|wWhAe5*8G|s5>`lz$XteA*>b&f)O&u_FVDNvVVi$8p|QZ*Bw{k-z0O%g*2>VedGC`u zhnbe`12G?<<^GHa?h5}3$0|M;QVp||$wh$}CqoH+w{_N5QBndD$Q=v{7^*3G@|d!y z>u&fHbsQ*y^DjtfusEJ}g6C>!>dHH?a(+_iK8*V~s3{#f2$ui4Gv`bq3_?oQXV%nMgJx*DWtirS; zSiwe?0+?&R*vevuz!6$athp-5QlW~9dWSJJQxh`5OmN{!zhvYjrQ<;f#3A@O7KFxF zpHUZpw%-@oS)}%11zmFW5b8P-1Z@f}9&88Q&6t_0;`D6o){Db$2LG`G<^d=s^^3yqqL$HN~TXvA> z&k&ULLLLEd$dZD({etg?auslv11-`YYoHo{RZ<$Il=rzoWdY{9D%<7wD=Lk6O5N?8 zH}i^%G~>CXe9_AuRQR3NdocW!28N>MNm%I@h5$eN!xxQ|fH&}Y+Qr{|=SY)Xhdr3y zCxWCGT(eU-n+wEN&1iIX5Z+?!8`-`p_ZG! z)IDYpR7kWH@*F7c=>rk)76${nnmGc1a-kcrFi753!O?k%D4N;qpHSWV@K><;Mfoe+ zR=@vcog8l(Jm}YH3i@2Ycv=7RZctiE&g=~l#%}=LI|5xG`8Iz2DUr#`Kx{n^-_dC` z{<^(bb+%j?kVEa**3P9)ac?5OC+>WM$`Xe*A%C~+<2>KOz3SV+b=uM!`v*NBvJ|K+ z13v!ESErL=oia8@LQ>kUpj!m4k!9L$1Q1J(gC-Zx9#K+)d=*DYi6}SQdZ2hsghMy( zA8A^~@Y$<=)N8Bdc$E5nFXM^A$Exbkb`X30*Xux@&&VP74KiOUfJaOF1QCjetz4_v z6_GBkGmQjmt`hyrpg``A(y2}(M>;wGfahtk!hRTQG{!>b(IPV%1^0*Kf^jn1kyurrm{?c(2& zBJdFjE98U0YQX&El3uxC2rWyg< z0e((B^F1RWtk(ll;>;HG%&V3)Jh9v`UMw{dySjFD@$ETBJJv*w!>X%dXhyhDJl)Jy zH83}@-Xk0js^}3>O5kPyxH96$og@+=(O20uMjr!gx>|d~&WX6u(92RGYIs}=$pCx^ z1idp4lz*r6p_-SlJ<`5S(7bj$;W~(<7{5+RES&*zri->j9wtIbLxCFu;%h<>Y2s!A zdq%SpTw||Nsh2&PUv0{871r1S&8Jd-$2N@Mk%=+ez*YD(V%2{DtDHg&=FO#ysG1_0 zxTsqe-t4ogagCs;!6`~H@1Sk-&U9mMcG^NWdpsEKEb-)RSHr4>^4|Bq+kp^VcY7|l zTG42_ljN>PPb!oas_K>-rYq*`2M9FfR=rn1`SE|T-SAtvH2 zf0Znb2F+g4NDb5gXnKl4_aw_i!K!9-eJgtJu~g=~uWXfRety{*EeGODnw;B6|N90r zO->u#Ttfk=VCbA8wqw{{s1G= zn7O^gTcuc8L!rIeKKbcisz+r>aRYR3Qhxt<_`o4ly0&XEa{a`8)N+Pe#6R4AeCNLm zlmeW7YM<`g)^E@WuKnKbs`K$?qLl-6t%lt%Fhq4!hM3X)1Z-pDa?IQLeS|Xt7JEkP zw+Nyl4W6#bIa4x!$UTA*f-5s#JHedgIIB6_$uWK^f41!0_82ln{(|6Pb1g<%l4d%K z`$tBu-N=^LwT#ZD_1(BrTNy6~QremLiUCMD>$6%(`{>fYuIwOQIf@bkQi8S8spKM> zxOMoazxlj>0?aG1rv1|M*_y`XUuB_1#1&YMSJH1?c|Kg9XG8yupHA{D?Qq^ivI1?K z{jreNE(o?piw8w{P!Wb22}h)5306|4`{6SCcmLLZp58Y^T|ahrKX&QjREGo1WC4g< znK~-vIIAac;YB6yn+6H|GG+5vjKb-F2mY!Az0ShoxkhJ1N*TnAg(N9DqY`$jKeq#s z2~bIe({K>uEI+G>Kc~v;-nAn-*Zr=;c68tDJ)#`>PriCtW1K` zR~@-3-mWc)lJ$Ru2n z<@!p@x{F}T9C92|OsYqOmG#+Nm3x&fmuc&aOR9^4(@?Pj8Ob#acv$w|Q=u^X(4*`b z{;D%w)i{zcP2`a|40Y64vF(e{1_d zQl<=x1#RN8t0)D?AqM5QV2!uMWstTCbeHVS)WBeSiDc~Tn9ih_qfzaTY*@Czit;*s zDGffy+*T|)#DC9BSsip>4q#QREb7o^%7zm*&RRMCKrL8`J_%4M2@tE;X~}3m={Py|t1#9I#F&$;?3wO?{uI<~;6Oh%VgVvcCu{OJ z=(xcqQBkZC!#=9tE)(w=1m$y%n57-2mS7y2Lpia7{IfB{i|+_%j_XB>i6Vv z=abh_ZiP)`?vWQ-j?WDUL1-ptm|zX(Yx2$KD7nw}Wy;aJRX5LytZ<8c#9-H!j}LEx z7=2sD?lSH+a4j$HS89Q-e>&jv5{m6n#MC`OZ3@m=-Eie@*n83IY#r8|1=%hdx8G`}+?qlI)6D z3IF>Uk;KoHPi+d&K;Oj+Oc^xiyt3aHc}TG$ul20q2oSmr^_L7)pl>!Y zoP|76=tKUrvq*5rc;_r|{``jvNl>}hc5Q@7G;vb^2%ywd2gK&5q zk@x0BLDL`iwECNjTq4_yU<%gpWfqQ-^#oxP+1RTtCi{v$u-ydW%U?zy=XY7B~Hn zq5|7zI^d9>s?fX82R8Ge9^YQzk8b{-u~_tgAd_$lpPF^L;hNv#i*hhjbi_R6uc*H> zn0`;>uvu+n9D8fhSSMJ?pypIMao8au)<-QzyL`tLhQx|ZiheyacDTV235VL_m0Yt| zRfY|Ewbx2i{p-e&ob?B4Bw>-J4Xi3ZDeW_Abq9ohqpsQJ@Z0tVN7(HNHiW%Xc}&(D z)@g=Hr9XM^sk`-$;_4oBb8qxD2fu3WkoA@n`LOhR*W0XxG?>>_5UG03SCoY9Ken2B z<1sRc1i$C-Irq)QE)dadQ*!W6ZL=w9%em9*c|lQ3m?6o>zwBLweVuR*-SjR|%o}&U z4FXy-DqR$DRSK2Nl=$fTsX-=4$rrsGm}9uslf!3By^8vW+pox`?08DGlY)pg#$>j$ z3}rJc6OL;zC_sn+6@U=`nI9RbICO9>-oceY78`k>=v<=*8RwJy^q(^GkiQlgS8TM( zpo1P_P7XJ*Oy(7H4Xf_%$(3mD$NH&Q<$#2m)MX)}!f9F-WY?6pGL$q*5tGZuHhPi6 zB{rMp-LLWG5feP4r@(zbz{(L9zuknI@5ksWKiP@tALqP>UX9hX8I<6@g$V3XcqG@O zXt#xQ(^KWhEdCYG5);Q(t234FU@n2jlTSv6yeDQE7d5U^K5V7JOab<&9Cut~J%FPV zi+dA|BAl~1y@LEaLBHD9AzG;*?Tw<0uA@_kX#JFvXoS}QJcSh$D32L`#Z2egTxX|A zmTP&pM>8$3&ZGY>{Hxr(9~9nQ<{w=YTFwmXHV-2Mqb%eY$lUQBVlr(^h?2{IwYFNu zJv+AYvz`GazCHS$8I4eSQax)ZAHWCkpBBCD(+QG`zL+N1F+taOV3{SuKa>_wcx)FS zL8hB?1tzDH71d1ZAwu{BOS}}ygTrZiEnz*Kw~ZZM>8+I|22+wVOQljnJ^IAHLIu>= zuFDOKUN3`F@^(wb14dRO8Te?IqP2SYV!USUdUm+5u90!6(T{79GeV!%gESu>7uZr5h=izE+U~=JR=!}Q^~ewJk+i?u+OemKKO`xcs6EMfyr(VbRj4QRb&CQ6dDX!-Gxa# z!XR%9GSxI|0CMpPE}5*W3NwdUl?KtkAveFg7uo_OiK0o2H%@%PAJgu;oBBRrED&h& ztt1K?z%q#r!8Yoi6%j4gCQK=^vKV7RcLlp4-OUQGrVPj^a9v6`DJ}#i*%HVW&>eMN z9P$v@L+fZF1O!>z>e?MhpN-KFV@!if?rQm0bMT?@BE5$Tcr|Pzz$Gqo9Vn9LuJPo-|WT!r~eOj!3o~5 zaY0PTmdVC;{!~>3$-rs?F)iyQhma=u3ROB}<&C{M7&_3TKFUa^lyLu^VfV~)8qhyAf+aFiOE@ZMX%d9oN%aAt?;3FxC2NaQ4i>f52gCEk` zb3=*|k0mc?%VXt$dUhzC07|o=Gs31OAR=D)mJ6&QhwJeb`LTy<9QoFf=(0cD0UL%k zNUTd_Nka%v1;)q~%VK>}TYNk3u2Ctqj_VvsENPL9QF4edI|k)&e?;RcO=fP9;p}M$ zQ*Go7Z}@MYopRcgQ7krPH0Ud;Ka3=#krVOA$w@X#*me=4%s^;VKLO%`2)_Cd05~lJ z*n!bFV)FF*fg6D~7OAh3x0`ch^!EcMNj%XMSHyT55U~zkFe~lNa7Ag3lsGI5v;a5G76hSg)2AMAS~ zpRT)*>oC%9aaFU)tf7f0yco1yM8Dd@M6+MKL|7%E`hfDBYO47Zd?Rw-!((U4H$()- z?(}ikkqmH!g>u3r50H5+;EzN>BQOKspzP)k@9}j%k=dl&4}3ZWL?Jq_h$8`Zf1RDt zM{<_tpiLSj(}$_;7@dHmU5U{dyUn=^P0bWgd&0mu2#emO4$$XniTCi1oS|sI|J_n! zhV3S5v`V1Wu%n^@ym3|>E+sxP2&Dns{KEC*RkBAI6eQHiub&H&{8yocvlabz%xV&crsrem_`j z6-U0%-I>zGj3@genrdDy*$S6g(rx*;Y8Z#Q6MEn~J-C50Trq*ygexmV9b}LH&-hug z;ZT_;FmM^orS#6_eG`AdqW6o%(#`F;gJ2TRuFGoMoYLSPfrva`fd11Qx;K!189_mw zje3+>tvljIXDI7qg(9sX7rC)l0L3BU5-L|>ECRB2ucXD9GtHVOIAesz{!qFI2tspc!DcR3>C#)<)?@Do7A^);YLZ|8(lq3>Zd0?JPJbgFDnOYIFWTI2y4d02+LHEnYL-xZ(Y$lW2i2gr(F{9g67YZ)22uHRC1^+=>l`5kAvy|~ zk(ruPNZ=eJm@Zaus5G!#K4Km-DgX`@83aaJS~{T)BpFdsK_e}j4|~kW#&BYMditR@ zdzV}gXBI%Hsen55>zC=j#D!2cqND{SZcOnj0S~rtzF-p{swJ#*AV~7#W3J_C1u)l= zOH6>ZBIgpCPB8z-2s8wQ^2jTL{s-ppB}p*>dl_=w{GduSubyCT4iuu(mLw;nYpSx1lCBZ6rkhUrIvk z^MG%>NeGzWK1E52cnWs*6ad^A%*Q`Q0T0^zq5;LvqgncO2;&%7p!n~amz%{mjqJW3 zWj?3~m;29ym{*ghSzJR))TQy1e}$q@I4IF0BP~JwQm=rQD2Od|U{uuC-vog|-=NMx z9p7ApvAcYO5pp14LVel10f=RE(7p5^G4Rlbues$@FS#gh0)%$}fau?!@UEYnHo)p> zFYnOL^~0yTwOVvyBK;WFCJ6|glZ00AeO<@Tj3Am9fZ ztFxKvv9<{9--)i*1aL>wcU5C3*zb; z*q^T%@RLQiA|?12V4wDf5AG7`r#kr501@@qn>VoL^moy$y?K?9X~E>zuIz@u$opEX zAdV+-e%}w?xGE&@+sQshaslxG=;<^~uw00SrX(086%|AhD$3ngujtnx$!l%%FQ_Y+ z2Ow>zTWBaKkow)9w(sVKPn;MS+-Uz#J0cNQs9*hV+X5VZfI-9PN*eV`fgm8ASAiA4 zI|0m-f1p$e1)|}ZVc1eMs|&cCn?-Jem`)U-z6Df6-2|n;YA@XUWh!j!ey^~tv@9NHwjfie8td7jVzaR09Y^hGM)%sc9bn&|t@w``^XRtTjOjjY9 z$HpM!zh!*m0Ps~X^iY_P=OKC#&+?pK1RY23yGC5%%Dj-JU2)x;KxHHCdVgAz4*S~CxAl)mY;9-WRyZn{h`>6Ca+3PWjbN;i5aw!NL= zVcNwK%L*O$G(p!G7WrE$)Kt879FSelX_P%5dD_{KHI4QXk<3W$fg(*ol6TpmO$ z0ODi1w;43=t)+Jg@va>?7dZWv&G;_Vj6*?W93@2X2PuqAm>l&*P9t@vEH_QQ2Emuy z+LReW+l036L^BIpgdV>y6WMr~Wdi5L)eB_o_hp|o_Nw3eg_SJZo*ND`&lUAtgEF>T zNpw^^$FFFY3!7Xw|B%%lTlEj{m)rV30$yAA0`O<_xX!%x(B^i8fI1}%oCR`sU035s zJcqVB<}gSdjU@fMHNg@H|C-j8vCQJ7g2Kf9@oRD^tkC@sUX;~Fo<9np!NA-!IBd5` zbHP&gDL({N#r}J=uIqT>lQ~(lMcx(1k=8G|@E|f8wZb#y=Qm!*b<}gpyRH7K34p7y zA&)DIVeprLRP5MY>aVl}F<4xidAAn>GZcZBBy(^@L6Wnj0Fn$nt*HdmDNj|DxXn!k z8wNhfyng zhiHidft}FpK0gk=P>Wyjxjc^c6=3fI<&5gahJvR3ymbdgHanSjf^qvPaog zP4qO|A-~z!P2cz&H3>Rhe4IKbAt|1uWGVaBMZRF`Zkgb;Y_o}Lfgu_|vwgK+)SY$J zl7HAi(knOErn&v5ZCxSuA+@J7N)Y4!XR==;i$^1R8yXJv4Y%^!F>7@_2hbwATyLL~ z??+a-x>jj#+r!;LpgpB^Ygck40Ev0R%7WFhM92`;`2qS!5-lm^>f;($STips!fzuW z;i^m0%JkNZOTz!%B=;3?W{_pN&(+(0MD6wQ^U7?sRxe7m6Jd#P`AgXcub-+*uB|BX4whtlD4l(#Idu1LHodl| zo*U-P$8YTD@qVULR8Ltdrb9Z(>3NPtpTmpi_rlVfvT#M|(^yq#yfsfDOANk`9^dFAo#~`j6cxkOr=$zlhaT-}TZS>JAUvkeprW-5YDns_vwUwBGvClh01}09Z{R^GcjZ9 zdQjjZsa&iq@2PmSQUT^}a<%0z*UWqDG8ibmI=0oV>*KD2(13U{oSM;t^<0|!%ugG^ z%v<5@(|QSm2)2u_8=MaPXlqyeZavZLG~;M#d$uXIT;H3sNlFN0mWV|`jwc*qhI)Y> zG-ji8M^uD0RVSH)dvasG9WIp$>8Vak91?GY%4h>+^! zn;mkkaSictR=C;ncqjZF%c3UYD7b=)?w;c7xsSt4t_?`*`1JpPEzX}vyPX+Kj8q7L z(XK^8Z=wIlaQ1hL+gLo~U_aMiFP`V67w9DE@|^XvYQKd)oZ~BxiTn+TAg_<&m?-dP zRyMvyYLOkcy=YnPZk6|ucFdgO%T0AU+`dbn4PIw|9=_1RHjV7)!=HG+MvOzc{l+3y zfNY!2rUHNf6Pa5@GLF-1h=AJ7PeZzu1+C20VpAMikFdf=>p1CAB<8x1ZiKE{L9oze z^-PQ;#Jf26Vf6C2PuAxeesLplNb)=8_iXx9RZq5S!sjHw!?sEV@Bk!+*Wg` zh8mUIk*v&D+c~UA+aLxO&;zv7dJ%z%;0s8q_SAJTNRo>u2)rPwsv2&^7%Mk-1J z`r{~U`bnXP*Gi;?hptRYxc7KcQKuvrW{sn%=<@~9nPBPg$}$AA0=c;5BDZi$2%KN48@^fl}5l+NlG@1`J; z*b)HXzcuNUnS}bxnhJK|lhYi}!S5<2)7d23ga*Izxpl<}%CWY@=KeG#>GIN zPPVW-3k=7g2%4_kBaUJ%>L=3`KIzOAB9|dTv^k)x#?xuKSe*AgMZ{$LU zG9M%a0)5-E2wBal{l|&x%y_Wi)EM*AtTF+)bTDoVH$=yCOG*`Vz_j8;9-Qd+!>ddU z0{vs;C-tjMYq~EODeNfyyOBA?3@KF12^oCaZiZyelNP?S?JdZ}cxm@6Z+^-;f$Gbp zvhlL_Nua*2eH1IbXTp=^Nr z67byutEDwp(GVMv?e`om=_4cscQaB<2lL}G-Sx@eDDu*?Nt=~7DbY)ug7ch4X`?Vh z>)S@zmYKlI2C^%yYWv*-FGB<+4AmD!U1R-34jHBEM)h!?{7g??zVni4Pe^CfsPta3 z-rpz=xpv*puwg3ZB9!ZT&x*%fy6J$lQVZtf^Vh}}%FtmdssIZ-Y>C8m?T66!m$#8! z=8;}A9`-d}ozrWg6k=Rw)S+&akXD1UJZnPIQ!kSl0BP{vxCdOZyClK1RO0)ZAM;*7 zr&ZRlMg{C$Zi_?=`a408U1=yIWjO%C6uFIbdsrc{eU0XL==ozZANV|jh2E9Kg zeJfV#Q3+E=uD)3x?<_u2!?bBIYuZ(4FDe(L zB{-#caCW@osn?Y6@-n?*_X%K)b)Tf3kZ?C**=>&_>a@lV$qYZ?<}k?v^}?1A@LUBG z%4k>68V`hZr)|NRH1!Fev_GUFsK(a971HTlCm(xc5pO|=c|@{Ldts(UlELPkyqZOp zi^2P`EHPtOKGYPhdi!#2oG7<6ZVj}-CTT27wip5^3v4tSpekKf=pYe6jkyj zfW824Jc^M8+dbA!ypPCyu+CRQn0Di7cKj>=H<4*7=cV3kMX$d6Dm-)B`i(M1k;_-* z*jwZ*5U{w1Z4s%?0b>XyTYF{4j*TURvupTxV3%;9(MuYG;{l3tWzU^^Rc) z`7M={ahZd$Ayc)7q@@Pwb&w8LQOJ3`=U{Q@X#lHvR7?0o^d7}4 zAF3jOpkNn1Wy7oYCvhJgp6-cqunML|{xGt*RD)IrpAZP80PUy(TAyxy74h^2^H& zA+My@-BZ<>)zs1>V@yk*H6ro8i})sWGAoNDZdY%6c!-aDz)4dzh>cK+y>@9RiTcN9 zx#C|7QmKvrlf^qM%UGetWmQH~s~jpd1r(pb&j_WQ!*WF!>i+A?g6q=zU)^No zb%a1KYE1yLcK^&q5P`3cz|18#-GMRPOfaR&YOt1Dm#(^Y$>EnQbNfuL$X zlS5|dw2|u`GXP5gG^_!20^i%NV=R)2ZZSWO`*l7? zty|NQTh7$|KQYvimEkwjDIWtt;ylT8G3GS~D-xVD!*A{jN=DM6Itn#im4KX?$nif0 z0}G&52Jb~j$_rcU_p+sUX+namJH!hvA{K)(UG{%pFDdSOc$G7p%Z#u!t-ba(Q{KdM z4G#hE23UgL0!e4D%gIC0YDYDlzM|whg}J%q%kbUZf6$ibHy+mho=QyzI6bT$;pr=$ ziF*msCFk66swC5qWEaa6$A#CZ{J6(A-4l-X?8yXpd_@-u zD7!kp$3M-nI6!h1QG9|F=T1lt*nGX;wSLrazrapfE&e=SBWv;0z3_-o;J(wtI4co5 zvrX{8ZDHX@?4rueu^XJ8U7YVlVXxQ|l$1%+H5x{A+=!0AR#`VLk*XebpSvx=D)ugK z!af{OTWR^hvp4Hpcac2W;;{nk=vLRcGyE|O?Xwk# zyLS(!qi!0Y?5K=-B(K>8dCCtCxI6NTtun=c@TnvddPKjn@ubBF(v0pvNvAjIn_+9; z)a%@y=Yng}BO1i$&5zAGseC!i@j-3X9dPRnu5dUqR6*uSCkEH}BVhqhn}$IZqTWUb z^~f@V@?q88n;rm*M)ETlKdEI!{kHslgRrb)3t7!wd)G9_cStp@oF(4LLV>dv`DP?5 zzOXa2kjtVBRmAFBj8O%s{cKX+@BlGj7Z6rU8lQrMRczhI)71dEbb_@cWAKVfUS%^8 zmF<)LdRkj;!Hvy)`hC+hyUqdXRTam^e=+&TxFr$UL^dN$Yxh2RIC=Psw99gYR&XfM zuGTIh8$+s$j92dFXV_59$ad#^(bD&;>ulu2tR!9}Xbqo0a1;gr`S=|y#~ihNv}XsA zUfvuwr1YU2!jL$1etf^kqFOX@0qnL&tt=xAtJ&gmrMFPZc{bxM%wfXaw6bFG>@2<9 zGcLahIMkk@-}iJCS-s)_L& z;(5OFTJs}2Y|HK-V!7_vN#5eVu7zmBninyr(9 z3MJ+T8D;h;5y+aou7}W%C|~o8RQ^VlLndmBkk=^~t6#ukCV{Lqann5iqQ2&FSh&Xr zgBM0#7m3=sAHNO>8bs7M4gC~?m>GeEQyoRud#=NjvKZM@=5e6w*67$nDPMvIi;LBU z?BOEs31$yyY+?4Rt=>m`iFY^|J*kV&^1_lWyylDZ5CU)+<0C-JPENX&@r0Dj=9Er@ z5R4rAcM#`X_ru2ROu~!LK=qXBo8+(is&S=Je!&B57wL(t_}luC6AFFvarNkt(!CHZ z?!8z-R?o#!k}RA%W`R;G;P8`R=7MLY4RaJ!T;K|riu4U)?eD~`2YXjK!r9UMiJF(+ z2>cD1U$`DEjl)CBz-RSDr46S{4D91jcQhcv(~ zk%0kaX)ln8y7&kHHUEp`DN9}Xx_%m*m^g;0TcW^_Wf-0&R-rcilm!rGmqmD!d(lAQ zE**0d@i=NOIha$w^;*5VvzKS%c;&7q*|2M32|LT-)9mYYktzOa z2}5~U3eWQKmiuFe&-_E`=ZpP@WXZ|%l0~hcRKB+OlS$w^2&rOW;~=<|I#xCZK>Lc_ z{0;>VF&b3`ZJ?)NHj8-ltqXR@7m!(f@QJ#%iGLSBevZQqe^5RJgn--v19j)2EaEFk z#(zK-&;tO;NIT6B} zql<;A)QiNJ;%@%^9(VAozVSL=CAdeXm&jzwhD@d!5^ya<{;~1P#ALG zu>+wZ=uw9Xjd7_Z5eWAJz9vH6>p{uLiiO(9&fcPrCc(mgPbtL?ip#U5E1wIsf1jGc z##iing8&LdAw$rS>7kGjSj8eM%s)d;k)pvtizZ_uaA32-_E1uePpKiQvqNa5e0^%) z8~%kMrI$Hqj357(Rb5I>6EWG?jSU{E067qY(^!S8pb94pl0b^VSpv#VoRuo%$hy=z zTIT*&H?E2`BsQG14Pmc{{h8aRTLk|Fp?r;P!Zl#Fkog1(E;>(Da6MU!gV6gmX)C zMQ0|-53LfeY9jbl;^PXe-n29M(1)Z$c1$HeMScJa#8{tw1Y!w~> zvupSUx(|-?OWd!@gd+lGp5FD#fs#sCW6a-hU->_vS z`>{4chNa~X>giWDS=(;(BP&Uh9o@Dt+Q zSc)TjzUt}+FVs0Pj9?n6;IfH}O^R5a56s~zut}z=iY*x3st2WX(@~}O0b8>`O{)(; zQ9Dlk#6rUYUb<8486dp)HPZ0hgU69f1s4>FsD7JhmAYGL?XrfoqL*p{9F8=;?qr;t zjdbF6(NziOkOb-FE(Loy=GOkoQdi~O&e8nYpm?I@=oVq(D1Df*OLNmectf7`^ za5=Lf@9a%WBraB_!;(1TTH-Zwl~xI*BZqSw{5sQPxrwjxITg}dKD`A{NVa3MJY9q|;>xjGO^C4jZmnOvK=~$RiGYs-4wELJpf7lX~Fmj7sWX zm+5-K76e={GvV{&4Wwnzw(6SM%&HNGU-o4#Li&!26-5Ze6WkrJ&_tS|mrx$s%B5quPn#w|LJ~rSw_ennVD2!ebY0TwzRo~ua{>$CQ1*(Br=h;nFV&j>X(MoabGEj7)2s{-C z{^i4q!crJLB6$r#Xm8`TyTCd41$2J;?Ja@J(3RRkIbFN6pTcyE^8$FOx5P-HlDI05 zPK-%YithY)JpygP)+k|T5^z}|jnf-S+jl1IXz8JIbNClK44Wyc9)+(m`ppI`;^i~? zi5HmpL*9OF_Aw8aK6ATRQ}3)h^lx=s`eUJ4oYCEFgNOacmTMVH``J*+V$CaMatFk)LQ6a;0rOO{@ z?tpLpra+~~>4+#@-*c=VpM52q#Z~sr%{2iX1w}$Cbx~D~|7#PQ0E_wWu!C3peaqGh zN;L})^O68Ovs&rR3}W7g>UEPS63O0jE%9%j?@=V8jJgYH;3gn1PN1*Muuj35*oN1M9ea-~qKJWeJl{;5#AYH z5!by0Ju-&3nPsb|mXvhnvz5o*S$frY6D<8T!rP#@0?VUlzEe8IEBX+mW81L{Zi~m$ zJ}~FK;P3|;I{7h&?60-g6IIeR2VF;4OOf29ElZl2+8MyA%}k=T{(Z_P(OLc6zt6ZfxvN*E0F4 zcbyCl8f5^o`BK~`?%0izRQyhgBre0WWqc;JnKubqfV0BmZw*y(6S-1B{>RI-MC_}5 z$dl#b-L;$?{gQ~jxY~pLl2n?L7qv!;taJy=`4{^u(-bGDw8e(o}8V2|28KTqBnakmLPT2>vDm5tFJ!}c8qR(yd2!yv@c(`!)}0p zHv|Z}SaNJ}dUV@QCmVJq?gL5^;sOVF3l>BVXj^F{ z9W^(r79z|*(~%10QGp~N={qPoWD?L5(cptADM6STk=Pg{&>G1gQM!CLj09>)V*KRd z?=#Sa@R0P97%48of5v!+e1I_nEB`h3tDxG^r_;;Rj)lmq^PdTS38S%1iILY*C zL|?v}$$n+Tx#&i2gp8Mw2@~uFKGImpz|^@xrke*B1uX{@7_k}$6+qe2LWD>a@a;l~ zvxmr1-9Ju)XngRxznzMs4XBCkbsc^j3JTzHoke|k6Jmiwhd%Tt+Y~1Y49JVAs`%MN z2f@+g0jVI0DKmfxS}}Ga2f^uJd?AZ~?FEstzMNleRl02_kzpc883GDs0Z zzQ{D4SVd5VA0kUcR6Q1sATx6tj!Z+=oc|j7JM^rwgCqXXerG|v48%9M2)EPX*EYmf zEO^8%mU{kx0Lwoc`cn{r#PH*nXeory{r95`Rf^b*DX3NSIhzeQsXH5LLon)PQxZo_>ITnsw1&RsFc%-a4UT>oBPD& zwLi?TBEi5hL*`(3;mqSUheum?K)~*I*(vF#J_-x5dI}hG08A&i^@Cv#5BlUQL-QHa zXnJ}|7w?Og?v|>a-KY}^5~Cv4QwlrFY3eM((f|{{%uegtRh_B+jn1y?5ZuVEJG!bh z(%L3<>U;fS2JWqb%h6z^X2XQqT@O-{SJkDXvyX(jn0Lh1>O+=b*E+OYMfiFjWrrW( zdiTotZBX1DQ|UBwcCPZ!cz<#8C9(BAkXSth4M`j51}7(Dlae z-8|gtfs3N=YRd_0u(*c)_-1*VAl*rC^ z{etHxu0yDBJVSO<+>znrM&G^|8%j#&=X-WvfWq_J5c+{v`dE$M!!*zC&*TE=b2nyR zz1(!U7RUL-syyYn10BmJ^04GY!##tW6aVV!Zt$;!>5ypn?Hs?Q2L=j%Ap;?GbUoD~ zBEKyFj9gh&0N=|#xSrxyM6H}*bsG51ZC1O5AxPW3wLUieA&u@}lFc>heg<=i@~k6O z5o_s(S2-i6u`H{Br&UL_xD-reZ+-55($3eN&s6ECsLNe2Vt45!Q*|Exev(tIvMBx) z?Q>bU-`%9d6ez)=+PDmy z?Op55c|Gb|ku`GDOb=|L0?LjmWZQQ`S5RQmKkdE)NpGK%`zGfy(MU5^C@{i$yNSGj zmj?pr6Q?GOF!_S9BuN5_Ps2O&ioeJcoAkuP#V<~FhxqZG917s3&0M79cc=PAZ2 z0|V{(MI|O45@KD{n>>f|^9PA@j9qeX24P0qnw_cJb?E4P3leEDfMkEw`<5ZBM%w9S z3Oe?d(&N?z4)sz=%5}IpD=g|nBd2x%sjK5nJQ^hq6M;T^B7#K^e#^FK-vL~$iwu=3>-L|v#z zD&+F(y=<2Da@7z!bB299L`+u_>A+&W1r)M|5h0k=gAFCOu;ZM^Yg#I9Uj%mmJx5E( z7MIVm87o8i&XJxQO+9E8kR69R%r$oiUW(&I#trIMD6RH3Fu5$lEsz#*U4pxECvTn+_;n&4&4x^Cw|2M&ms}1~%v{fvZzh382p#ggBcN9?o8b|QP;P2px zBQ)HYY*b?($&=}<_R(w_>VY!KuOLl*b2YEhge$+e2Cdu1+EC}GbMBYg?lUc0Ww=;w z@(DtYMt9}ZOWqT|a8JwiBt)-?-ru%YmMkkIr9ZR%cvFp5*GqY(56h>hyu#< zuctu0xJX|QrQb&WT0(2gbS%HhKtt=;>@jQ}pX(!%f9@m{{p{kAv>UFGIKFO?oBR4_ zCHsP%$FKoEgJ1{pIGH)vBYaJwJ&Vy|xx>>3J=0a}lGV|Xi{h0RU|v3=I^uuhW--eB z;#?80R-GOkwHrX@f-go^u$~WQ(Vp-z?LjRI~5+Q>j(R zs`q2u=X1K|hz7*-Gy!53;j@+?djCJSV#B|NvD*w+!7P($uLy}vMKnpldU$(n-`>Tr zky?h4bl`vst(H1VAmhRhyDGPagff3W>-ZzNYoZf*^@EA;#0g~?0UC;LdgVcWv#5S< zbDfuir(txJ)aJ7yZndr9E1onlH*(5NLvd1JK}aw*$l^F}Ca1dkOf`?7&S&r;9W^kc zhbJf6&16i?Vou{n#SlF9C8G`RyZMpg?@r>8TZZMEhV18pEu}_27DJ&6vkFBBp4FoWgyqM`YKg3im z_(BTyr%9zw1WMg6w6+We$di0_V+^&W7#TS+Pkhv1E>O$HFYXSc?>Ljght`oaXE+dF z??>GKf?!{%lqf3A!uIZ?X9_jT?OZf}p_g#jcxLPa+C9-dm6!#N3s4O!{zR+IlXNwM zWWGNQzo!~dZFe|-ocNfqhKc zTiBoT)L)ZyfuL%i8O*e2=Na;$@^h-fkJAS`$0!TA3d$u%FS*y(ygcOPzu8h9DeH`* z7y{MS0K?t<#^eApZkDz@Pswv{XqT$M*QB)17Eh*748~WOvBLUV4W6r$b$k;Pb)?R$ z>Zm0Ae4HQlH@F~JXu?Na?1}~ZQ3Y3osOT4C=zTLN&8sa|z?$?y;7|IepJ_-wIFBtt z;NA7JGDbC2pFqj4A>JbU+-sUdM6_-xd(E@K02$>Ve}~6Hbniu?o;vyTflnpss4}OE zC9XDGl2Tvu2`W)Z=x{%7?=qqI5Izl85l1N!_K$4LcfLH@{=q?zC_}wf!8n=f;5?Sf zmS>XRo<;fFemv-7soq25xH8g11k?KL^>UKfBe3`_CvXMSnf0@>!ieJ8!$z4AOFx}s z7yuo0%)4i!^o{DC*L(2b$d$xu;-)Xi#yRpDe5$DA}YXw!{cG`^OmHAY`9^@Bq(WY|Az-sQ>0V`E1;52 zH4tg~lP2Xm;*}I{HL`V6n~}J`M5|x5;9ZW^kRyv{nmh}BX?5a4PVw&}3jCMwUl=>` zVO|F*pF1Cx`8Hx+7k9`oDKZ?%OKHQ-{p+88wwW?0gkl!hclM%?g8lUwSd$Wsm$t@z zrt8$XOu$4fx6h0I0%_Dyx}%>7)`3y}vGZ^}s}mm|RD1QArn-+?iyXQGY#+A~ZG7jl zpJ|rB8oW#Edx}g0sclhAE(L6Pu#n{A(|%Dkn|rJd91Z9lmrjpm4O&Q%1*ZtO+mXt{ zm_>t3oyRPNBue^ASL}-QOozxNZh#jKp6S*dG2QIY=Za0bVN0hOF%OMvCScekLG%J; z9WGg4D2O_}JhX>1?Qq2|{~$rP4ri5f59VTebTM4;dep{L{7GDGSFl2wi)Z*vcG}-S zNO;OZMHP;;d9-_}o*ar{d3eop>WW~40?dV~yzu9Vp8UejM=7sosSo~ugU==BKu|9% z6U+}zn$UL$HXxsWFq5NX0s0M|9{V3w@-9{0wKf`y55_)9(cK=iMQA>Iy9U(yz$jc1 zogGeAJJSC9^!WYxC>_D+iF$8yUy8nfTY@_e`v5a_A?l*xw5Hi+>gDgz$9D4*md(el z7rfD9$#T-0`8GG)uP*ZHF4%rQpI1P;!2QzB~$y~yC?FZ%Aa*rlG+bwu{i$4TKt=T;NVTVJNN|q|CSIW zX&i=Paq#^I1HsFhbavSHPB^e)g1D0QkAjn|UmSQW8wjW`5{)Ltve=|KTnEz$ve+Fj zJrGV1!AB#hV9Xg5g8@g4xfsp}BKIXRLq}^}7wxk~xRwUwR}K)+{pSV^4YBFz;e%Eb zBRZ~Z5bIxIYwf8DwufA{P8@6{2y&TQN=yQ{?TfIQU+$*sVi7p6SkQGbf{Byq(d>a{C6A?H_>Yo$)9I}z<7yYvcj=2 zNa*gl)Je($kU}VdH#{=w(ENCrR&U&U>QDWG_!~sfR3gN^n|JV5%C=+L3o{i-?V~AR zPLFagNg(rJVe0lCt(6YSs2rjEoHTrm&zH;or&Qh1taHp?hrbsJRJv6WaHOn;G(-D1 zcNK#>`GYt^)tRB=3~7tWa zDsGu#n{Z{akbkxpA5rv+)beiUGL9bLl-{mIp1ICquc=$o4n^^5!DeRw@-^~2LGG+hxx z9m=j$m#hU!YK1N2OLYP4@q5@&N@dp^|31t5jk&gVVoAvj0CoK6%RO+&)rRe)RNk60 z=RTp+mO1^i2r|57?B0#6Fa&8NG;V3{IQn6=EWBoeXD5X(15 zNvRbSk)HM5c=|>GRRsU?RI9EfP;(h8wH$!vVRRZ1I%kzilTO59AEW#mf2Tsf`QgIi z#)I+(&PhYKd_fQ+sj=2ZN?@77{3}@Xp{dUg!Hq{KtlmcW1KXiZ$O=30vYtV1#EYt{ zELa%W$voR(uDpq0%2g-S7YSMRKl}VTtNa0DdQ_^VJJ37oQRT?kb?($$BX);aen_;W zgYsD_<=#v{atXC%$S77WY)sMbDF<5STszu-;)1f^!}6$-d#uAv%qi2(vngwg&77H( zz$I;a7PqPD&HAYy)@k`qzimzRW~TPE5`}7Dl$4*ynvXo1?Rha>kAV)2neTT;mlB`q zbfgJkW4tIO`SK(mzuHfgue_b zQ#XHd$-M)UcC@Q~!$hlj{}G-Pe9rviK;p7ZiUU*{c;4WALfME&|z z6b>FJqY3TjBg7Rw2LfYy^*~Vr34VM1Vhj_D_t*kj>W9b@U-iZyfK8zyz^Ln|`0DrE za0|8z2~1lFxG?bz#c{v!Uw?osJN~&4--BfAtCEK+ilp4>=o?t+cezkR-%e7y^1CCa zLYVxet?$O^@O0F2WrZAdaKK#-79F>bOlM5&w~6MFA)34w`35v84o}@vudlT*C@;l| zYKEp)hZ)aWj?UoDRs984&-RN-c^e&Znt{`{E7p7uTv=P6N2nuVUwE81n)_U`O?Wc& z6ml_iA-Q{j<-*^{Nlo_>ki2YQG#C&q{<}HZe^e4F1!Y|gZLl&7h#*P*feIY+z6|z% zPPV~-9FtI=&JBL<@ez>?gdAs(ok}(GqsZ48qD@Lxj6D`N39sND?e%XX7W_P|V#6wFuU{?-HN}-SqtcOoT1`3}`YPIWvdBGDp@TU=R3c=jc2MjlIU0 zI-Z>Ceyr?Ohb)@pZ??(q1&M$q5-!gAZM+D!&uIX`1YS0NeEc!q6gvUFRtFnai`b5O z<&i0tRuF><`Qc+BC92FoDP+!o335h7@THR$+$al~0xf*wy+dPztT0<(0!Y>czxK^| zaxhESbc7O8HSh~JkTkxpB4OJlAUR>P|4sG_e2*yzYz5U1{ZT1jH8(u+D_J@eI&xqN zgqB*Qt^zVm8AE`JB~AP`w1Z`}pg?z`dO=Sf!821o93ujAQUoAv&l^xAG7$MgcXu+* z-F+ZsSc~XKcjRb6MnlzE08?DYm2h|>bYK9R%dNO-YDZKN0KdnM%wU3`I2$8RJkxTp za8aRfL))g+)U9t)&Y!yO&s?Ci*X_G{@cm6_dWry|>n+MKblqe3hvRzqg*KziNSl=! zi;OBwlnz0M_i<6^K9x~8Zmiq~X$c!6`qstUoXS5tAIHl@y@Cb~(JF>6sB`qbxXg;j zI+P8|q$*h`19ug5bN2=$cbxK{!nA~c6-eS{uO}nHy|~?Nrj(hmv?DKQ=(ES(o33s) z4Hlj$X+NJ8(ffNOe0fz&*%=+McP(n{3L2yfH!4El>)oKOH!`=q@>8ipw0`MJs77?Q zwY|pqq|5nbElXHL`=x5s>S99h!Z^44fT3LOnkt1s1(2>mO!E3u)?90ujy3-{y;)Y} zbF-stu*3gh{}+)9!7E!*4SrYUQq2{ki+AhAK&E}tzN##{f!zbbnK4ou1&9>`>h~ z&T`?XKY)tuU-7PiPlqfo57RBOpvxZv_G8#-5>(pMQ8wY9?|-R5Fv zjP-X@dj(H+R(IAJ90_FDfFHz)cHqm+FRM$~e(Q6)BRjX;AqFfYAKdm~%88_6mnszu z{*XCH`l7n>8vE6+B|RMYR+uGLFKI56cj+}VlLCk`b;}u~K>JLKOD^LP9pLPU^ENk` z^)NtZm5V^gA`=xJv{{&bQT_L3ACF)fT#=jD3inbhZJ<9o-G9tUyiUGHD;N z&nMB}dG5l$Z)BL@YrJqc`{5*oRC@Lle0_)dM{)PV+nBsx(rfzygGoe=w3*KjSfX;Z zHQ?d=Loca}fL=AYcA0IrqDg6-nnv$j`GnD?=~nUN(tg@5rx%}ShxM=^QXEWhc~&7n8bnE*eQ znb#=XP=rtjPrE}G-Nd&nC-8lU5KFpCJK*C-Z_?7Umrxn2SHc5d)XTG#zlv{G_WWh& zmAkKCCg&uTONq%|sre+O-0DJc1>x(*{;<5d0D?BEV|pu-;1HX}L;rb^in!{|C;F2_ z3h`>GFkxBMrP~ru3%c!5mwbG$8&HK~dq&P(QyJ$K%v*xRcq=Q9o}-=U?@#Q%xB#k# z&5zY1_IEkL;q>00Tars+@r5eCQ|Yy3g{iX(?lGEq?y=`xX`U`8gp6A_1yhOsL1?9K zI+Z>nzM};*wZwF_dzsNMoI?9ex{iKl=zJvT6W8o1$ZZ53Sq{$J3)FxKMM;C20gVH- zKI)g*R(T46FnUKiJw!q=X0RR{DlqrKn$G34{dDcDVd>ESF8ON9xv!XTbRs5CSLjG= zy0-v|B`WS>y$+~!c=|~xX_J;cvCN+{YRb}+v~1({b$nZ_W|D^GwZmd5zL0&fv=%V% z+r1wYdP99?CG{q*q_U7|w!3g_BV)`iB{;4Sm;XyKJ+@#YIY?!ucyDm`)%XziFO+VE zr-9#=%Cgm;by5M{t%IQvqd4J9dAd5il>}~mhKI+1xf{9bSd!6a1JsVi!B-Z%vl_@Z zJQzw^Mrs*-YU*v9F31qs(z*Zc%sANo)tT{ffLRGaw0Q4s?f+3wRWv>;ih{oof(Su; zNvl}I;1WU*2h6|DZV-Zku{i$K&HcM!r$+aI*cw%$*KMvJp&nAR5&Cl~^Sqb6!`% zN@NxlKAaOzRcN#SLCS29-9vRAGx1kOy+k4-T^l}TBsLFyRpwoxRp}Uvs z*Y&4Y7o&r>_KBT)k_C5p5rr{xF6Uh&vJ8d%U%k7=^xX&)Bn-FlGJJpe(Ys`yUv@#B>4I5q-j$DgnhDhf>|9 zG65K&+wlCeR>o`+-Ov^#?OuVOjhGX>VL$zEpnOajg^q^U6gKM3M*t0W%k*#VK(l(*1|v%cvM z68UU{4+r-~d@n&}SqKuj!UDf0m_J}op|Fzgi15tZYRUgWbCn{C-P~%=K2~LwfYeIb z6@dmFl2Qcf7^xV#=!vVFu8&)x8L+(vn>SIz!1ypez3r`Eri{{5ApR zf$U8!2)JFAA11YUq9eCV;Xo2#A4unzFue>Qs_3~lWAeJSP2s{mh0QsIYb@tWIzJd_ zuhTcd&^{a3Ff0`};5dwayUeto+~QG_a8&e>H`sErc>}$Al{7Z~TKBL2LP>_CtyM_M zt_DK*uJT77IO+HPF%75c|5ATl@vuOs{N2bL{TjB;Ug%<2=Qnyuu$9SA5P$j^TDm#l zVa=C3h%a1rR%(fM-uW{qZOwF(e%8poDHYrv=bB}s-+vMo?<0}&cBFNEinEZ`UmfE- zd9^d#xhJNDG%WSWj5(j7C-(<^t~;}z)}r&V!CS>D?@1+|=RTouQKpPtrt;}|5bNC1 z*VMV9VA}l3so{Q(t-OIm_;5PUe7kc%)0}raN`N^v;g*`Wn=Y&9^w*G=OUlrClR~Ob z3%5OZ^fRHWZBBEPckEw#++WBDU+ylbqxyn(mS0GJM=|Ae5q_mL2v5Z#`T^g9s>d=$ zWF5)P`zhfo%8dIXM^s-4?%8Lg(Vv}}$NnmVPf_CV!eaMQDHAPrihdJK52+wFfKcJg z;4|ah2ROMdi3#x&bgGZ}T-hcg1Vw|Pj7V6keUGwHG;rW#l%W_>q2CRZ24P-=~%Uf<4(4A+0g2eMQ#)lsHkVl&2R-uDt5HpYJ ziOiio!jm_4cq~Uk?59DBqwBu2h;`)GSWS}wGki}n6Nn@Ch_Ha=u30Ng2vjahmk%xk z@j>Yz2~$5B_NV5j_^*bn#<>ZmQ{&UyZe4y%;l2%Dv*Y8b9tc^>v3u1sE_i(WzK9dT z_aY$DA!3>^Mz-GY3R$z+H+Da-%iSSrXcElzRGxu3>0R;7|78AHkZZKRw|41p9kn#J==Zv`w& zt9-=NxpR%H&s6iIhMAaO&gzg0syu6dadt6_gdk_h7nw9H^Yn#{&4jKBt(E+7Cth=k zK8;>*u%(-eE`&`KRw~G1yM_DRR_b!t^WaM#vJ}^g{wPHslCtW_z2Lw7d9pt)EWuL# zc|v4ML;Vx~-tAw|Qym~QiD>wTy6M5?28HY|Y_zwr3HSH}9>>%5*NX7a$ljBVRE0i` zl9c-HnLLG{YtM8PG&<=jq@?GUn2G0_K3;W}^Q{55luc)|;Lw#;EB4YR zpQ{eEf^#$jkp(B)>JB$o#%8^y>>H&RaRhOgByAEl8%R1J@b@KamJj&B+{K@m-q7GU6NoqMH zTV}Dtw(!w{`%@Xv-{R0DL)U>{l2b?B|0^Xr^5M3_VAc3M!1OyOBufDc!hwmJvf)w} z;+(ItRh(u!`i~{MN$t~+`$Zl)_jp7C-8E(Ay~e*$;`z_9QKI^|_%-YnrO9r+CJet9 z_}O9dMRYSFnP}dBF9;*(VmkMZaUotHg9Sv>)}%x3!&t0xMz38;eO< z4P@u?LiCR!wQf#hml#AXGm=?bDpm&*$2@RJ|p?eD(4n`*y41A zGcAiVa?E>ng9eeHBM}$@Vu-b+b#dzuoVrI5AGtoDEI3 z4W~CBSu>;POqytnbh=ucu!@cUl1#eV-sMrRbe$;zh_$0!wjmqzVFPX*Rjp=WpF=CF z(vUvsXl%;a#4vrp;qd0`ZQy9FPchQWe3#Q;@^tG8XYawg(_>~uGJ{b}1-+j&Uc4%+ z&NXC%Epsg{Xh0}^_dSGj7(w^P-ajp-H2I}Jr;!Q4xZRt zlN~GV6#VTy$0N0xHXC%#J+71zLgPE^Og@rpiCywV8a!4Iy4sXxd8ywY+T)>Lg57C# zJ`v;!wyZdH!sAsgsFaB;5-?j)J?g-*5Kdi*ew$OmZ9kK(*oKy~yzd-Kjp1Ogq0ZC> zew`j8CASs}>ho@-33+bWjnK1dbkLOY-UN@rQV!>i-|+W`4Tuy|iCfOIuIUTZ{Y4py zwbAtO@>@^t_k__Vf{XP_C^G$!c|`M37-k{GnH@)h`VKSGOu|Qc`{5YwUC^cUBOEw0 z34EvEek*9h!dbTZw+H?Gb%Y*6aw=gg}jNjL}ZMqe44qV8t!%+{MYs_C-zSc)NR+M}mcWz_P;I?Bq6O#xp z4`y)qJi_!StpsOXZh65YbizZJz-}Y3y3c#Ek}ba{#xIiVN&2b5`h1I0xF@q0P+v{i z@GeC&rTI|v_#k7Q13x=D{`psxF1;S{kb@`QwaPq_UA3!}GnnFcq|Rxd$>ay=rO(3H z38$xctfw72X@RjFS*hjS@|D_SEV&4h#jtyQVoAKVF*W8%wU&);_1>@6_E~+@kyrg!+Wr(4g$? zlY7(EjIe3_>bvNRX7Q|+)YOlHaUg>G8oX)>L&1ghcESZUsl6_{Lv#LFPAAKOkyP}OkKC};8IaF_uxKuDzuKl+w%17LLLUb0YbtRJ1BtZ z`Ai65WUGPg+d*ckXaVfcxfcpprEjJ#PvIynGI)2oGfu8Jm<44l{Q;%lfY^q&W`M-2^N4_u8Ld6!PmxWYE@h191j?IaW8 z)EhQkZDNn`L_b&Bm=_PuiM{oOoxMT5(!d%=kPXI&c?|wAFn_|E+7OWW@2-&jeGd*? z@&ZBw8>9WBkxOL-kp$Wk`;7Vn+lf9~uhkv>%+{hOuzr`aE41JW}- z2#SoGJ4y5y8^jJ4<^bWKbMXDUqh#abWd+xL1>r)obMdkLv!zt?5=^!uY9^j8jW-)k zT);Ka5-5tMV!9nk#phrdj3yY=31#9RASB|-9)T#?8xI?>MCU3`2`SPOk8WXs zg&3Z<;mhE?S1<1XwYe}M%*CD}jE3T^(|d0AU?&+&+(0~pJo0a%>pjkX z)9?Txf+)B$PJCkpN=Oeq9!LlQR)|9AZ@l>L{_bDi=bwQ;5FLLg;eF*_RTF6lre1Id zVIE)75h3Y7SqKoC6B19L2|-@=2$>!0>)`IHUs;A^(!+rG+}-Z}H;H_lL9qDS_zbYi z*7=qEEH07>sf*|j*SNeIPKmF)X z-8Ihf!B0RZ*HCp$%+|gVDt9dPF(CN3P>2GnoS#$p@FLl!`GQ07Hb|^ZdyoG9!w@Hn z&k~z>xSG6av$UjSBnYGN0?|5v6&#?peo1e`W}jum&K%)O3Bc;@R81}ZeZxkS$@gDlh)n@Zl?8{sq9cRq;-^j6=UE478u()g z96js;21*8FZp&qx%I*ChMOeKlV={FXU0019E^~Gc1eWsKEFUcQ0=s13^zC`AR;*q> z%>cq&Crg9&@lW<1)>Vx=F3nU9gUTjc-iD=}-iHe?4vr^1!-kfj>Y_gDEF@RRM4Gcn zuFpG{`b^BCnoN9b{H?M3Oa1D9>+WuCMph849yqWXw`l@HIA(yf!#LEt2)rLPuci^J z=s%vWn7$E#c_u0&i^7c=hAKIJQj0yH!@pH;NcH;~tSqSro2ypu z7AvYATj>Qwj#D;GNRtJYAyt?5D7m-`Y2Bf?!&o1OUJU2F-+IEVH8~|4_ zaqyS8FJV07-l0a5TI9~_VFWJm1C$6A4pL#-pGFO4?u#1E9>tH7`6(y(+&f;J(XmTf zeCFsHt7r@r*}zA>X)7?$Y$siE@GT+7-o21T*BLTUMWKVUsUyzG2>y{p}nk+A0bj3mwY*JF)^r$U-_=Li{wIF?_gIX9eWdibbvmhNgB+{2l=j zIu+uvPzs9%&qF0ZMSwoCKnHp`ZbR2vL1bC28o&Oz>8Q z%$NAi`&H1xxb%czM6OxwI9h^ZeA^Ashpfv-D*^;fX|4XUd*@W((hf%t3vu|tVa-P3 zDtsvad+Tcy?+P5M%E?KrQuHrJ?W~0gJW}gg2`D0?H!&8uJI+s5qoH+6e}+A`^Wl}u ztsB8rS0BCZ%$^qh_@c3uK;BR$O&ExK^AsTRSJ)V}<_~dut@XsZneRc)wCytY0rR{P zPBF-hyA_Z5ivZD~cxdNfUeF zQ1@c?l~bF~>nz&{duk01F&MS&)X-bahMoN3^`loO?4t^Dl&)^A`jCdlXjQR2YkfNo<1UfY| zYUy0bHw1KBh52@@p-8iW=cbM4CIkw2J+K$-UCFvpMxQ zBb);x%6pk1aTPhr7DH%Nr4Md$t7+L9f@Svc`5O5B(FD98&t8Z3r|p;c9kK;&v1@86 zOhH2WvNznw^FzI0w#uKz?_OwYCuHKJeHJtjzul}!9IRwKk87-zQ?XAtQ~44MaV1l4 zEKP>krX`9UEL2nH{J@#;v|Mr_qfpru>wsYaw>&LH-Z43{#Uaco`@4$e z^{oPbTFX)@NfBcJ1vM+2PLc>+$Lw|?Oopx(`rVO`ej3nguHlq)7{2vQ z^L<?w(W5Yk8Ql4 z!QyQ&e8o~QTfVW5Tw` zeJ}Y`gu^9k0MGh5Jg-v=%ntmSYO5SLxVA$~63$pxR9e#>uBtZ~MEu*>P=or}+++95 zKnu@C#;E|`fVhyR@$@*=phc!9#~X|WtfE!%&5lTFpvt=gySP`6mb#Z&?= zElni}Og=?Fa5fUzPs|iv~~y;v=SjsiA;rfE)z=1{^7gcbp( z*}aL5oe2_4^X+?jRcqN2^8%g1MTzO-o#4dAkQis*)Jq)hTsyxrCjN>2$+fQA(~h^* zjVmAj$%~(pPu|Gs<=2U2X)^e~rn2y;yL|%$CHRQMLDV7`XlQ&$fOD+*;a^@jKM3j+ zQ;}kAC|{ASWV zycN(=YHB?Kufd9l0np?7&5V95D-(y=ZbZEa5#FB!1IjPYHYGt14@*?vbV9OkX+-$Fp5wh|L-S{G+428}t#^zLEZU-U zql#^t728h5W(5_S6+0)k?NqFaZQHh!ifzAi-yW~K?|VPb82iuJ=Zvw|UVF~@skwG5 zFP}QAU3k~2t^Cbfc2YJ`4tEVkRB~KFa$zTwEBpOZ^^z;?YQuC0lZ)az$E0WH+Qs%v z;CM$JM-_SsY$Y{8WI39$^;XQC7qV)NoA^m|LsWp5^h#0v{YCybFtwqfx^kwv0hgMf zc5@;g;M|2`FhaHtDLwxBx6+kpTfg1sG4FIP4`Yq?J#^@>3KB}rdHNfr+oD8NL$p_P zS9^e%7=39K5zZ$E*VeXI-<+y^*Ov=-?0$`7vbTY#XW!;t zNtu5!Fni+s%;GmrTD1riHO-4!aa+xC-3c4qh9#!~L7PoZ-$WDS>Zr1K4FYH@ZJM)M zKQv#`ZU~cvNkB1uu%a19IL{cyau<j1 zkL`=*qTzaPz)@EiWBG?>qBBW|>XPfgA-u0k(P=(o>YQ8%|=J>RBnR_nTS8aOGj$ zV)&NpL&*)clXi)#MMmbi+t`+igJU0N-V;J%b49fbVg$7ycg%Vw5&3G}BJvl>l71pF z{6}`_X-2Gu_;YwN=RlG(Su~Aul_`mCh$|&KpF4^-Lv!#jYD?8|)JGrGv);BKiI5^G zvKhB{KwU&^7l>T&kDdRY0>|>d1OePBpiH3n)a*?E@6?C;|0CPhl28{Fm;9RgsA&Gr zVh8!fX#bKAq`cvMRV6njP*%wQtVpS00(GYQ?Om|F)cSGo?5( zgUY86qks~^v2cD--@oQOoW#Ep5Nh!fu3qs{QdvMLQWjZ2X%eJP;K7)=QiNDR(NhTU zLCt{(8A%2UhZM^+&GFe(g9-Qm*%byFiXRMn>VbihCJ8ialZ8&M^tth|43$Hejg!5V z?`ID=hi}f=b&DR0x9^)V)-w_*qwHxEb>l|%ll1rtSCj+q3Vr)S5Mr1W(M z3G7ylh2iqW=Rx26^A2A8>$seAhK2%h8HHLC}ACvxQMU(5Y@p@V-{n&5{CNK^EaJu`l z3~qlQ{mv|^D4?6KJ0f&YMkMU$-R1yz?`!&-s)~tV`U3hQJ_r&@tWS-}&u?x55tsmy zDiz=c(l3f|dd#AU?*!*-iVFHvi+t8Agb?PdOB^aB3%Nh0X-=P8AUIuk?Hz)knA&3k zKt(DMqWAxhctRk_4@Ck~MiR~JqK-%C+yg8>_}Ss$Fd20uwn8EPFy0AaV>=CB&gnN;Ql;KUL?lzRJUye6Iyp!cOT<+i3jpMU%oghPVn>h-C}YSymm{TQqhj=fGq7VniaZT-u6Xv7I|A^Cwj$&TihA%R|9bEW+j*%dU1 z55&X-s(SCK7eB7BtZ)Jt=jSIhETP$k{wvFP5rK*uwM(!3Sy~E81qA=J@H0~gO4YPC z$R@Pp&)M_QlP}8IrVbpEg&~mI;x&i2L^{^@j_CUb zKv~+F!>Y;zu8n2%^~oMGUOtQYaN%vAsgeAh5~yZKYRu!JT?qnaIKEf%>?R9im7Z-X zW75~;UsE~vbM?&o&jna;Fz|{tR3tE z*JhN*uRg{-Pfg=^R@s7*=8|-X31Y3Is=aya-Z8A}aAV)Ywv#)xOjD=WzolBh+g6K% zw&dhs-@RD7FU<&8kg&`kELx`IlMUBn45)$+B;71WcWdXn5QnDHcQsf(39##0kBW^d z50$S+Z_v8eYJRw_mi#Q0m~ReisbFqL0sXzh?x^rn0f#|ENnK*q>MxrVgVNe$Oy(WhsHz&y(j zP-9g{SW1@}(93EKi|VqFv}~R6_^XnZPQUBD%yV(ux;kP$*7JI4+JU>(rH`+7#nI;2u>g}2%-6t+MMiH@DruH`6^F8(h#x{Lv14q_eV(uNWKnEG)_r5u!<;UGVFw3Z5_BF>^MAi-|1hkvuvi{ItBl<&eO z6bz63)$8O0C&MQw^^y0ETAp<-^t!O=w$Yzd&*8$KIGfd)6Fb*~-8-*RJDD_=3fo3* zLOaP?_%LdGEtFDSx0(K&=3PsQ*D<#IR#Jp_d72bGLa?k|zw|z~SNpcByF&|JLHRbb z)4c_R&~3*{SXo8t`pyWjoV$$e&UU;bBrgqmGtiaVE>j$aml7c#9AH1g!)$wm?bP{H zB;cTFVx0Gg3DO>3&sU0O(@uicwgx4hx)nsV#QOqeI-XT0hQL>JKHEdo0m1tShKh#P zzgNCImZHkeXZND)44(JJSiv@{JhSZ%okZZaj^kQcqltsU?)bTH2yyY>gZE7S$z$RL zVI;8wn(TM?PJ$RmRz#cddFav;uH#0BXIeZg9pT}J;;P`#IW<(*bjH04TPx~g`vSYi zyqs%w(((Nea`^4bNx7fo-yeSw%cf|AAOZB5p>iNqZ8xhEE4>B1T2cG5&LUAYY7Rik zw)(}>g81Rhipp61dh-QOv8|Kk93X?8I@0Zxe2K`s%tT>N(X9b*r?Xj3&!~F&4*cgE#FH zp7EPsuN*Gnezi!Jgv&$5Go$DIEz-c6nP>4JCG|$rvB#O`@zW$}Lh+kRrfXgKe#IiG zx;`KKP)L-si8zClLPl0q=Ea{lLN55dC1&X&+)P6eF1n5brM)KWtDxA78?H$%F* zx;7QX5l6Lo{tns3T;HHK|Lq!ryuJ~9$@{p@dOALy)AG3V_qd^TsqInaUUk98a%n9w zCs7qAP_BoP7^b=c4IGY)6-lUPcCdd%>6>*v$iHMGMbI=}8D1Q1@J(hH2x)00sMwkW zie>fjWf-6zd>SGRtY1h7gqGGfC?f;U50x0U(b2VcpU#h1TLKxO8~zNW`eO(T1Oiw~*ZNRPC)?vqsV3{j-ZqB<)9P&V zTlXby>mv5>B^d4*oSnIT$I(BAW^!d}boLMgr()`!#WX*+e$fECd^O$fLaTKI>C#?q zH@Y;I)|a4?_!Cf=g|^LK7N6QLc;i&dn18?v50cTLo$l{92_)TdKFHrj^WbQ& z@&I6&Lbme201GInEIq;b->8i(qppM%?w=o7!FBnC70+EPf1tR0$D;^jD}OF(Y@i-rZX_J1zCzFp3vPA)FO4su)~T*YvMyAiPsHu^qlg2#ftv0ML*A^-sp z@MX3?cP*`rEY3dwhYwdPxoN@L52Q&T2Q{)a`4t1vI+J zDZc+DEs}f$QX2uhuN0A>g!DE7=qsW)wu7Fc&z7eMX)%a1$SY(0ooz^_Y6q4sy}`%R z;fc|I?_DsjoG4>mi#LPvh{=F0$S+fIQ&Y_D*Gs{!Pp#umyr^b+gXLE33@D4oZB$$+J!K52XKj z_{lu%&D-~$U!A1}8S5tEQ))et_j`O*^cRjHE{ts~^`4>|T#Kr|M*aYEI;3_E>DhdD z4O2FmPM)B$kUxgEV%W&|r%Vqx{y1}`vOhG6C#k{1<`{$yt#xvBXKl z=01U_SQ=HY&76=hmE9u62vEJXv=yG<5#k?RwmvP_$w;PPfGdogfdgB28`@Gr;mNTMbFc8i)!mE^b#Zd!&ZydUsEx){lz|dO`@d@9` zy|DSjCM@VB+-uAp&Sx%@`$YmX+^dx05D_$R`8n2JKwH(~Wd`LgXDLpiC^_zLn`vR2 z(Nz9nQt7~D%OFv|{hE|Ar5Fzbp8lVvT{c13_B&Mkd6V`>d;O<6x{tt^VFrl zP^A$roB;S6!cKyf0xcgp@`)J9O-npOThzLK@d{f>dTFog4F9@-1Q_SvbV_+j*7TYL;Jazk+5L|-u z1k@-JMAxr*PBOgGNZobJptwOgT!c%jBYJ;Aj|1tF9 z%T5ttach*%cX&_+Hc=%WNi7rfjN**LUB5s|#sWDv^K&Vbo*Js;TjVm^?rtwKrT>mD z8-_w7Zou90QE`YlUFP72)1!#zGn$oPxMW<@@^LiP0yN}I3_b2o)Q*!sFOR<&49}_> zTaf|p1BRolaDcg5496t1#6kJ%PzaD*+y8d47LvSk)am5>Fc#%9yEfS#->NS*+_%A^TejFVEDV%|e+j__I?V)}@(;;kMv z+%(W60$l%MSSyQK!B=}Dd3eL2&(+CXKgFfJ364nO30E#N0AF7T->e1}vbPV%mKnFamjuw+`rmD_s3u)YL0usuX|_ z=_Ep{y`C!ZnN)Ir6RGhU098>U5p;rENb~j_?l&WXHC8#ZMKWYFe7`51s={9+XE0cA zfy$b2%huJb`1h_Y1oZsmj+UU*w1UM9^bN}$eI@K9Cz1L?Zija+9Vb1T<6}F#Kt5NA zTqakA0WZQxwp-L&h2+KzHyt`1X$3HRm!SG_{8re({y2&i{&%$S#99)6T%IOl&pt{8 zOI(2V3JH9s4twiBj=Leg2YcjEm#Gwc7#-cSQ;UTnzRe3x?50}IlCpkJAMere$VDJ>Zikt( z7z0UAltA(1GJp(SmL1)RRdB)h$=5l6V#BS@TXR$8PlUbL`vS`Z6y`tA;}pSDQ-1g0 zkMmHJS8(MZj>`5Z(EXEg+oh)%xjs)KOpN${Shb28e|@e{N}&taZF)q!s-yR=jE z93HNBR*pyapOtb;u)^D))9r!1`};7K!I`aAs)wb*57%k)7>&`Yrss6iUOMMZz26w4 zvES`xGHbE){HA=bSLZMNVVP2;UPPBw=|}HGtiUX^*iSnns&l_n1qq7khfMdkN3*`1 z6Q#3pq`)^0_lt=PS%QhwDCc(d{huy%T$}~m4d9kg<nM^2D3NuRt*M^>ffP`Ms!dX~#Pi!tel6690C0Tp<}RjB91KfDLRuwSb{p!quXh zxJI_o*>S>TT_s`-USITfyCW#tN8lts<&H4%jgNY!$qmtyTN3#Pod2`if>{kLb_@20p;N8}Y-*RTMA+DP#R{lNZ#bGd!|F zmQE-^(U0{o)3^LEAUD@8&uqY$wb=}2{^il&x4y&Wd^6`A<7^?QyV*7nL7`D_j&&9c&B1 zW4fOY!sn*a*I?E;=NGiNW^U7!S2luM|L}j~X_qi2m{Ml2Ksn+Bm7Dk_W;uEC7vo^< zjz1CS;EGn9U)|gu7v^%i1}b-kpyxy%l>K06YXC(eZ$S}=AVVw>R%`kdYig0s$2J;u z2A9QRQghMXXqR*|O}8Pd*X#s8*Q~8Ekz+FB-Zj(}4-@Zx@jV96Xvn=totE-39?<1p z6L2UO_3@)16}H_W<9@;|RYbNf1EWBvT05b@tqXyf=ty4Y!QTBR_p7rY@XT_~q;g=P z?L1C=zkMHowEYuJP;+fkjBt;zupxSQaQcZ;fA5mBN!C&k-zK7EAQ)Tmb@9ZUKEqRw z>MRW6h&h%iGQ&JX&X~cIn~xOMD7fR1d~fp!%Raht+9Kzn1%V4tSA&{*#S|~IiZ`^%{aB&g*}?^E zgCS9x{w3n`av|-#`(~>c)3coFrhyL!qV!?J+ra%e*kk%o_^F{MAxaG0d86XwxuhQ6xhD z7;FHLZa}{p3MLjd$C|c4%}oi$F=8F{(DYxhL9pn@ zSl8|t#jpG&14oc>l;irCXlLw5Drswi$3Ivw)omt~X^kY&B(Jb;$QHV67$CaF+?g?$ z;&TpB2Mtbqpgf6Pi!mlX+doJ2|Ao`u?tB0)I(W7>$Nmvhkcu(&0&1h?v3GOYBBD-~ z<|?YQ_YX)nJO2v5&mFD)qK>6OKrmbbX?@=B);q}_`m$2rz1e8X5f_^VChI_3Fg%!S z3eF_(#5K>N45k3pNG)1bxt14fZzpaIsBKc-NvYd-(c&$Jd$Xk;#03y)Q0A-gLh1k^ zZOfU>I%RUu60IvEBD;Q6XrSMLs&`)5_>+Q#1_%L~n0vh*<~oQfnUcp6;Q)hG=-BjT z{-2{G-;3h%-`vO?WT=eZfzzBbL_2-o32L^~?NEoP78=tWCg?)4=Px}wk$UqDcI?H8 zuNDcGj9nI|r0IW8lmI;ccJnqyt~Y=J#MaG5!qeRK-mBGPR4b-Wx>SVyo8MJ_FW?&8 z8@KxwQ{H=T2z$o68)dEM_A3<3!sbX*SH zEzYkr=5 z&;~qCfcNy{!3wtS%)EqxV!eOZRSzT>`V6Zir(O+!2%9&PYwzHWrypWfX zdxt<{A1q8-_h{(QZ_8uP$H93C(TnzfMQu=qO;F0B)nqnOH*`Ci8sh^H@R-}jvy(mS zcxTG$Rw)+Tzw{3gM49x*7bSqP#E;s8s8A|4v7eF$VgXuQXb~@StOL%F!>Ie^G@iQV z?>$a=597x040886ScQas^@s!K26ini6EFpx3`t5zc)?C>#o1vF7jp#QgZ^4?xb_#n zh6UWRK=p@9h?PJ@Y>2W6mqSR|`$W0|;Og>v#;Jdgv4<)P8G*S;QnEL!T+NwBoTdV#& z@Uf#K>>6VJq7i8qe=`7%ke=#RCaB)ECeh0D-Si6OQ8N>n+!q3Za+zpYXSsTGC94GX za2Mwq3P1rLxkn1yh*h1bd3)A7p?}XF`!#5y=+{8TnnJ zKO^R@rKv?pmvZ(v{?$yp!q7hhk5{>zdehy@-L)wCFucz>n237FV6X4^l!1H?`ZUns zQL1NPlPM%(iwP5OG>sdF$-mxNHW*rRGy)jBSC$GvWgzSd+%Kv$q0 zlxgtqj-`r2mj`-kGG`M+^uA45o1jV5st|oP4L-XirLn@S@gM&=hgr7v#(oJiF@5xD zeL0i$2elv(gz|L3V#QjOYsX%sdokJjRzc@+-K#|cIS<&zwMXftCFp`mqmEz=>hc(v2}w$`hneZ_ zN%&&FNQdgh1!BO)5h%NBkn^#S zduxzEO#;16Km&;8Yb3N>U(g?ulxhh}J>Ibukg;6lP6hZqcrcjTejh2+NWpXY$Yw?i zCG556fMBc^s$EUfCA8!9Bu?mykUIekvY)Eo`$V>8+82}d*e<$b$7P>2RC04>^Klw? z>eUN%wR^?L_4tO6%c*JfLqb}<_@j5R zqZ%ZOL$#iNAjQ#MM7+6jGnH&)zk**-=UPme&<`W6A7igI`NWWg}DL7jpggmq$A>_9HEiS2(zJX2oQD)JfZlKk>|OE=XmXyOQ_%Rza0 z6#;@gr3kgwgUXrx;W6MS6u*oa68rorz_Nn9snPAt+F0J@DNe#84qhDymBVE_*G}H1KOw9FqFpg)PlUnqv(=9g>k$5%J=yJ-j zA&6z6j}Nuy9~Pc=xbuNvWLfLz4L}y%_?cD%**`@rJ2#AO@3Q3cal@2v2% zr4jTSP|VYK%5O9OoBmt(NLTRot^C11yi3Sac+4e4phGY&v5S;3P=6$Vf&v)(Fo*7q zfebnIK;xIu5Y=sIHiY;#YwYK&#fq+X|J(g^%J;Ft0H%;``f|k%anlPb+}-65MZ3ASHU2A*G`$k&y~4GMmSOUa%?;lzCv~N%h4i zX<%tR=3T(g9vnu4|Ehe4I>!5oAwZ6ZbFw~IgfTkqcr$tSM*Yu?3>o{g{ZCn1Fff7RwqJ$v?1>wbk!%HzPk6y|w#*n(NAI^4#3 zD?PBGu9BHa4Xe%;BO<{1=g;micqrwVpgZ-fxn{EuL+k=jg2G(CTQsHfH;wT)yT7qi z;af8QfHrtx9h)s)VPaeEF>m1ueC0Qciz|}D7cf({eUhc+4>T)laEosGJs|~5?+`h- z_lZt2kVv&J^*tVXX3Y5FZB#0_8=Jz59fU}V!&J#V9mSPRbV!_@8QaQCI5u}K?DR8= zT+=AW>=^-W;<_}12!lk`g0so+TD^AdNfGQyE<;9i0UcV#e{m5qk^lWQqKw(mlW{U{3{<%-V5qqjaJ{@Ht4tG)VW{@Xt)m74*#-8FfO$zm5@BJPMJ^7SKA?UVKmK?;RuS> z(UWle%)LZM$MX~y?+F0gRQz^Q=rEpeeD&DX+N#qHT9oT=B{lAa(VL+m>x{;?1WBWu z`-Z^pBRE;6v8y#*-j9X%53aW^b;;S;QV|QdaKpH0{a%d%@@;&x-_SMv2iRiQ?;tN0 z!`J5Wj3}fTujAfa>{N*f-Jvsg^*T498gscJ=d~#Dh;jS$B%b%_uz>H zG{zI-bUFn&pZm2S#V3vlW0>d}c9O6<6;t2A`nz1;hIb)a^`&R+Hc?XLOp;SqcY8$7CyFsZlU{bH>D1|v#oMzIh~+|cNg z;>|6cDsGBY0|s7HNr{D zPYPk%A=rsq##~Y8UF!}ZupRl(t%(Uv8TI(Wpry#LfMZu{&L(iZ-iCe2>*uYk&@?dC z+HgHj{!DRtrhs_A--(IO(VXih?s`d})5G>&LcM@w6}p$UBC;3D{;p61AnrJut=|gg zbX|8cL5w1Py6W6n$mlnc_E*$`bL=JwdArVLOtnwo zTz(CN9Y==6z!bclE?n*I@`dDCTP3PAmh(cZn4gRd)Xrm?oe(e@sIBY1hh2*>KJ7m^ zgx;vp&V3$O9m743v~;?=AQ6auQ}@9e8lU~1O1N^iFbQHaN2WUfr1o&XVTX~asg}~h zP-Gr8qhLGzQ%I;R#YyYHobk-v9)SBn%0!^gH{N0J>zDTL0vHNCz^VC~XdRWo&H|9X z5iUg~y(&7kUglU$Gf(6((2|J@#3a%o|H;Vi(Ciy=V4gA1x;Ae)+d2?#cJGn;`A@s5*&%AwGj#UXD+@5I_nm5w)Vu z!>mmZA4auDI8BFff`Qk#2u4ayQgh7R60K`arAm}4T=YX)6uaDTNKK^d-?O`M7TDej z=QW<5VVH`NJ6Q$U#N$$or8gJZAmp!Jy`~Q_NN5Q1JOc^<>;5I$c1)B;@fahvR*|Ez z#Qq?w3iS-0=?4dw>u==Iy9hkkCum#YMm^De;egjIpbk zo1k6l!9o|%vgqKHpAh^+by=md$+}a2xteNo+JZFQ_0r#%WTvyt<7}5UGpV z#Tjs;1c-*HE!fqWIKz!UqI!c}=3+D!cDE`~X94463n=xoT^-7nNc?{B)fz}P)ww`v zk{zxAH&l^ZL|ZMdb3dFoM*hE|YkTG=Tf^Q$q-yQSdE*@|m9XNCHLWpV zal)Q#Qn2~}e7XO?IsJFS(+_&JR&3H5cie0#QWXM{IT$V*yzL;83ppVvMzyg+U!;RX zq;R=?@!zi{-{VI*if0e2wJhp?Q|iy;vRU2;Qo~TH;bfq+&Z;!0pHTg~lb&Ne|B7n3 z-{+Dq-qW7iEkG*+t2s8*f`JutZy9j}l%*wgcp;6vEqlepO8k3LTrtLN88sUGsp^xb zpGOLmqa8NDSZ5WrXHVs82|1;W=zepr2UeG$3;y!XyEAKHI1t}sAW(F7#*&Z(!v{)2 zn>?Eu2kg`}VYV;4W?iIfsiSv_Eg>bA7J6%GOqqm)BV4hgHq1*lzm0ZiCW}%4)yit; z`B!3|8Ghi4+60!mYN^uM6)Iw#X8Ta(5U5*&)Pfkx)Q>X)KbfE3E{HoA9S>utAAUa7dL9-2)$+I2({_vBn< z)F$eh`ZwDNi@f9=c_;3~VSnH9cRc2ed{$j_v9~iXrXN!8_VEpu-LoH@uLZE5d#8*b zR=W_64c3m6$OZ99nibklOdf@Z z(W|*Q1UW~45-wF4Xk079(cbL++sy04ml`7o2tcn z5+@a4q6FqPvPulTzZf#T!;0k{>nfXF=XZ73qeXM~TJBe!=bssj{khU)4i;KUDP+q* z$dC|A<_3YRw`j#_4K6PSe$l=m*4PH?gFId9Xg8kP;JZp%w!o9xaDSRk?X{df-ib-B)J?$yi)e71>|D@N>_OyomnEh0!x@=1ax#6c2rAOD` zisl4&OG8=~-?Inq=n_p$!FBWRrYr=)e0kcQH056dJr92a(vm7sYjeW2dmh|`bOOpw z$?gO9_heu7a;bZeX?{l?BpY=-aC%pvhy@qymum{hK!*VoU30oHnNA+R_l;f<3PA;- zC03^lc5iwfn3u(2S-iUuo;63v9qgzt(bk$2cQZ{FH4J_u2DeMY;UAyuf$H?c<}34# z)HTm%O1F8S`tR>E&+$^&%hc#CR&Pykh~lZT$EcmHI-LzW0jMdEBHIFN$x!At4tPy&y4CpU{&PuvX3ISYL*EY2D9{7I(ZnMh(0$TjZ1eHvt&FRo|9=$1?)T zWTUBKvI)-otBib>KL2xq;Yqkx|(J2nU z?W`q$BRvhessM5)FVb@G0IqtocIOBc&ac z80GibAXKVGs}DxR<%ek0j3OUAz3ZkDdkUU;zLuVQQlV{y%IUy*{S6OEm_nU!2(^k6 zdP~70o#Z1gEuAX*Wx}+Wh4%PooAZdBlb12TC+rGW81Y8jXin#qX#E7`N`$C3J5ZU9 zMvK{{7#AJpuxc2(S$d#9i>X}y#xvoKcsY8fy)Q&m3+pd`QI!^)_>{Cl9Am5u4b72h z-@#;0o5YnPmSRmYR&q7l;BmBnUV!w%v&Q%{)fRi~i3!90$3?xax9HTs){s`7wXHs& zup-q+E1sqRCzc}Zo=`?!YWeEK67@53w+uC2Tc9xR$x#Gf>h zHD8Q$yC>F+hMF9SnPB7!6R@kWJKG3AH5D|7saT5JNFHGLv9nAYiX5Az<nphnG0jj!4}%TUgH!5o!!AE4T_?*dmec( zG|PoX?1Oyb3;gYfMe4Y++8JX_@RcNGz6<}7@8N@*`F_QI)0!OBh09#SrV7liQl8{< z$-&*L3uml^^|95;*PI_h?(8<;h?j#qP$2Ma*v+TQZ?pnR)SEj8kMj(|WS8!XIT&^4|8ixul6a!9>#+LnRL zau~>Iejw9pmqI@1U~wF&_AiUXy{$FWG0HRePxJA5?Zc5UKYEd@ur7%IODP+Y`W znlHD!V{BQ*mS}tjIGR>*B^|{DJwTV5IBEDozf+9fe^V{NmfSCv>C5^I&6+dEcO?tE z(6?KMWF!GVXqHwLnoNNmNXt}Xh4Hr;F{`?9czN@)jf=P{41y_u53rCrsRH+!{6IMD zbpMV}J|b~xkjvHX)+s&UX5o=>0iJReqZfd-(1>(Ksw;skt za1q5Pr7UNglWMlJF84-_8jX22p?isHDToy#x5MXeGr^#{096|O9VJwMuV=0T+MT^# zTXtl3CP24#@TYyA55Q?i+J+Mu7+Sqt@WTK_J|Lg%*-r<~q_K`gnpt^uaK4}#Ij=k4 z*+kj!M_vt7J2;9~I}S=@<$2*$%6_EKbz7R?j3T(prrDJ4kK5>?L8^Mu79IL`73LO&zQZNXpsha_NzeTeg!hCqgh(}{pT9jp$v zgwqq{ZprH?t#Y{$w`WB316}L$*RnB@6wd)Gt5)xwM&57M8d5qu6^_NWdf0DtcVMd| zDHEH7d_RqdJb#R!lKpt_L(no!kl~|$F}TOqhBIWVUGV@mWT%50$B&3Ta@*o)KQO}N zNi~NhkJt926QCo{<((pjYuy#;iFW;Cg_$>#(}v^y+J)yq`BPFWIV!ZWvghinhB5dF zs3{D)M;v{QNf#hVpWo&*(B?rF^RVHU^ovw=Ygw$^2dl*mm#R1}G;g&EJZ+`!*35oWv%Rt6-oDxUP@R9Trwv zB?fKHHW`GbrM8j3w)J15$sjEa8}zvI*;G00(?61{i_)as&8~0d%j*Mdx5E5^I~}k& zQ$GE7rHt`AN}QjDwfP!Yy9!>rXQfmCY6ty!ojYfMjzS-VLhS2mY!LFOCPE-xfF4{TY`yO?*Jes_PE7#iSdWeDy16*+j{kb5BSkH1 za~)tX_-&Mv`xQxnOD>e|bSbXr6elRs^4ab7mCTuYU}I_PNV$=+B<}nVJRBU(TwKhYQUlo@D2 zykvpEws`MzFt$c&wlHljmeT=&fTG% zM_6&>4k)(rjAV^L>EdVxXWEZd;KhoWy(=*~yLaZwqULQpd&hYQs9yG(9G)WTr1KI{ zq%=HN@K>ze8UBo*u1wi9UMlHLBL=R@^%7Ug=ZmMh?;-uUR>P_our83Wo#Ut22vkqk z9n4O}2PAauzDHbn+CgSVqVK5?@{QQdd`mp)(;G@PTa>_eMGR<&RJtaou)Rki9|woi z3))mw;6?UvLEOpkf~U<++xDHiRcVKdZ=V@E7Ayyg_zYF>)tx4>@am1ul2I(5yogXJ zD&;{%Kof||!*W94nn9WjQ}l{ew)s7jTV?ja=!5(r*z<`7A!HR>6M(inxZDG~1Ay$; z)^+`tjp2W|7&!hHw1+)q(ixNnoBKaO2LA_6SW;A2Sxg}X*#(pa^}hoPnAuWfT)wEm z|9cHiN{I`o1AzjgGNTHkDx(^sI->!jA)^taF{25iDWe&qIip32uq!A%>i_V2D*qn@ zVs6$HKUYv4P^Oe^S5T4!r&rVz95+z%uV*1QP-!q`mXruLP%?04CiefCbpXN2&B^^A zLxhKkV!=i{C1O;Y%+AF{6x+pxZgX23Zxk=vMspj-#l^*Ra~tE9tJy#K^{n?g)-H}l z((k+cY3|uxEIE8sCsEW6hTlv)NYHr6{-kDAu=2Blqag`R_6`mYNR3R2PeyA8>tdQ4 zfGC4Xr_QivXot^RH(~pm5fvT2C zpUl_SJAKx_VSq8+Jh@IC%2UCyYJ&_M2GCBgPHsY)pT5Cd106~@&=6c1;GjjAi$cDk z?fyjtnOwfoI`SCAi1puiaJ9hEbt3=LM}o3o4hm^g5wmyCPon6*$9(Hvo?PtT1*&E< zu?1=ZGeLqus67AF3>M&s%*N_SU?RMrqLjcl?U={~4eJ$nYyl(qv_)RfV-YeVNTwDbQ^ugGIOcLuH zKV)J4ymYCg?Ev!opP*r%5)dCmagSY87hRTjIf&Q5Bi|=&eQHEQLuT&8A;{ZaG^m#@ zOK_v_lqV!H_|s{gea-V$BlhagpPp|y9Pd{3JXb{4LFa$vJ{G8st^Xgg&N(=6u-J)=0axZQHhO+qS#4`}KX#nK@_XOJ*`j=J_LkWadfk=e~Z|(+Vny zW}U2hGIsKZe!U%PogGvvwHha08WPUFeREe~Kb)$26c0}G8#(F{d*(pCRZg8uG+-4T`L+OfT*`&VKY=C#@|H%=}Z_?n3%BUHI($@Hq74cgbcxzxkWN zY+G%tVbbczrgGVxT?NNuIz{x6;GE%YzN5Kr3|Xa20)LP8^NODEcId&@ zL*d7(kaqH7d5sk_iiG{v*GV?`>w}@&d&xLeX-MX*K3dK&}ifQkEJOiRhB%H4qBwg{O+R z?eW^oakn%2wpEZ=PWYK;e;dZ4! zgoIwi>kJUUV^#NJ^;2N57j1o??Ppgf_v4NPftsXDPe-P2ihnWyPmBLh<~BqAT@n}5 zImbq5gzNZ`E(kgA>;k00uH<3)PXJruyP#Z+jT#X!8-T=^Wrnzeh=-ww-(-O~hh#lpJK-^v|(Urr#8z3 zleI{K~yYP;QJo;k~)g!KEhyXE%`wL z#`L*-+$+rlOXmJ+F*yoE@Xjt`kBRW=d4+Z%4I*l$u^zyi;4=~ZiS%PS`d=->fp=&> zi~xi(ABFl=%sBl;)c$;E+sUs)23Jo1<;)m8L`UnBGyqM64a$lylN2%yL}9cjRjBmcDp4v=k~xeSoQt*!{ep)s5XB^u!oj(no1>S_;I^9x z1;YZ~{$BeB#oCti6Vq%^{X-|1OUOx_8?wt0GT6XBmcO>a)3UeAO02Dx0fcQ+uLf2S znQL94>s){8k4b5y_39zDM`w;HX+)Wf`$Mie!jEv8bF1ZWm>)P=m@|fOgQlEwupFBO z#uZ~4M}vE~l!b(mM1KIPw@o0@A%_NcOsd$yD)_uJ5($eACDfX2W0BK$cSN>gi<|DW zZuAZ3gNOT0sj) zV(E8^gd8V>xSq?O-JPy&B1PG`dIL{iD1Gu(`Z*|t!@7< zVER3OL!-h~7SxZn<(tg+Y6->jnv50yp=X;#iF&qF!XHjW2 z$1vdj{QjU_#!})Q#{%+u4Oh79=idQh@OWufB?{|07V@nO%Y6Ic)ApRtli0VL49M>U zyqQxi56k{L8&+YTKfcXoc0X6Mqa#vq!!k7>v0n51q67li*8Xgnv|0rgCFb2W8{#MB zHDy2IT4y{9M?N&7)eD1xz(4}~Jflkql|?!sh8i1u`Q-xWRi>$0!Q~1CN9>u@fu%Ls z+i)!-BAJa_@U!;NHwX595D@c3dzwls`bSZyCNTaM9&tyf5HjNH9G7R_#e+v4wVHJj zBrz9;`M$xGUPzg{x%O5DQTOHIx*;RQwSQqE+#ztNhvenVq0(UnhsppCM5Vw~RLQd# zY2bpfg+>;~uzWYt&VR&fm~Bx7MLNrmUa2w+*CEYA&OT#n2TM5soYiw#g1PX({1c&) z)_|*Y3?-ePbQF#Pg)Bhi&Trd!XjJ_i%CCSkCpP!=Rkj$ELX?Y5SCRYJ*L-tf#7&Vl zlK=OxNh|{8>4byE!3DsXALEZhO0mCPG*V4L5}CYRND>%PY^}Q1TkKIE#Z*oZ#?3s$ zEdPE()$`P5)QP3wo>N_$N20O07L6qS$@?+{7$7-}*#S!#p5A2s*Q5uQBNkTc zkW4m|<~}TU|1LjMMdF11?cnD654Q$I*)9_(trefWq8w(S_P5)I(xRh7r$jVEW7b*> ztY;Ruz>DLbO5Hd+d0Lqv>U~*A_{HGF_IK=d8kCcZpPUD)@vz}jovv~Q(u1Rk*X2T$ z>rtvDm9d5K-r&QC2&lug@-8Y zj~(=)D#EQe{IvlGWi1|?7R~|c{3-Q><6{mHMz2C=M44ia@XQu5_+`VZlt4jJ8?4ycS*%0ZURmfQA-!Jm z&_hOpjZy8bL!22;+J%tAT5jr9^UV)e8^bTia?PY*|Ge!B{a)*CBh;lh;!+d#_2YFB z)dhEUc?+dY3|h$(!>|hdS9tPmmU(Y^ zB0K)`wLWFJWh?2e+=>_V;kQw7G|peeI-{X-Y@Xn3k6=f3UW!zX^dZ87I2a|qKMI#T zbJp(1spKmUvmFV11j1x+(!b*;;i)2o6IgW11tt9S9|R`=f`G+)UzLYl!rz)Mr|esO ze}IuLxaIFB0X8rgHgp^)E_CP7On{~0Dc^g`qDDrN-O)3voQtcHi+^#CZ>EO2BnW2u z#7B^u%*&3Wl+O<-ECJ@e39)39;Wwe!efoCtU3jGaa&-U0by!S2Iayc2nu)UF+{T}p zIHpbYA%n_O>)KZn_4_oGQmJS|6 zKFV+^sc=-e6tQTW+dr4L_Cbl)cn#dVs!R z%J}UWSq`BETNgb2cUm=7?M)k(*YJW!49;_rR-c&X9>p1=y3OB~svjg1Sl!C^^JSTecqM&yF4W?UGnrD=+J6YkB)f9bFU6n{}06?X2k*Bf-Dtdu4@ zdG+;dxMs^N`#MFRm4x~=g%!q%Gy^p7L~Vugxe**jDRJnO8Rs?0A-t=tevgMCQVJQIX7iB0ss|J;eW=Wq8)^A>rmDpJ)la&FAz|gD_F)Jm~|TH>rQef0-`W z?1FS3CP6jm1{t_%Nd7QR)38j^B!6d5%}l~sv7Hb|AO+3nCAJEoF7Mwjg?lWmp>aur z&z#a-KmJ9>s6Ok9neYu$)&=1HtS#d~A)xN`+0|ynSA70KpWqesD0y2SE%4SX_Or*N zBfGHZ!cGWNUdc<=YlFSPB{#$#1HR>woAVHwwF$1H9(GpKU;AZoU-Wkls%v9Pp=~-@ z%3r{9;0V-{VXRj=PTxX;L*b3WaicSa2+QiN5>YIMIlXjjogl-pH5(wGs!Oh4QVmKw z?B8J3IiqF}tKPffJ%xU~zM$aEmuYogS`5Kya{+hCc`Y2z`xB1a{%sFDgghMCZu2(L zC{L(=r`)rs)a?~QJ}WKMlh}RLX5YnpC$?^Ix#5@0KI4Y-^Dx$KEQjEU{VfC=<)7k9 z4*QjQO685(sFT&<#ctq7|18Ll^eVkZPx6wr62=|Wlt+Xqc8dWv-wIu$1$m@GH43{0 z74w4i?5#fw1iVi$+wX!7Mo4vPk%r6#_N>p}_-bI1?{j&!^d)5f?rv~7{=)CQZw2gRjK3l+hdlY|bAkY42xt+SQu>`vesI<4 zFj9n}aOY!xi|?^!)Vha4Qf+%13?B zK@6`+1>-BXcsuz&D~K?gcSF8+@)%W}ulDFL*z8eMN-U)`w$r3}H53uyHZ<`I@GQfbhfJnDkC2u&5s$0#! zJV8yx!3AJ5s}p`IztGGyJw^IfL)C(|#1^05%rUj+d4ztZ{LO=Qp2TX$Rt@=2c-l7wJcO&N;w`>TJZ`0{VB}B@H`%Q%`1!wE0&Wl6@G&HNuQui(=FEmXVT~sTZsL5ZKHB=4D__#%Xj_Q83 zQ#=&PH`2Y*PXpt*E}y0-_E#R|qle7%I)RnGmox*N8z4;mDEyQOan5#a)r`3am~Eny zI);GdQE6K_+ow~o?4mEc%nWB@M$ZH~cctlvp1{@?X59@gqbAEU_<99 zv$B%~)_ev<@TMt#^`c`t8IQ(IiM`^tv}xeJ6~cXVmBF421?Z<$7oJM1%f4cLQs2x( z2}J6Aj$NCxqi9`g^1CNMblbavv?&(GScgE)L!=6pAF@+W2vR*Ln)}UvCi*5^KYeek z4e<*{Ul8&|zS80>Bgq1%(M?SgPL0!1rlS|yTtXY-9xc~$9XY8vY-Ma0KHrNq{t3_x zW=3<|ON5oqhl&2#Yk++C_{=L5gxzUw3v(`W4L}~et8F^?*Wht<{nPhNLSl*7mMlW; zd1Z=RcO_c{&CFXEh;W-WdK~;?$c2a zU;>%Pcz$(k)`?|26vyc{S!b5;-kyu>optaQqG(=Oc<`CoK+kmxjFkN&BD1%*8`||il=*IzLl6(8ePvDAA257TutsDO2jb)E8!phWPn5E zs$@u>^(|LkdAaWWW!WZZW;o1drluZNVz49c?g^vx_BM&f*Lk+-YJ8>t!eE8}=bUx@K@i?hJ&|t3QpP&Z#xj z-sf81I%Zb?i8Ca1i7ZPjA;6Na^W-(^AnW*sv_xW5uW|NFODcGutcHHs&BIHZr@B-F z?m???Rh`?Hgu$fd^+(_L{VMP{b-;^O-NFsZ7WDdUh4vy!74@SDRXNvkHvg-+2rG$J zpv~_}eY;#XJKWh16apyD)*&W2j-koFsF z>?Ai{lE((7vb3dUDF;69f-VX<>fT1nc`;V`H)T9D5Ges-Ms07te#DJ~v~>d2)lyo_ zMEMC|YuWtXgcm%=f(HEuwSQmHB|;Q;ymifu=$RG*%SRV38v;lt*0Ib6t;+E}Xcs(C zpc?#JCw0UXg(f1u95dHdlBJ(~USb8e$%GEcQqR^PRM#4tM$3R`w+Pv|QK4iwmy#jG z9?AdQd6)@}K;wik65m-9&yDTJva>l9vQ9FkvnkLQ=5R{UHx8b{=zh!NxOOJddDBL2 zR-{OA@P?@LlmWQGv9O@=xQQ9ftFkMLTsfKFzq30sglhYM6Apb)L(Vo!+$V2hPzUG| zX?qx`*;ighD6@nI+~q)(G`oYAaV3X!p|{b<#{5j;MK9Ha=W}nzkTtkM(8IUj4j$4@D>o)S1w(8}i9!hVL z)D^M0*o&PhaS5NPl@juBAo?*}bh)!mp~KV|b^f|}KLZiXuakJ&* zAU&47%>g(czW()?wvVz!S%L+1{@XqpAq|x@=&sxc9pEkkSK$B&z`v>3&jMU;U>b>? zA@~G7L3AKJK_4ZUS;O6lH!1H8aWaEWs@*S|3v71&On@^z|LOj~q_Wg$k`*oIo@1K# zYf)^Wa6N4xuWk>I$ONL`?N?bz(Hb*Jfx0L<@X$ooLn4Ar;o6J5*^GtH>1Wx<L`-t;nBjZ9n@^)2LF&8)KC+u~Jxb8DWnB zw`9&t_!bBW2rC?d7`l0)EvSsTv?7y`5Y=uE!i?X3MJ%yW@n#7}CDnxj3upe)^Isyz zFNXsp*h3Mnw3wygBQ+T0PuY;4X=Z#-goRa#ADp|kk=E)k@~j#xr>tnR`-Gh+9za=< zY4pi8Jjv8d^f$hC{_su-F?;p)MtTM}+23zJT_yNkH$kL{=4Sg)rWgZJf9V-wN>A4# z7q(`ww_IDyqEH4+*WzePPO8e>j?Ap+#u_&W>-I6o^@a)jp*1mv+_tpIzb_1PI4VCf z60s|ZxWe|z2{f0;-_6@Z3cyP|#s#_-K`o|x8Ef3kc-&HV;)%xXqfVxi@GYP1gim;6 z6~oR${WA>qpsEd0!nYYx2L=)?nHFFCpv{E7WJ<8L*j`Z#qg&yJ7L{r~{GMcl;@#H7=u7jhV?QjP zrx5k2J9)J|ljZ6kW%>wiIoT?Yf?fQ0S#o(y$Uh0I3f2W+<4}W}mS8?zWJI^?X zImw$zD(v0LTuZP#gy4V#GuwKu^rJN zKIrJQs3MNt@ZeF8M`F$V`4HoE>&y02^^w7@A4M52g6i`m$EipMao^3paDFGoWfD3< ztBhV4giL5dWWO((Tq?uo5dURRIx%Rf#PH!ahn_&k69+mSK3=gJyKtdl5i5hsVFYsqCE3?+xOgJq_p;#pv1qtLDPnsrsP^Obh z*1S@ut@6IT<*)Xq7+06m_>_=6TF@_dmE2#@A2qwKfHIAQ zH%9#FsIMB8{V?f34|XcDQ+iE{{#SXiWDEn=^37Stq7=17WViy{{NS1Z$p<|;n$iXy~yg?J$@cQ)`ne+EP|O*MC*>#lDl#XLl<$87=LR%N80 zfya#V?iN~Cm4bw3isguxg>48{V-2nFuXxyqwI3*Fiw|sGbyGE#b`)$Uct^NXIUyn_8t-A1hG0igwep4@soVJZ-88Pe zN}FjiV>J;96@p74B9rEqDb#29Kgphm`N;B6 zXxf%wV8-O4lf2d9T3v;YUDWW_j!;n4d6mw3A?X^taWB2&ITKt7RZ@5=3s*ypqSg7W zZ|gNCC%Fj`Iw}s@;If}h=sp3JW>!h=3l(Ey$FGXnJr-fst!n+N#H~VJsTY(L7DH+K z?35JvKtkH&+5-vNr4MSd_p7{3(vecrH)Pra9TR8nFz5etP!;8!L|@}~GQ8-R_5AAb zXQx6leTPc#L&A2BsvP2?NNMWrj|g$u%Fe`#ItbJ2U6-I05yQ~|c%>jk@T7Sq4;dzru zh0H6Qbl~=&pY|lUOMOdU4)g{_Bth8Z1uc(E0~64y*})o-X$;$92D|w)Q4wW#9~z+9 zJef}SZbsh#3ge2#Ke2Eds98gzP>iFejrzG~o5att8yirEJ7X`2dT6p)EKAgH4HA^A zQZns?=v?i=V}^*YuBb@y-Wctlb?3NfMS|QRldEjc3eRC?V8HunlIOee@uhKEfSeLF*BDx2pK7hIi8>oO$%+f6!RueIvZF{Bbqyw7tHGptY&^o=?v8Vg6Jl2FlhRq+T`QoFBsZJs*J*Lq$25IS>nkOad;Fk@ulJ z95yIylaJ`(@uwpqTmkSrfxhxW1E{-koFy=sK zwwof5N!rfE)9iyoSEN?A&5%~?%Q60Nzfoe@f2>25lbj$7U2v-ZXs!9^rRT(Q3i zc}ZNRm+`4~o=Z{);9_Hp&j3zXYL>Xj0d0^4TImY%P(hF^%&4lm+8IMIEG4e8WZ?JD z2Yq?42X281V6xWlEP^MfzYTPkBb0KU?xW|Ee`Li*;cX-DeW-16!T++_BIh5Il1LmB zI-$!SqMCYP*Uw})Rnt%O+?&!k*aVW=@9O3)_Z%L6VWstJXC8?(;c zUpNr$Il#F{rXK@i#Z+|G8UyPo%P!zSF#T+SaiZ8OH)iHIYE=tE*l|OR%>*H;kr}U3Eg2UZ-xaaLCraB6_Xsk z8(ZSx8Tfl1I!?PEB3s4XSsh(p(osJ+$$e~29 zLH1prDkEEK6-ztm7Op|?F4NtfKNN^YDMuYsVX?JYXv=n;B;&V}+?x)deEx$JR%gXxFXOdQ&0 zt#0k*h(>2U2N<_S7X0E2nIQV{yDM${kVR^<) zjE+iaISir$krB7@F34Hz8u_=+c6W_yOp|8Qi6-$CuvQlGE|>TR+%P)28~zfPCF z71a#%fPz&vC}B^+W=Q(7V?ChJ2SGYz8qpB_YVTJy18Nq>{c&d5DR<_rjHTM3#v5yk zk?N_m^0nU5_X$hhMry`+oM1Yvt9%s2q?)Z(Uw2)PcbEJMAY^bTp}mLk^&ysXuN&6D z>?K)bk9KJ+AQ0GD3j!$)LeTo@@Evop&uS2C6;!S|h-l*@!S9oc;ddYRp97>l_H=gF z5i+@6fcqMw8HQhSy01xF12+h5I&Adf_Wf?LV+NOSF!Ayzxr7tCtxOPzhTire*gv2Q zG@Ff5<%;RcZp!|BLqhbkRgrO&M|{uNf1kDRWHEx&>)I=jZj> z&v`wmI{!5$+-~`BTe-tM7$Dlff)$c9^WhPX9ysmkFNuR@e1VkO=GJuio%Bc?jXc_` zx9n2)8DiD7BL%ajI)npOxGavzS;wx9`5if>$7Cq)g#a%W%z}B!@gnMGVG0r@yJie; zZ7QkeI!S}`xz;T7ky9atcL$H1j#;5B=$0lN9DK3EDBFRDTXEr)URD52lVV|q+vy{m z6&P(=`BmIU`}<3ec3j|=6u+)VxcN0r*#mP4R&=g|88kk;rHR8Zr- zVW+SjWr8jG5FhW?G3OWP6(!a1&?He`2k3EpL2$~8C@n8sG0@*37P|c^5h=Ic0`Y8r zKFuwEJ5qi0axlJas!2ZKqQuZZNWjVoJodEVtXnKC6YtsPNRp4V?94(JjB8fNR(bhr zZN5n3xBS=YLqIr(_`;(~xo7X1s{(7R2Xs|iKj2hpmUGIRVKaT3 zusXP#?_R<5$=#s~GuMIX6w-$j$-j1CXHh{6i26CjplHxK|+37}a!%m2V$ z*qW|XDONCL&2{|Nud?V*wmMeCLpdka+F71P9-f7eB5PDx!^roI^~n_?ULoQPkKdgr z`bYs>8Nn$?c=-{v<&HK#n1h};%-K(S#c+$8I3(aZjl2b5OZ-K}b3}&hyc3h_(^j}P zd7_w-ghl87OfO+UMUp2&qyYI0s53E9_kq4c=M}af6ckd8nD0f;bhmOM0(a$}d-Uae z0KS6>W>h~Vhj)sa5?&Xng%Aa=;2{)qfNPgtiK2U0?s#N21-@cms*|v~Y#3e8+MZ0& zHv)cNdqU@#oC) zpM=B!m*C1x3}2j?^&s0Xm4oV_v)|bH_UEYyyll?IZrk79@?lR=e7cZ1a-K>du^oI% zmYyPKLiwU`J^;Z6G3QwyeFc=TzJds;g>fCV{`crXfq;jEFA9zZYnB;TL9+^n49Z0% z@H@9P&zzff4aHM*4bZ2ju?NlH8N0Pfq#cL}eY#c1S+i~S0ny0qvERQS1twbzLQW2@ zW%TcUVzVz7xS>TiO?uL-H__AgqK2phmOVWA@%nHKYLR;RPSg`7{LExn+F1=_&E-+J z93vTBg!WU|gehE5Fa>ZVj)}@PJ$FF`^6bK3OuP=^#-i#mfw9(&i*AB`P=#Y!1ZbB1 zGcLza#a$eNOuj#VRj?rT=U$awe)8@sB<;Lx8HV`^J-@RF<^23>xzqY|4S4#8)r7CT zdOLD7>s#PXx~b`p?b_Xv(}uF-xI6e@%Y@`mvlY@sjVv)ztr{m$wG;|d(vLY!;<=p& zBeGG=8Y@Mw0$&yXNkXOfbN(|FcuJ))B$93J@97|H3^6w^HWTwY0TvHoBw@GHTU?h> zqCdT{KE2p9$P>`npsmfVs5dQP|4ioW<@?2Ytbs5G8Qo)lD#YTQhZ9+w3yrA0+fCfv zup2~B6KpQ*@eMUBJ#^Z^YAs7VtRGA=`JaX?uu|xK6}NkzN)nd7mVmO^X&(%^TwJ#_7+Mn)EbOSL+xOot4Orm z5*7Ua0r^oWtLQG`Q*N)d^186zLcVZ!R+h%Yt4xDDfa!bbaIAqx-Aq43k?e%{sR4@e z-bOI$Ya!h{WPu-i3At_J<#5^g?b^nlHWolj3?3KQ;Qv6bKB{7GY8eiwp+0>Ass zX}HhzJkm9KjAqizWwU#@rPlp@3Kw`gv1yf@>X^uNXY?*k)=|Zd=L1dgu1gvqi%xC~Q1YFzLCeoBQ8?cY1g+w~R6{ zP5+g8^SrVMFwinpWx*1z0;3FPK>jrDfbhb&O3cjCWc7ZOBa*nB9NqptyzDrfSG_nA zha@6%;|>EJOYJKWc$#e0canb%0r3xe2Jqd%>f+mDfyrEVqS<)7dO%sDt~T3z^0+D1 z3lT4NzdXuKB7T=tQ@y)V7Q!#tbQEwo>4kZJ0nm0L zs)|gZ7$85%1>trDX#rGw~Y3hSdZM;*i7Wh*YvCtXK*7_O9=l zKKu7~&LeoP^0=9Q8(F9OcwSqyM$N8oAvwjm9ABg#&%_hjRVfqo;^ZpU0sQ+Z)DAO{ zxtA*D8bLmL$g4nxRoJo5oMn`f-Z;|>4f~peL3R^NBq@s|%Bbxw>P(11k!!jto9iI0 zTa`X=PC0#Pzn-jbt>_ylC}$B|Ja@1HH@@lH@c3N%tu$_VoaF-&Zylt2i#SdLT3M1& zg~3DdlF;@tRW$wRF51Qbpw20Tjd^y(Yg}9?e?1{8e$J&t{a76gv67Ia$EwVm5kf}U zJrQC)UxFQegONQsF+9iyDcV@#>l{X#T=O7~W7i|X>2q(Q&mTpJxZ%&*7X8ikPZ-Li zcR3tQkqKhaQh@t>HA|=I-uUUdA-W(`{|@Ozb39>Cq4XOTPSAQPaJ7SiU2CJ=(WQ6N zuW7#TA8q)&+QzOj`1^Oml0mU@IU#%k$uQj6-nFXsJNvZBUz9W@ z+u;W>iwZ5~(-l_@dv*L8pmz;QFJOmYA*!TIbX`ElW24u-N4Wzio`)@H*M(idD)_~f z{M@N>^LCb*&K`0@nfA;xL%mJVj9>fUM-i5{!@NS3Y$`QifTvYB^?hXD>}as6U#g29 zGgihxnK10;Y1Ra~s8?Hyg_#OOXf~-?lU_g>o@px zt?a(cJZzN4PeO~w;*y_II@e@e>86p&naJE)rMiAntm7cF;TB@Ct+Xfk$aX`mL779U zp_Q9J%+OU^v8dcT2Vh|G!{K=#<8vgtKQ1zT+x;#$LSFcgjaMnN`XHQ!D8+t}=71vo zf|ds1@$YJ1lt2eTu6!Q1)id>B1)FZE6qjT5crG}eu9J7y!60drSB~r*(}ckinI#-} z&<7VPrYm!AgnWqJO#)qQg>$T4~!`&QMA&OHjWi!?>ZwtcT z7{&dQs80E}%x^Y1SAlP>e`Z=*sc9fVo`l;J9r!u{^T0Ron z2pt^9PD9hIqB42m7zVtNhn7GD{loAQjsCrKcSe*C`prX*Lc?Wa<07CLzu7M+z?C0h zZSoG#8Fxd`Vt=9EUoX}=p!aJ+e7&Hadjk`||Nb}_temMok}$~Q+^fD--WTs!=zCzM z)z6^JlPtOLMl_gqY1ObJjp3&!w83qQtTT|7}T_ zKYnCaO!i<+C|Re<53CE4P6d5ADdr7m*8Of@y0K`3#7cm2*HL^ZLJ8CB4~CK;N6<1d zvg-^J6MlNLL_>FkJ^u-CbtcikQ1c&`=%)FoxdG&?tYDtFBx zN2ndj2(m*~qv`_k>Ukz{e@hezazwDrs^YAeT#PsqF2{fWCdKrF^&p=7 zyU~*)w^wqp0_K2}i9oW9tnUZZhFrh@JJTdu^0^4QV91x^#mmW8+t87Gv^EE?fa{7R z8msKhr>hG7X&F}~AW%jMD-2bJ3~x~>NL1QUi%UG-n1gEa`L7LvHlM2MIp9&p;H_r~ z#WeI8DL4r(+5*-By0T?q2b6naH9;ASTyoicuobLi!(nvK33MBJ?<%~)A zf?rC*_zp|8vIv^$;8!|8Xs|a&rB5+<$bCTtEH; z9e&+U+NlMR{h|R`>p)CESvZrbT|uzHIhZ+E{|f<@HyJBwYu8bPx3xk3ZTq7C1VF+0 zx_b_`D|<4wQP(%VHj?JHv!o-h*M|%Hu1mg+#~~cUs#1+QlZA5aJ*&~G@2BCph0cTD zXm~V{$!O8wh)PhW2bWjGCniNkB2|6m5%eylUX~_9_{C{1p_xEIF03fR`M>>Ap!cCE z0SCJM<0B&C6Oxj!d}Ec?CpR}x%xpkN3uffzatn$~pJd1QNb(0SKX;xz=3vZhBqi=2 zdm!|zO>M!dA>IR?x;l#yzeWG0`<8FQZ~3jHxpve=ox)rJ*PH@D!Q6+wduBLQX<%g; z*G#bV+YgXsZV)r^iF17Micc?MwwgLNhz~$96>UzJPM%7EOo7V72j=>U%_j|}`-2Dz ztc16F2J(3S?lA@ZSlHsy%n0sf4J?{~W_q!Ib>)r-6u2;P{vK7Ob*RJ z8y@LLF+(DKPgDLac)Imd08=CzaNq&?Y!$y4{}4%CP2v1hobB=i^grAMM823r1pv7l z;ZByp@LLJZ^vLGw@Vo70m)=8UH!x%847!^7Nd*R}AnMZ+lUKslJ#xZ0u6qu&-ex() zelRZJt*mLbeV#RLbme|fK@ktb=vfc?caJ`B6u}(Z+Bjy@gWmGhky=`sh>nil*tV6_ zy#r5L-y%OPkSF+9g4zVvK(lrp) z{%O1Wp&Id#l=Sp@@AXkNt?;Eqk`Q4BptiSo0`IP3nQJND+f2nU#6H!3EQ&;acJYX? z^IJZC&Q*NkRzN&)YO0+<|n({H#$H!z~;B1qh8D6gSGe6wwXF0Id)#dNH!rA`G zLGuaG|B_|;n=G1aIzkC}wB4X9|1A9g-ac;c_PV;oR#TT#K3KU=iODqQy5=7E5I&ow z(+LPZL*J?(uA5FjIX^8gLB4VL!1RvhW_%U&j3wN^7vpkx*l7tiHKk!VFfDf$Uut?+ z>K14x*-9L<+otSjDl;j*lW&QJz4nH@zh>fZeAsbBvNrAM0NjOZd~KcuWASB zmn!>TEr*Af$QF?GaIio_=j`j#j!eVx_p~smoovCSe&(&dBGZfJaD|mD!AaAT4Ko3% zoIeFLFO-_{v?@s!;=%A-0h)Nj^=ulv_|oWpvmp6&Cf_OT{SXA!G?2fK@z;usrU_Fv zZHDnL{IuA~YP`cZM7QtVj7n{R&W%rI@QFI%?*rj*!p^|mmdwsEaTEdC58}z28W7`( z$~Qe_wk{9#u_)yQ=$SWR>puqEbPqQ6hFPXGM(hVjwcudJX}iI}&7=9;6r3@3k#)xo z`uv6k(a03PgQxykl@H8e*$?rU_lLarS77%b1#Oj7jjHqs66IOMMfg!K0ckV znRJjqq#fT`O*n6%q6opwnovCHJ7QLgyyr86nA4#?^bduJ3Z){gUG7QHE9^CJ3*#Z( z^q7$}OYQPBOs_dJ)>nJcpj^AWc=HvmMR%pRshKP7z#^=qR1l;u3Hkzh~r}tQ{mO#?~cIZiM5D2oQ@Tt z`F~dsL2zR;Q_Lw9UD4hpwAUt{a5Ic>0uviL_@_xr$lr$`>5tpi{Ll;b_;i<$bOt~O zF6sdv_QLXogp0W{ky$qRj0B(k*U|0-k{|Z06+*vD$#g16MymPkZNvyn?f7&~g5-o> zy(E93K2>w$psBAbP>j%(H;U>IhUqX!rhLUL#blaI#@Kgx)pwyVVUK z|D1M#PL=}vMxGuWYb7Zrb4{nmn^@f)9!jKsU9`U?0}8P}Jl*lWMteoxKsu$kZo{*bn0LAQieaj{rwuY^j$lrSfDYQu`M`+_ZqNFYGgSj0M#_4^XpSaHXunjYPajh@eOk zaIE&vm#N7E$kV2YCyknZAZb=F_scs8C8_p0%@IAU;V&E)NpmVHJIlwV{1#qU=B6S^ zW!sm{wP_P~7nbCaV&9Qio89Ci{b62$Jo~aZBxIE}hd(OJN5CVn_Q1EDLpcGkJ3Ht! z=^(-tj_56YW%NZb4&@Fav^k=`+k+`;HH3KhB{|9^hGjFveYoN6B+AwvTAB0v(vu?Z z#b`)zX}O*?AVf(+k>m{>HP&0E-fz%OOpy}Dek3U<)-K>0jBt<&@Rea5P%^$p9#kJ0 z3!md-1z;}VeEYq(bn%uX#lr(YzX03Fm;wYgTZXepbQ^_R^ZJ6{UxkO9+{4%p~QDvh9p04lAMy3hzI5 zWd!-WTo6G5&Mn%%oJLkFu!xEO2w9#*b}L^N9h^!*omC3>v(1%#Qq#vJ+3b`p4VGg6 z#IBMo(m>4e$Wlns@ftJodn_QtMdo1dPOJ-0`c_<=I6kZKR%{AXmoBe@T+q`|7$45_ zge#7-)mbKRUqqZ`WfCm4_wQ(*S3{Z9ZvR#)eI$e{C{T3J#tf2u3Y+CGpr~mN+tNzZl%{uHyTct?A)1 zKjiOV%b0>8mZj+#6RUq^W6&}!En<2eD54XOwdgrgE%PX-X{izTxN$4@z$USgZ2Hh% zbQ?Dlaq+0}T#tuQFqXD7%a$T(bkMkx9$0ix&oX6{y8{n6MTXAnI`%J#Rbv#AqZ>=e z)8vKdD&ILy)9+|i*CKZ7N1*hI+yt6(KTdO*vHwqDZy6BR(sT<4NrJnR;7))UU~mcU z?(XjHOmKI1cL?t8E(z`s+}$M~=Xu|I?{ktLAHRm$y{lKRs;&()J*#3s>iVI1ZSM7M z<f+RuPRLTpkS#A+`7(&L~`CNG4V{c0GtOejsn4 zD5&cw5EhWNsvOQUO1z`!;iY&6Pv78SURYp9L(j$cAuFFFG&z{dJ!7?b;#}hsKx&1h z6xx!mD-wc-bQ_W6rU;M2a)=BL;Gu{16`#n)s25$lCnYTfwIXV@=~D8mX&kQ-X1i&A zV`6iew@wM6S#j;LI`+!DMsR=9chy+W>E9C4L65#HSDmC!Mf`2jkt)Os9@VQ8|LBq< zcovC|>mn7i4DZ-5d;_J$n1n~7KnWYOi3rK%SK}Uk`~%LMT^s%wbGeXr*`wVnz~S9} z3Fl}?%lC9+wwd$v*cXI`6qF4lRO_3T-zOhEq^h2xt%?<-J&a#%e?vV8sgH4#6di|1 zYPaAzQX7(DX7RUIXVqgMfL(sjbASJp@7dd-TS|2Nxz{ON0VCtbSfkE}2RXuP%`C&x z4RUqaK+{pctC>ThvB*_54PUP!`G!pG=Y8&u`im5P9Oh#1_aV7c-fT$*L7d9(S?Enk zEd%czA9e4roIw|==An5NS5ZGaIHr|^I4R+1bE~n5M&X>eYxJfh{ z{mVV4)9;2%;z%i>;x5ir0|bO(*uRJ+E|!kQC@)@A9W1juhlSR0-s|v6LWWq zI!~WH-RoOCNK=atNfY=tp8UR+JET3D53OnBar(V_hE=Xv-<#ATSyN|_T9(00$n$13 zT8xtaZX|X~E(|s(kjQxo@i+OEs$H>l-9Z3lod2FxaS(CSgcPhJ*ihV1<#3ANk&3Zy zD8GxW@Y2e)hJeQsMed%_Emr1!QHhrNxEMhRL?k*IKG$-rFL{c182#AM0KE-?>U@~Z zYhjE2DQIo6aRFSdy3b- z>bp1hsjHU&foWYoHg}J;6Wdka46yRz)r2+4`Po>sZ}fmyOSH*5=}A%InA|m6uYR76 zB8o9blh$fL%cRQ2<2|FE>|a6mkW5oZ)h}R9GtUZiNEC|-BSzs*Ag;}J0e-M_ zMz>wCzx^N86Jr(I1hxz0!(OgFh&$2GSEj|8E_M&|NTc%1HL8q)z!_F`CTHy1k~{+T%obsPfk%MM>=ByZrR&2=y`;8?Xd|Dvvg6KyXLMmfVCddQ zIar97sxd*iiHtZ*Xi^bN>oeOTC#Qpns0-J!t(j49 zb$m|FJ3qgx;`>Xy3Oxn2^{zoClhvG=F?8etxMlc-a;5Bqwnoc8mt=X|fE9X9?|bw2 zlV_|O;s?Z5nUtCr6%tb>K)^M#2;R7?|8B`4XOWc~H|dl#rURy!@wTJ{Z$Nw6*;MxO zsfOZ4YIAD>O6TlWN!pN2K<}PQiwJe~+cCX3&yJtRR^~C~aVlY(zrKU-D+3VDRg=k0CLbzmiqXminn0{FqMgj0cS2dvbv1D1{R zl%awdFR5DQ#KTDas%uFLD)jArygmam;DHb7xn(Py2fuWsT2fEmkCx1FXXF<-u++W*f zCh_H;?5FOA*(=_^2^y;GFDuPrPa|QGC^G&S4|FFlZ=_!+9)7RyQT5wF|2s%bLW`AK zy~<0glDUR#|0U(CKJGGEZcWqfZ!lrF_XLK$o6;*m(ds#NHIH;l9y)p9A@bVrK$86e zr2{$9HVoD9C%$|$q;bF{@^2Qe((gR)JsNAX;glB|Sw8i>5>(L?ps=sQecKW4h7QXA zfq9=3*$Vgw=QRQ9XK|G~IY*`#)IN#?Ug_diaRfKmS(ny53h;uLO!pd?rohXV%Q?S< zm8gkE8FnhZ4c5`Gkw*zhf%Qp>n+*|31a(}d4m}i^6SIh_0k}IiIViYrs6{pO^f$p-y3q>iU{n575X{LAQ|~!>L-;^ z+HFlk7vV8NjGS$duZi%$W@i&pw<~OkRD2}8>8NAulot4|ETh-AV;CkcR<$5~(NSEe zRL<`oV^#f#U}R^x27m{fqLsVNj~U?-&OBlKtTeLXo1mBaRatH}-HtS7+D)XacSFAf zebIPz_P)I4LA(P`M>i?No>KBFt+6-91pilJ~T3-uxLw1YB);eGx#6V_X zS}3B5+ibE`4q!t8`%Gy{C|Ol71w&AWN@HgPeCkl#w%B`3hd*Y_d4Z+$|8bjgnyQPq{o7tSVc(!b*}pH1 zhyiP1lm|gxn+?7vwg}{5s9nI$P;r>n&CymsA#iFy+~}YS1}m<6s%3X$r~D>PpMW>6 zdOJ*;l5DqD9A<+*MRBR$W$R9weTs!f-QTsRNcn2@5H?%?aizL z9zr*Af(|1qDBNn-J0F|e{FPEUPxD)d`7=GuN0gaiL$PN@v@zvkB<{1FAvCo(|2cy=4Js-f%s~D;b#szzqX^ozm(Ht2%f1TEBVjDtM4J$5gO&A za{|wFB9S7v84{~%XsvT3iro1TOd`aR#guHzt?B*A9Y6mHjl6(A$tzx@)OO5O6wxI9#MR=!uT&vH zNeOl)EGCUfBS|z?9;TqzVL&;W5L02JFV>D0vHg~hxQHDoic;L(g{nrcs} z{+d)BF>G-fla&+bpBG!0K>!05Es@={4hAa)u6hM~R+~;VL$!k|RW2L|8G2KOhCtT- zv$c|qH%PB0x?z|9n25mpoxU=}0e5xj^fvq`-74FGWKkNm2jPZq1}25WMVT zIx4=w`%Kw(s}e4Y*!ycF9ly@W9M8#UE>oE2B-s~vAuJeXwVN$ekoura%65$hLQ2NU znZ|EmR=OKHfs2ie=$S+HQ1&n#*mlq1;F={}GJE77JLnhk`NH3@eh(WTe_1laLF<0p zmPs$v!8n~X-YE`xS3O=wbP^|tm$)SR!)gfQOHtU!%Tj~87^jXN^6M%BC z*Tpj_pwns2<=SR;P-Hr_hN9=u1d)P6D~)l(8Rzayevr9`k?{(8ljtjkiO#%H4g==N zPSmK55;i8Tak7tOGWYX$;h_`yY1jmb!?5aZ)U4Yt!7xkr`KsvRfd+$631BBNJ`Lnp znbJM_w*nw(!n~v14#K__bMZzL#4OKyML^}LznJzgLFzMJPD^%u>pVf@jZL5n*L4eV zttmR==($d#ZCHxdA)7gVVuam}u1x1v>!4kWiPMfbS6H_=YAvFA zQ04;8!@BGYnONPeJASGdhG2E#1vN^j;8q$&-> zK(|y)Zzs)b!Y2P1?nkj52jH>IK2IGN7+;W_4cauY!7Cz! zNFzfl1^IZ0cT?%@gU6NH?=vDB*srEyTv`!#SreM&TRdVURBD0Ugf;T6#tR)v5DmQp zfxeIjKgZN363Y&`X0pXKzNfy-5~D~oiz315%q(RaMmNGiQW0r|qmjAE{Swg@sJZZK z6|pbU9qi2$w2S}hhbd=Kxs~X(M8WD`Fy*kUB~-4fRaGCv0k)0!6vTbJcrnx}Vp7+9 zM<7P6kLo_FPtP2U6}+P{LXLtful-efkuY}X#f(Y_uI$tqM+gb#(a3K-0rL44a{F5W(U z(!RBK1Cpk3^Wba#)fvQx9yHc(OC1+w#EWU~+UsVk^L0%WUzkMPhQ3|G@8|0Luy*9Z@$Rm5aWU5~1sc zjOBiwpN)%1>0q9sJ5%#JTJjE(fxmImf`@CIHLe~XxCi?w4smOT4&}Oxhf!-7O0nYi zCJRvh?x-~#7JW68{TlGxku{fmm$<}O%dX~UE%xAP@M;&WWGvYAIz^j0{-y>ZzS?-8 zE12lxw%zfaLcTfss5l$j0xF;`r)CNNXLT+_mZojT3H&m>1es$T#qlsBYb37IlZntX zDv(P}cLcml)9~DyU51T2IOn4<)!i`&D5=5;L`o1QPCr)4@Y5(P-6rv6u#JH(F0mt? zgAx8g+VR%rp`!Z4=&^V9xUJV>`DdMr@Al1g@_2qFt> zRunt*qMhdIy-smjkwugIAf(~dTQhy?q58)O4GT5m%<}1*w)2=Y&jYVoIxo?Ewbl?` z1l$<}i*f_yW-T~NRk!^Z1fpkQB$3?^A$S+D%}8XiGlITPj1)E4K~)d0c?|gdr{!^>q*20lz7k#gF}DvjE{t2Zp*W^IR(5 z0k8zr1#l;5+&&YlkAaH^);TJd1(J=uSbE^Vll%uXY_$H8u-eU^{oiP(&wXn1ZSLJq zKkvwL5YrPXV6?2WjJ7dHqMep}pIg+eDvtYEOZ((aqRCQ+^7H<>J%idrw21tXotIQF zGMS|}@4lV0alyLhDAR2b*9*(=i(#-4)g}y3@8?IV0Y6ig_)?hd113WG3w-Llr8rga z2d~F5F0Eh0fWbhhEg2W0ZMCfH!a0BJENnu__QLN&S2-MEM;%FSL|GyL%6>zM+f2Xv ziCN>cT|?RKhPmN^^)OoO=&1m?&OH08;5wXca1d^Okq|Ut7?Ey+uLvCSt^+UN^HawV zvyGbUw^&u1N?-oAFSuShUptPF&7WAn*VnDIlTj*2Sk|>R>qm#@zGp!r+>_)FHNC1D zp|YMRzbr$!`^&GInO{v1{a*Ii2_#$e2QsgHLBQHs0(;DWG2^DENr4$ea0WI9dmFhM zm&tYrA>A+&)Q44XF2{lQhHe_y(~6`Oihwv4-0Rh}cj*H>!SqH2yMxCN@q5MKLcB-3 za|TNL+i=DLM#)&o=ZoRJlbhJMjTrJ=S3P%mtk~;0(CJUIRSSjCC%B6U=+#24Uns-xbE zoy&KENW=qV#?XT*=m~Sv))c*dLULWM&Xy^o0UvE)i}m=NDmXAlU9aCxWiyQ~Ib+U= z8tl*cmI~Es>240i`kP`YRl2R|cw^-39|3qi4Me!W7;UfYnQ@*F7rcouqZb>xS9ne? znCf2^?_m+yIh~J(CEc|>YcsU5k=4|v=@E-WJ<#$_SupHA1J7Xc;ma5W(v~ zaWV{lrwHZ3N4Hs=7*wheAm^)44T#{m!idw{cQ~68JhZjh(=BWV#quF)OD<6CspVZF zmcE+#>@F7{TM5p|i2E{vT|IxS6P>a$!JNRWtzx$<#)Y#{HBY7E($HmZdSWr=u$nQ4 z@dZ0KxiTG%`C>1*(~S|3<-j12aBkVI!=KS<%oy3mh0%6bg~S{9--5B_lc5 zK~hcJuR)yjXcw!%4cxFwj&J73AVRJ{SGmp@`WO@oA7&t5loZNl6@PPUkMRS=>b-rJ zn=%c}E}d*87;G!nmHKY-)_>ncqDOwXLw9uqsub3JE?C5ID!KG<{GIzeVJl_RmJF@A zyCj@^NKQS*jExG(lbZtmdm%EUy=4?$lk~Dt`?teQ1fssA#M-yrxjysm`T!XDlg|_M zmZIq0v){{(p>N%ntr>VP87e3CJ@R`!l!h=Xw_j`|e5BWRK^4LXu+JNz97 z&nycZ)*!+-A=@@o05(qQ>I7&oS)yvVoJbWi)_X{@_hx~{5HoudO>w^rl*w9?6LEA) zwGc*>;(TjCe3WQ*H(vDGe7xqp6LR?1s+lQ5&MSzesg;z28fg++r#AHwY+`pKsx)%i<>cZN>Szviq48k1}ga*Z$8nd^i1kA z?b_&THcR2G5UytJMpYMEc!$7?uXvH>Ecij1dsX1*4_-b2sdS?pX7yj=ds&X>QlI!Q z;$CKoyj>^->eU$7M!!gms&Vv?Y`4D9*xWE@2Eh!K)mWH1ZpW$RnM+oqu3)QhYB~EB zVov(_+n?3f7|3L=punFTmq7-UKYH$Ta3Ur&dQB{mViARn!XN;nU61Le8^Bbk8eF|SoXpjm^S^5L!smQo3tdZeo^r-r42v9x-{jL6|E-AN{>1--+Om4xr)AKx==jG;P# z*B$92GH~h9_Qq7z+shSICh%3{Y&1JQMtAK~YBavLAejo%&H#yyisnBAu;D-WpglQH zkM9+t!Ue*7s$@cTnZR)}${Tgzc>cUXx(n*0Fr7NF)1SvCR3c-ZS(1|tm!ir@^Agy% z9i3OQ1G{s)Z*HorLL?o3Z!b_*|S;`4CQQUp3AHo*#BOO8uIxE;Xe04H7T&>1{CC=Bl1a-1!2i=HPr%~K_} z$c7Ljn)#)PtoxSuv{BNWbVS+olUu`?;H5x=@CE;DC`jW$ zG02>IxDsf;2;eb@VbcV7btmJ2cZAgLprU=n-$YX~5Ux9nG=cMO0o%A1y1M8>;yN1` z-5Jk2o|ZUYU`{u_zrC>n51Cc6)#2)1Q!$#2tiE9OVL3e`ApfLqPq5OM9XrK(I;0Yb z3KdXs0No1ff|K;n4S~EmcaC0e7c>Ql; zB{rBsm;$1l-=VoSMYde@l>E7hY8$wPe1vZ8TgwH9LI!hBqOyWgAN&CT8$sr<7KSqC z@ax2v&7p6dM_Jt}QjZf1Gk1tbO2KCiRR@NltsHct417@f#`lVqPxDUn`EV~$a3g-x zbIc*#hNqwlkt0mcx z6s7H7w?uiHGn6sU)mxaaJpavcdVdcsewNmsP1}9gs$D@lCm%cP!r4;lwFHS%ET??? zz4$!&aX2@d4bglY(p#C{oIKgB-yILlWAoK}7Ttr#ZmmE*kU3xZ&X9^5hY*hGzPt0Q&H1MElZ;Q4 z{NvmZzBPQEnFb)=;pb>dJd#XH+gx9us!I=OyW)K(a8h*z3mnrpeC_WXRjk}cK-mSs zd*IMQb--he9rR4hAT#UxSV)kVyNCmq)GCfxiSU5GdYVT@2To?#3;94bczmA8&d^L} zy~?@m_F>X8nr;HOqtzNo%d$dRqT{!Bj)7%(=5`5QWFU}U$=#tJKn{(YmUu@WEq&q; zXIu|s?jv6y4rW9y8;cFW*do-ibMyN-Cc9OOe z>c?iTP|k8QJAayqoo6&=#Pg4^^IC+LeW%GfGDBLG*z&F-0m&s3&YQ3ZPgSO&NUmB( zzw-H(v9X6eJ|gQXfesVe0Oma2-a7cswX~@!zSWaxVQ>+=8P>p$`1h2$enUNkRz^R% zIp5V7++xEB>C8~0Va{pUx9*K%88~!NHUvweyxf&*0S=af^-2j0b9jZS)>F3Lrw*qa zC@q5ym*J}tJHLoA55XO&VZX?0PpMDMMiz9Cupu!kZ*LBCRnohl!j!8WWuJgZ*(b@t zX-v{PvS0)buRPtCU?+{f@WWH58BEdOZKUz zHN=5vOcP|bxI!IQkY;Hc+^HEBQ@N@@{@rv2*6JdQ6&;VIyA(A`=j6XbbEfNk73lO% zC^RBLc(5%jLHL%^pMwjKkPROev}HhcOQW3TPf5M6>E?zYl+VJH%a@T-r%UW1`*8Z% zMGssP)VM3v-Jyp?o5V`&>_Z$-3H_1VXEAH1mrsjSNVnx8zHROS11-8mV~q~kRlRNwrCGP{U?88Wj|smY1WOe44xAEtfl3u+BDzfIhzZDCJ&V7N`g8Fxzx zq9)n)8G#|M?G)|jR=gpUFYx4R;>C%#Ya2^4U$FH--TORrFq8t(!}Khgy~0kmylGD? z#-r{kd@y>ujn9P|j3u*+A}|$!Qwq`?j&m4aYB$dra(a84lv~tvV!B>grtak_vF^aj z8VvzGYuUL5#7AZ}*8VO=b(9PHZtpxa$@pt8mDxk~AN?r{6554Tmlci7i-tD$p{ zvjJb8jX_%5F-|j8)*gVyL$ZU-!_fwQG=ietPxJSjPyp7j*f4xeGRM%7Z4^^?LK2D} znM;H_Tnj+R^t!m{ahCw2E<+Ks&==I~-G+wzE;?*j7So)T=az}D(?$uyl?+i@J|pq& zU=D}*;mQgZ{2=1`B^y6h#JV+A?0&&e{&KY|?bD$5;0}ynTuaRXNjq)KxS1tb)HXhO zSY~)aocmUuYu%L#Mh5ICe{dI?^~K_&8pIM`Pl-`DMqK;R#-43Q9)j7|xrAt&2igNs zC)U^5535HSCd(?-!K1>#r&QT$qL}9^4|Y*&uKVj*7;(I=UBG2DE@Zo@R6!qHMsb*3@#g`GDc5I1~!v2606R3qsWCicGk^XW$_6|P;+$^y}AUqw4 z8P`fa1)XV^7~EzB+x38;^JrVJP&(-Wz9hW-g=>>1n?HAQCgazo3$vYGSAhX-ZJv1P z)YZD8mDP6#Kbqtzqih+ia|rom^vv*Q6k12WLx&XxX18YbYJm(zkCDFF3g=UWm+O(! zG|TsT55?M)F+Vw~x`KNsutZ6y^HZ(-n+jrLWV7HsEz{kSs}67A%wSK~Q7FlIWBW-< zF&@=s@DR@stjNb-8ZHT4efcf^mH^I)}zxW&8aN#b%6O zl+^TmG*|z{VJ=>PQBj<*YPXv)2vI*Lffw1oO#ET>z{h*kQdrn>+zR?37jDvu*{4WTDTx^6}hDzi9R|N-c8^kwK1#Lz8k@?2 z3Zjaj*4z#3*MwZNhO-SijjwZA)$2(%)H%Efy|bY(u6Tp_r31iCy#`IO=zY`n4ADuG zO2qvWURjelYVp?gIYg5(wiUc?zvvjPrjW z?aS2=>2T)xzcyw4a%oLYiy&!SWe2W3l)h>LXM7-+%6cD1l#C$)mf1Rg(7tG{#+Je* zYo3RNZv>C5T#Z|~%{#zLn%*>bX{(T6tSu&P^bhmkgbM|$8TUIy&jjbuu{Oaeg(hqj z9-!CWhk!Y)(F%o~7rJ?Y?$g$xk7P8b73oOpzU;ylH^)tQ!{oe^r03M3@(cz_Dg8B# znuuqO2S4hD%oE5TiUT z_6Dr@E*wklt)u2MK+x>sG}DRzswGZClZr?UAs=kf z(#$@1v4HVvM`ukwmfta_2Y>dFU^R=aaZ^aJrhK(N>@vKPlA%VmW;ZV*{kmZy8qviq zEf4nIjQJ91Ki0~R zte$-EIS%_%}tAA#z0Wv1m)n6_}}-x6?M7iKEH>AXW|bEhe6a^X1IRF zGrgwI;Gv#d=I5oW(NOdGU^)nF;Iv^PX^8lCdJqkre~xiI{?lnIY~Gav-5XNT*5%14 z`3D&cwW9%-rHDF?%Ggmd;j4Y9@`Y>)o7x)p@~)-C?MPh@gFfjTuPY+jw{+Q*$b?65 zGGZRHM8tPqqBz>T_&9Efj^Hi}(9Mu@(8XX98pUa0!HNjvOdYXr0DwstsbiKg*v!f_}Ja9lMdlIc%?QB zVf0TKzt>W}WN2}qVj55IN{~8=chXdWdycb@D#<|Z)hJSQa;}AAZlY~|=Z1UR6JC}o zJtDO5T2fT}uGj?*`NJRIkFcbq-Vjo_bh&3_3-FcDh&M?}1)h2mGQKms(I1^}%_mNG zKzi+%96kCNzi7~8hMxcBivf)nf5h;&>^75g1?hkAoo|A)D{sFng!(-;P&uE(;eW@T<*d{U&Gl&iHf`YDOPmjeF{x5$v(MHwJSts?ycF;d~;2 zCaNwgC zNIy!tjQhLO)8#i?djqMs2vnPnkPiHaArMrQND3I;6x?CqJW)wgNt+sXUkOZ%Ebw;0@P zs1}{SV}VCsNcWy?@kMV8V(h%qkeD0pY@I`v{}796aNyC6;|^V_BBg zwY6$_c7*C}OK{1x11jK2U61>=iw3+0`&_wNSxToF$IN=()r0Ab!dA$L zgJ2&hQrb!$_0Xvt#)K#6ooY~6Wf^;~2&;#7iLCx5|h;^`c67SRj zmS0;heQSayMJ(KNk%~lnko3@K;^^VMhI|})Y|wcD81vPewaau;zvW9MxA9V6w`dqW zsk!`|Cxwf3vzE+yc0`WN=yBs{4Sq;(6z zcJvkAkx&s&!nUjX5}s|V_ahQrzeVT#SNTqx9|X;a7UR@@FwHQ0-AWkL4k%vLJ`{}- z6NkH7|Nb@NL22WO%>rEqLR^Fu;bIr1_wc7|?1=O^UVGv>AH2X`nP8EZ`h=B%6vAqK z)(Z*vqDalwZ#l2WhoB#O^Y%U*4L0qShX4@6!*x6WI&jZ*s!sil<8?Xf-0QYO69c<> zot>xY`HiI$WfZ8l%x1t@EhD$&F-fH;agpc3-E8?~O~62G!q9kgr23b{3cyWIH)S^p z^RNqnN|Vh*ppdOCE1)DOvsRfaFX4%k6Sp3GE^YZ~H^kk#jDi~VV3;F;OW|b0n8D00t#yf~ zc&wDxu0a_g^mrg;jGoTQkkLtEw0Kkto@a+B>he$9>$s7X3gXsrS%7;P!(4n^;a~|A zy*IpL(OVU-kjypQ8=olFVA&yFB5A^#aaTImhms!8&G6y336IkU&#>g0ZEFLql#Eh2TIST*Hap2Ifzn;%D9aPT(=Sjc5o z_uiL6mJ{WR6?(EFqI8duxK`Er?1s(neF==>D~(5YFHI8|-w+JQ(%vd*YvYjB@(V@0 z%}^H?{S`P+jAxD7i|~0jY6L$aGB<2$@dxN--1)ZGn!}p{htEYma3T*A%U?p12-oS1 z<)lkDbeH>V9GMXK2&I*?>O?vggtXyQ?H@t%(UE%x_H__bUZEA39;RjTd>45 zFRjkQ!t&^gch?NH=Ja%BUATl!jzlle@@ohV>+j1kGR$R%6NodILa(&E1@GEz*4C$bZp3!EbDnv%IG)x)DPWHi3aA^WxXDmAk19fbr2aNjTH|u0ih(qZp zGN{g(pxIWTcP8AV#k3bx|2VNDqgw4MsP$lkw4Y%$p5^zQM@Dny zl~XVJX$v=Qxrmm9u_e6Og6kOQyu@?8rUUuKX`C8$M>2{K`+}#qjeGBr1b7xwq>{YY zY`V^E-t0XPWV?X(2>vg$DGFx-nCNGnd@1)wqT{|yZ!mkjU$n&cX*e# zVfWW_w_ptVNscz+=-R#ISVw}lQ{y%gpAj{06gLkew{vxjC;e3>f1)mvFBiXwxQ*IB z#zlCv;&)ywWgQ~~w!qnkL{>9|zD%~4(5ca(@4X&pIOS~~vWtAHpFfQ|;?Y*~UeUkl zjoj_ZvVohv4Ff+n8|I+g7E9c{^?r!)7-+MmP{Y*GDr}w^f4IE6_4Bp5Ikk&QX1RHg zZp@hN;2YcDQ!e{VNXt5R&9p@4XxMbUKxO@s{_-A=MnzsZxO}mnJ)oXQ-K@1WT(x<- z#pr7Cf$Vw3Ey|Br((~~9XK(FVq^xBPdF9PEnwK9-8Z>wxFd)CnK?Mdt46~Pn2$4TD zhX^fdz6%hF8BE%~hYn%C<&zo0wb=fo+wHB34$WY;|YQUk{y(k{RCm3E#syHVNp!!}6S4lMak|!jH#AQ|eT5)Y0W$s{m;W;!^q*<|HSnJcZ-|JvxZoHR-E57B7zFej z^(<{n;231}OpF|e{ude#57GZ(XJ<N>awx68A;6IA>b7Ak$lT{%r#?f&QEX#13Nm>s}y` z{ZAVR%ntYqHHZcHPgeYE5)d2PoBGWkHqc)o0f2xY;9rw~0HC+5{I@^g|IG0Z|Nl2D znAw3$Z}K|-9tdFn3pIcR@XsFj*Ej%(o$*i5045gZKbc`>WBYFg{}X=zGYjiqac5>@ zVfzy`GYjw^{hxnL%nW4x3*cL7vHZybGZ664zWLX^Ol)A*KQkS`3}9#aGr0h)Ou)ZZ z%=$O|02W5zpP=7%4%6Q@Ame}hy{-TM(hp!|X89B0TR>R;1oO7*{z^FD8|**x1Na8! zZ`&IU|HZ<8_y;nv{F$vl;2YC_QVnEdVfm81PBoL9#O@ zsY1WiAttu}$UOZ!JV53@YYu>k?akAlewhDeo$)Q+e-igb$KN)Vw;lLr9b#l*{d)n- zOn=pqx1#ZnLe;-OGqN-O^9=a6jTP`0NsR3Oy;J|U4l%K@F#W&c^gp$U8OXx&=OoNP zroXm1GYg3A&u}xpMdD8|%&ffKC1%cT99tUD!{A(OL z(_cIAt!gm+6V89tAr>I(U%TzCCbIqMkcF9r?a!6GRh+-_mi4XX|9S6QwPO6Q#R>lt zueXOB+nQs_Oyc|Cx;f25r+H!01&BX!KoJ>SajO>g}0DOD^M<)jp0~>(b@`9$e-7X87Pp%&0_u}Q~6VEJB zp2nW@00Ef8{(4Lz*CCt2NmAj2xnRBNtIvrL(~Ux4u;rF`2ak`dUQ@0-sp^$CsSr1; zgA!8BUG18vQb^j;io{Y2&z3KAo+iuL*zNpN4%GJd$ww8;)b$%@{JcSo$mvJC{M_umFH2${(}!5t=up6chwsi_5-a>+KwULR8F#Bi;A2wyHA~N7|(TnEjtD3 zwokzdip)97q4)K{JF2HQK1Ytw(!6qlhPQwtl+00Gij1j8AkP69xR|4aTm}ksC1fD@vdYiFO9<` z_Gc5kns3~9*7@ehye#?rYTh(qzXxlpJzIA|VzCLFawsu&nSD4bnG1xqCah>J!+DKJ zNBbgu@DV^l4X`H`&w>{I(SiiJOrs{ldVq$`aqOJ=15a3^OyJ61-R2zVfpx0aVq<3+ zMnx|1^CJ3PgSBOAMU36&efiO>iFHz;b2v>a_%up=BxaK($luo1pVr|=CPQr~Wc~qL zP^V20$0Q^qMSS{xrb|oh*<|z3*bGN*&xx*;(OGXd$GywuDhg%IWHw)+n?r(u z61YFy_)&!-B^8rBu^CfGfFnWoQ1N@+{0nc|c=xK)8QmT(#~E4BHS9qW(#fpnFOQqq z6@N#6j?ZQxSj#G#s1bhWBC9l{*su^pR@P3snfBzJ*9`WOTk~BuRiB*BC%(33idlk?RV`}_zpC`Fkl+Z7Qby(x zU)60YCp{=o%9XHjU+VH(9wyq@JK{QCMY$EpN~lqbq;rwsEJlhgDORZXjUchlsq)H2 zC@`2)Vi|R&leH-CZH^TqYCaarjG?+KN{S2}a;0E$=BPo8bLM;+Uo93$n>RpZcei1C z?m~1}l(D7Qv7EQ|=8K>eifNSTyRP_ZvMLvi-oL-96m*L9!_hr2NrI9KP7(>C9s(2- zfpL3Lgh~wV^d4IGtSEr;MGkd-RMa3-m zoNzr_j=m(6SD(sO+?Z{4%3RcZchdGiK_kr&Jy{5H2JlTelO)@G%O+?)PQ-U4+;Ex0 zWU?Zr?WA*I^V)CFx7V`jMM=U!8hJ9^aVAf=s?e zVRBppl9iq>R3s$WgKs%^E7211#7>Q^Y~fcx*RU8(FP3vKJN^Y%*sRy6C;20(Omlp+@Mjina!Cq#dn4y362Y zS9U>aTps$X7Bp|cND>0Bgws}<Hq3XG1_ zM4X8rEMk3(#1JA;0j<>O7dGo9^KlADD9{x~M2go~-ttQ)vh|>XZ1RL*N>Ln*KB#=% zMFof+^Fp%Nqe-S5VV*ifPx5Gn&^X~((eW>|z2HJ|Ns&0;dOkx6D)>2?#_C{aAV!ub zQ$e-wFoJ)VJXjW1^vH1mp;@BxFA*KZ&>=V6xMJ5adpS?LS|_j|XN;vf1NokIW@UHU z05gb3&ZFk<&ljNzqhfQom>bjNV2)F7m*K0I3BfR&LmBPQuf_*lWoN?0{Mmy4k9mrpWT|_JvN>FEIGHFi8w`BZFh6*Z3 z?`e~R-L^N^z6T2=Il(flUu^k&j@{-gl&ATmZI~QS;5gFbR))nZdYJd5N6;#x-w+dt zr3<82AjB0c!iDBL{CY!6w2XZ-YVJr}8+MkDzm+g&{?s*n$;>jQ6%s`;%KW&O5RfjH zQv<`Dy^WUwj$Ow~<&k>B=Z^?SrwUD-xx?4J)CeqkCTOb1^_^$Bf$yF(m@42OUsgfU z+s53_r1@6lNq^d1*gW@A)6=UC11~bxRrrP`E>wSK+VX63cMkr=PTlS83{Y=h{u7a5 zD9kV0g{A=HCP~z-R-M1r2k&V&xbud?zCEgYPoNMcx2hZ>$px}G5$VYg3d#?DD)M76 z6ub&WA2-Z<18x0N|NG!mo5hUqUEOk~O|jyMPi!l1C^m=R!c&;lx-vD1Tip(}&l9T_ z)s}?$dwwT079vs_lv$j4RX50flAQy<#Mbz~KkI)V{dNL?>2F?8akn=C(kmF4nE>d8 z?QES)Y@Hl|e}F;>K(A!tXy@!;Wa0>9{I3(TCdL*9LUwLIZHC_`*ch3B?3_%xfZyc~ zzw3ZZ9DiQM#|QlH2mMj@7fi%{-~6{welvuTfd$C+$CZB`vjI8(I%Z@9{=VgZy}|zb znDrlTumBnVy!Rg!jLbl$KiBi;3kDz)%Req-12VDy`QkTk=oK97jFe5BfZD%*JrOY= zy^4vO6HxcJeEwP;^WT^Emz!9b|6?~zYDqh;h@o_ys57uvjA2c`Y*pZGf45Z5?6-A_ zRHhEY3)e^l`6QIz+3n*=00Q*`B;l;cl70>e>;Cq3=cLx`@qYjKP99<$eJkv1TYH-x zRlAY~$;9BX>B~z7&_x$1>gstocDSV3Sv~pXBmnUJy~|?RMm05?SNG%VO(g1odJvE# z2sKC@vRDG?Xz$fYcA(v2M?@$gd;mB^IpKP9oJHv$HTPAht{S14PgVBpZqwSEvZMJK zYv`lO8jGiKa_8!H%p2*%){Op3>I<~zuM`8uWJ_Ue!GW^YWnnq|X!x^*aydbLXG;WG z&sEjT%QmY%_F}oNGI%9&pR0{RDuJ9N!EeTfdpeAEa4}Kjm4<1%EhE27IzI(Eu5Oi7 z_3K-07|5JFE~bMO)d0v@=I}`UPdE|fxRQpAR9|>&DcQo9@HayB-Na$L=z?^*N3CP@ zNy|NY&*7C5&*Ggt0pu1fojyO=u?hX95@yIS(PfC>Q2-I~Y_yecqG%<@z7yq8lKzre zm$J5s#6%9;5ZxN4=>b5-f$QO_<0NUUhBEFu=4m7i?#n!tDaq0-W7vk?uIVDh?*480 z)Hs)URvR@OXx{KIY|z+V0*<{1KBaotr{6-P0`cp|R(j4q`w6%Lax-3Jq9_IEEK>|c zh-Ew>XPtXVzkC!Tpn&W5=qu-(ev@GF6~V=V=7?t!#1$Q)kJVx_G9?LMih@^{Cd!Z3 zr`BY04}}lur*%l~}|$1FB7Y#=YBrfEOij3;%D`v>c1vUPe|2>N9Qv>C8h;A8V3jX@| zz&FwsD}NSay0XdA7daMC)w+J4GIi^U5mKjk#!L6K+Z&mTM2NdeS_d5e))K1o?tU=T zM`5A1?EsQZs<>ha(b62(X6G$IS-piEKP-kw(E5Xk9s_w#RsOJ%lKr6* z+7dXTqYgi#P@k({+1&Kl>By$&aIto0ELfs_k$M0*Zr=dY1lBeya|9p4mDsxqA{=1bVK@Z`9GhZSovmVvc zKr;37vOMwf@yj-*HSb_?8VU8Sbsp&Gko_v(&;+Z`2`cFXS$;&yrMnAai9`5-w&HGU zi1|#B@OK|AeAvF^LXn0bb|d6y0T1lX_y*)u*a7W!XQASh`Y-alFx}ncZulE~Iomzr z;+Fi6YHhXc^4Qh|0{7_H%ygNMkdP!?Akb1J=2a#>Tcu#2gIMgaT{6O^L2CMU8M!qT=~VNqufm0Sjah4P+TFHf-zq1D=#E4Gg?ePqy50VE8(!4rCh= z!|*){+X+~t2{371Sq;WwT{3!PA{13R0wkiU0Y5l<{Nhiqh*f=V>4ni=Q&b9Qt3mCH z$;(CTm`Gv$bmHNJ+~1^D4Ll_>;IGJ3pReopLhg9dQr z{=8jkOo5?(Ptx+5oqX@ulqSe_(kPT5GTd$tF^T|Xr> zo0+uaZ+C9pS*J|bLW3_LS~N}2C&Ya?HGXTqe@mQL-aTP_3`zddO{&X|t(%8E@YKgT zECH8t?hUk?K}L~~mk=Ui$|T%xv$Rav5k(H_jQrG>QTn+N{98xKiU}ed+MI_(f!A;$ zy1X{Q)Io2uP_LpBtd1aeZw_ZZ7{{YLsmXWEWkEK0eu+yq@m8I>6M&8-!DLB>v& zTlv=r^;7#7b4r4*f7yRx^sIy!3f6c4J&GWwKuNMBNe<>Wk+PDv4Y))Y=NJQ7jrXtn z^$Sm>zFHYj!Tt)VH3&IV0VU&HztlI3OrYVGbzTqrbtb@H`LfvEu(q`PiXLlq^AdH9 z)?;%u6_OpL?Yy!QlKNod2vggMxmGyxd9}evdm;0s5b1x-El7F5=(*`zl@FPS0v zJhM(x(v|%)(FQ_POSt2i05xgG7M`oq{nkms5bk#PS97~8x3$BZ+h5V|7DCV26nJ~- zE(+48@e<2OZXilLsj!dv%lEb4OO18Gv8v@=eW~4L=UP% zSGm*aFU$Cmc z3!z(6XJ4gW4MVG1?Gyvlx#h&My=Wt#yZkcuLA_h|%?e4`FUt_^mhF`|m>cSB$_Eq! zLTM%@5JvWPcLvL}tw9#!yIAAzR3ri7)e9`Rc^g{2uC}kz-kY1mFFDP(5Laz8UskR$0K+yOaEw=g;M2ai ziI@?q?6d**1K$zZ%)bBWXXZcj`NWL)1S%((Encv{b$`@&-%Ne|K{eu zd-{JfG#dwy`JYh!-#z^gLjRUF6C3cihX3&Rf8=SFzyDeO;c52&*wbg)lBqk*$X(O5 z3bsEy$pf-5Oo=p#WEb7RXEh|VAEgrgE4M+q5MMVUYGO>DchSGyV`4tM| zp~w8|oiA?>5I2xS5^!~`o*I7&(XaR2WWAbA{3`x@U&3IEEb=~vu4)v6yRHU;L4yb}=}2)A38#ouUqnd8M$@qMD2s~WzoXHP>PrqI?tDSS zPj5tw`6PK1PEvhHe1Yw*%d39ws7zO`+B8y;l*eflhTa3}REEw?Q)@cN=^h#XorKIv zH0ry*V)AZZXrv;FW);aeEU`gdYEmyiBrOUPuDPJjDuaR!6K51v8D0bvn5?mjzqb5r zC*&p6i%*ZL_m%#Go@$f>#XgLK8UijMzR0FZA5D?ChHXkgFQHuYi-u2KS4h{{Z7}pc z?pXgNWLE(aEVP%Luys*>JU8|yQH-4HwQZ=bOjI3Ug@7FNq zre^TQ0CjCNC2VP@h@|0Zqw%uEMy&^NT>fT=1UM@zK%ehP)V*M505}jXDvx@AOOSX~ zATP}?j z=w^=_MW1vzD_PDIPvFfI?pmouAYY=%PM#c_ZOnY$lvt&>OZWZQ?zUMrTKg$YEhMQQ zemwN{y*zUv|BIbgzq*mWdhml+FS$no{vZ3T<&q{FOgDzw&Sts6xKW z<4%`4`|SF7aIifLndi(|!kE)`>h;;U0YREd&V#S)w9%hh9yalRaw!pML41O-!>gSa zcJ79o-t&=EY3Acoll6RL!xjX%C3)pdgo?ZxODN%rB_+(m4kXX;&g%H)P2E8sN4x_s zmr21^Jdz;#PNSgjpA*XOTvoHOngc0L5xVnT4%ZS$euWi^GUWSVR_igQs22iE?9wK9t;= zkx#Fe%Ym(Jhrk>ICcXYj?S)Ir5^}@Mt!GvW_ZbEuQRB7Glrj@P;iOuBAP3Ot`kN!?9Z2>XU-lXeOeGL9qXix#4xPV z5cKR*JS?xPaY>kJ=`WIa0hCjauOji4tQ-@gIQL@7OcMNi69S{t$k{$N-hIz`*v?1s8$q4^ zmWgmGG7htO*<6Ug8O;Zd)F!k*saeU~YTui5pNzJHfhBCJ%roc*^JQ5O%7)I6lxAw*>|@q?%*zMB0PS$q2hDMglAoD4 z{BCI5HP}bK4KKZ%{d9c*J$OL^jO!|Yx@td<6xQZ-H{4Jdo@`29Ts12N!3>Z8x!dB# zWaLQfN?-ws9oFFg-d&sNa3UZE-k_gh^Jzqar5RZG1RqBP3sdi&R(Ugd(Gf~&PM!a~ zSa5@|;=ZjSW0#c!Eh$O_i4g{)M~+^~T|zAm40)Aae<0vYB3YE?QviFz;64pG?4`hx z6oi!*d#}G*)>nv_lz<6w|Rh)`3&7 zl4I6Mq#XTg%g&q*x=73`ieTZUS|XhxiovE<{p2MKOrMr3SiY4@p-|#JBJN0HYDcjn z9lV7wr@OGTm`Rj18-ML(X^qqsJ0g0td6@E$w1vHkR4454NM^slQ>MM@ZPlqD01hUy z2#6=HAjIXQhq^m!()*1;%VaiLdav-N`C!WGd6YvA#W^vh*qn~lt?IbS#yDMj1Tc4( zdb=<#aC$EFOSE5tHgO(1_P#+a{yuhVmqQ}XW`qLijP`{5h+{P+KFgu9{x_tL+|hPZ za_KG?^2jWBP7!9!meaMR)tR3wnOfMVVM{27%+WsCQJ+1~;Jm=gaWxj7InRYQ;JQal^O=`K*D?m3e5~3*M;$*`)zw5;Pnuz$qn_JfA zuOb^B9n6E+l_2lmRc}xyr8`>$A>At4$g6Es7=YQJfz%BTr&Maoh{HYU$#>!uYJf5B z8P3(sARO)$zdoy-Uh>^O#~dRqP(=0+yS3Ca+)_m%IfyO++jzbZB_8pTj@>KOEmy3& zHc>pNazN%tLphH7xq1>?zB5}GH zVa+IYV0uc+*(e-g_*`LYmbA}}nhl-O+#f9w7Wz3rJR-X;LNc71aXSTUfVFXFaJ4Bk zqP{IVMihBQyH%@a;=8_ul%C^f+BXw??R|)(__w7^vw@H9wBG4H$31c0iJ-bCuM21m zR3&}p$`CJh?_aSAFkU=(Nf+RVtz!R*h$45=V$#8gi-yWY&K=n2z z-mhH)p0bdPgVHv=PRY&a(h8~Ym$`p1GCU5mD+U!4gE6A8ztLd0^?jxFa7mp{XeUUDTkTRN zGuLDYz_hE_sm}wWC(!zMq8YlK38DWL{Xv^5LQ9Ye)cc)ax8i+OAAX^RQ4jTy9Ngx= zmv@K%b*bN~cX2KEGmM#atipfE#Y%D0MB}~dOYq%^zME>ZURPvn=I&JhOhg#bO@M>( zw`;lrrTx{ic;f2_jWoK?fCvk{PlY|(atuSp_br*})kKt;oT@nSZ7Kk&{)5W1)0U+d zM7OS-t*2?`C=Q5QafLX%g=c+NC`IBbyb`%%Rkn|Wa2 zf9lbznxAf~HWxs{fDluw%}lM+L741cYjvU4rpSGmM2M;=R9$h%WiC=cqvPa|BaRtG zl35a2(@7l9y^+E?ut2~}N(k2w7IS(71q3e5U9A2PWHFF{;cO9%ZA$a_o=5{joDpq9 z0=~jwiZN1H@+J~MMGAF(JbMCfZju*d9uA>m0{Sh6l~-E;z*s%pc@A%=7xZ@0#~gx{ zpFJofcvF(f7$Ri%!vV}Fpr$}Q1sod$Gh$FjA|{MQ{e`lF7fe7j9US{wB@P=RhU*X_ z27EJ3E9p7H|9ikf%^fjRFuJ2C zpvkbTQqj9k>?xVG0-BZU+nTVd8M21lbus)~v_0V6WTwm;+7sITOZ26aHUZ+@0rMh` zX1}h|RX+Es4>pw*C`kodrW*>6U=s5%CD*0tF?pF%6{?+2ZYe>+Cmv_cU%q2U{@19; z!QI)LMIqudxeS96U)3NPsOb_sp7|1m9V0rk>3ensd=`#(@m!*hC+ zE$-Ip{W{*no70-a(*tk@!12A|SzYz$s1Tf=97fKeP^BFG5OSg;*#z$Mb6}wNt^s+< z(@;*98LXw?=au1Jb6Ghg>(pBi8~b>0)DUNBgAm!lpI{dr5`~UnGp6IzcJ}19>2gq9 zsE~H?bb11loKPR_@ zR=*h>8dH;|eJ0tOzY5Lj7KE%Kk590SBNgWAUzMDo%H|ZunKJQ(D5;%(FSGFN6Jd?h z#M0*QXN0YIV?y79sidODNkR{A#=~UAVg%yg1(LwONzskr_j2tOl;-E7=C^GZ87R=q zRD^ld2!+H5-li-1D}ox|!h#ywgO==iDk!)R2}FT%NxL}vO|)Hgd?RVcXwFA6Z~d~e zVySA&c6WXbp=V9Fw7@H|2#jOcCI?BhAM++40!oz*GIC(Tuw?hAs4$@TeUiay3dVZZPDBgus;rrS+Pua9`!0t?8aE?;|1F#uVSVIB;ZPJU@w`?0O8Mi^oW-0wU!A^zAIP-K$~30WSSAZqZp z#lQj4+=a(hh5w}wy=NJ#PXz(;yExS2#5i1evf(LnyD-l5ORjrjS0Rc1jj50iLW58A z+j?bDiD7qa|JBu;p#F#8l2??rZwu}1b}s6GvcXq>>JsRu(})&O(hozGcn;5JRHi1% zH}MzylZUPMn_Y=PoM2wHj^j-$mCt^*s(V{~`{Dk1iccM1qTlPdV>697>7a!x`-@J?1_?X$ScbyPn)Fz7Ip<6%p_{FE2R1(*nlfksoYyDpsN z-%3{sN-+kRI9aY3X9N22xV`C%O7g76N{4iA%j3x>$rl6Uu@(a!296IGiB`=Y_NZ4K z-a~8a-=Ud7kiXFcsR!Rr>d*Qt+0vZ2cN-H12Vi4cV&!o1a=Y|-64CI#PY6dk6H&c`(VsiQ$bfJUBE~L^yW_*MVLxapIlZj_bbF zEmi56G9|;j(7i-NrKU2kdwCBr7m8_Du9&Xi-9OMRq;U`Nyy-?V)x5#`{3;MDI@<-| z3^cH3eAbO@=#37j!u6o}sIC<~*od2f$eex5kZsA0o^nAn^YgP8rDf*rzKxBg$6_>YD?)vD685ygu zP4URFRcYI%{+|8*Qnl50CCF1f3N$o~e4n|fk_Lss7Ui+qF=NE_APmA1W1}OAA!TS0 z2>*b4$k@^QpTcDMe~w15{EyiPmjBLr|F6mJpLPEaVg5bM{TD7WGX71K|Fq-(e>{SL z6Ug$9QHy`I=ih@~hJS|1|D3z{&m8)9lK++Yva_=Mrw%>S(R5rHLH2p5-6T}3RJg^4SuKGmWprewqA)yri*+`pjH zdwb><+Y4gcPRh{nNyFk}{DDHfwe}i%v^G3=x+6M-p1r=CsoRROOE9+}2q8Mb9A1Rk3~+J(3ir1?eh^q2qD`8;Id{B}U)k#4hRYa7-5%3xJjXE)vP z3nMZ!Y6wgrwJpCsF)T6G1x(VVeGsQ2@~Z~wNI03?Ns8c57$}qct(_ESJCjrq*wm*j z+*23qsvLVViu4%~O&1LZHqth{xGcy~6ZLB}vEN`yOu4iX9dwp~R9BL3C1t6q-GzLZ z<{*h!zV<~C4pH6?x~VAT@k(yq7BdDLacTm_B^#D;^i`h}^eu~O_fbVI++nk-NVBlU z*ND}5^k|rbAcIzp>$_`(qe4hCT#9WG_ddtXov#Y48M%(plBqRVI=||;CcU`@SXQ-k zgjB?$$7-%U_*pnx|3YiBnqH6#3RWnPX7a~sKK_a~DR7rXIfXhcnTp190AqZvU62wD zVPL5L?&mNU09uSnZh{tB4Lfg|(4^Ac7sx5WTO=QI)Iie2axPI$=uwn%fXwCp%uLQA zLd*?iNdO!D%q-$ACqvchYohA#xmk3?_9Ye)kU_JSfIv(h;01TO4#3y~tu()W%-I`s zuA^>tPoEfnApEHeNzfx%p-bhH>n9rlo9`0`+s!fNjbte@=}wILN4m*)vQk{|~ADap!} zlOROln@S3c07(E670KTgp+(Y^PWQ6OnzBT#6WWgOk2C6(ms5g&tgkad>yJZP3}4am zvAGb`hpI2p;sb2Vv9=OtmDbEY4+v6t%iOSh92H^0MSulPL7YOF!`wF9xoDrVoh*3O zwcp3Dso;KQp6nlY>70Iuyc_Foh{O8XQpsrvxr|bH68DZM113$%j};-v-CX1S9`2|= z`T2`y_$tfr;1y%`ugo@IgYWQLN+sWU(7qYzK2Dk}cF_^iHD)A4%D}L7!jI0#bnBsk z##Gwy!M)7#=IjZ`k2&9GWgq9SwXwnmlc$A=O>At6Cf4x#_9PbNH8;%{ z7oAqkA1va2S0}%&|6$8SYc-o>#nf@cdNAl1nQTsJ$? z0+q&wVyrkM+gsHHTn%8E&s?zW=)?-~TQ{KAnv0&NRJE=WHo~59T>WIhFonKh};p(n@~8Y7FI=4X$T!(|pI^JBejG82rs8V?MBHCRgp` zTK`)BiM*h(E>d8FfPJ9X@$|4^%jfUHYk|d>m2U;FU`_h(C!aNZy69cvPT9jeFnU`^M~2YgQslJrq+41-zC z6lnX){w*jKKjY_%krJx;g{RQ5!j3SCKST@cPl`OG;TzS&+D?B6nxm@sevdZz_a6{1gR33=@AJdI<~25eA&k>M1-Q3dz0Nm`@? z9ShVUOnr!NlCI!r6BzV*=Bgm(AC5&%AeU8)i!9?PB)yMo>`b#3d`79aa-QQ4C@&YQ z+wQE|t*e573ZnOMgAKB1egN}j+np}hg2HD1MwSE~(!(7xBd7-l+Vb;Uk!%M+KQ_dk za=MzUB7|Qm_z2V%^T8*404Ds0p8yndkTPV#0Y=%ctN{+k0GxP$Vh%5j_u(a3n({^= zZz9jKbm~Cha8oG#uzRhBIKd>G0Xh1uF&kW@wV;LZa8ar2buLZPOMEq z2LQ-5U1h5SJw)PlXk=X2_-B;815_jw5+nzTw*7K3CxW1%MWhT5-@5Z5z16dc@P`#g z_V;bugBqT0T~}24^ZRi+$4US2PXg;@3j5dKjxbOoj~0P2t+nuv{!$&TI_(-JXGO)w zov9rAUk;i5Ct&m7mk$_h5lsbcy?43T}~lUCzn^{wb@NA9SNzAJL@*_6XBeLJg(VCc=o;}dA( z@`*Xij7oF#E~Eex(w>j)=!~;$?^?;PP>Bn+EbPhr(en|^VDuscleaZ+yQVtVxh>jR z`Ni(q-PyULlFkcSzBA)8_UwJ<*`sqT)kIoaX5OU{!qi4QlHTV{MP-@p=PerR8uMlJ zWW7X(p>V^*S-o3ei-I!DM8S3?iY`HhCw5h6&1F}0a}k~@&2&h6r1Ug|o$*^VOoFp0 z*9;ej2JG}D%2ezjzOR(KTfO;i{g6IOyO(!HdySmU)C9!cSsx!ohXdFY>PMZ%WJHDU zIhSRe-O32tVDmYg)%NX)Ex+z+qf4S4SA#LRtSGVN?t1m?7fLm`Yo~nH(-A7B11JX2 z+f2>7wQbV|9XEWI&!JYgU*m52aU>I$J2>a=2KBS^Q(FmYy*Em^@MT|o-jMHy12<_C z%v#kuTHs{)R#bfCBXc+w3n)UhZYzlVT7_$)2+cM-?C2_Dk%j9my^RV9VJ4H|PT+8(1?}o>ljVsEO6k1rDKr*CmjWa<>mpHB zlX|9ceV zpTi+6e@qY(092|Yz+ag{#fXy5XO_T!smSI$| zjun+;hpc|y;^pLpGJ=UpIfYy?vm~{S#m8rNrR(9Vy9@8jJ!dZu2?RD#{mF`q^g!DL z+D{nA$LV8Jxf$XEsOj9=%KoqM%Kit#6^jJ6t_!AD`_E)$KvD$*24d_Q-*&sM*iZqn zF|kdXI6Kuy%uRdsQKLlF*Iq@&4;`a=8SV&Q(LL! zxw2}jARzlShT;t>QrbC}HUNqPtS4B6)bSFy7f>yhu$*~?e4}xN+ z2q*(f3M2G5dpd(OAyEkG_&I$(`5uy_#`y?G1t4|ObnlM=T>*Z_?MAb0MK#I+A_9sw zr>9>1Ft|$yRS83vw)aQ=j?GVfOQ&)!JRHyg)*>aLclqKszRBQedXAg z5nkBV;jzsrxs-v4L10SXbYOwft78Oq$n9NNv-&gGhwX>JUgPv$Z}P(VPw#hl(YEz< ze5J1g3;@x95v?crJ(nY**L z7^B;o9WB7+$RdYKmpBh`##@+R zQ1h$C*Yt6 zQ^eipR!z`z|nEQBK%;AK9->%y2{ zw~B6e{xC7U1gSrU@H!L)JULa39bd-`-@;0WnSPno$OzHEfmtxL2wS7AbbTA!5!SR# zWPxZ!W1OEsGU|ZMbyz5-Ye3r92z&O>gz26T`o{RxFy7uXP|7eFY4-D|Ik1D+PlW94 z5m1Et9RjI#!q@bZL^s3H*3L7;Q3!>o$0LQ`1&FZ^@3@lG=VLH}USfIa^)oXSm*?~V zYzfD&RHh9$Pb(0E$mo+YQa)jbZ`9Q|6oU4g&=l z!h6R~zi!&E1vD#848X3`($8=L4&{$MET&3MCU@IUj{J++@xORjF@LJf%=_|`cUDoN zLy_OOw}tVDHNKJJB8=`)_v0onbNB_nnSA6&)Hi3$E)c1W2lzo~vF*Z5`leM*qkZ_F zgaDQU_=JoO%4W0Z9B^5oSt{ZmO46X`Y#-7RJB7e#1VNnS?=H!@f)$G6Gd>c3ENBUm zSpJM{>rnL&ie{JywTP%7=2z`WgfIN0o%(?E-`mYB(r zjMmpjvRElvbI?s%&MFRwbd>4)4xOm6Az6!HA$g6atmK=wthFVVmoluopz_?M@f_^2 zgI>O~g2vWDJfkFt-rg|T4A5N0F_O>K${*;2ey~?R<2%o!Pc21l*{i7->nA`uLL%&4 z_(l42rDN*1Zaig7iF=ZM&j=d6emz?tRwwqJCoPp(&_3IW>;BA=Bkn50_smT`i@p2y z?48|RH+Vsk9_kvb7u77$RV5YqW6=BegyE>SL2VsgzQ+6YFZ6YCyLtx6eAi29cFij8 zz!QRavP#|Q__hF5H#6B+0}&sJHct)GomS5VjAKD6xvm^shF)y$v+m>Fn4d&@*eZ4Q zgB0HK&$xVu@t6M-JFI{I3e~^G&YvIk|FR>``p1~)?=%0`y!6ky{|9#d1up**e*W+B z`3GHoGv;3-(to=>PcQaQ`21(s`QvMBf35qkh?JR`^FPJTp4NXwqzAS7Ibdp^e`loH zdlieGrdBi^nkTY9!DWO{#=fT%(Q zR$G?jpAx4+GSHY~D1Ku`st@ZgASMb%<7q1#LmJ8Qz)AjFLEPj6b22`yX-FFV%5mZ} z6m=>%l!H!P8Lyme-}~kVA>@72^#=q)JX?ptn3#2Cu>>?_0@g^HmDs67+Nxc`dZL zsbYNsCPwz$mXMC^7w5br?0d7N#6aLi1A-ado19x#_9X}JubthbVb;brEWhdNXiSs` zN)hE7cCBa@RR@j<_C3Unn3Me4`j3+!OG`FC7p{5IV8VBN zD*f&&o*4105nf_$Y<*#pI zIJikLkb+Xf2qJ@%9~g=pbK&sLZV#s8`^OHq%g@9ddhsyo_uDsmv9Zoez3Q7r$S0-0 zQZj>n1+4<|9Z~9g!Rpr-Uw*qB0Q(MBfPU&pc<;-?KG~=DWde=fWx>PO=Ek}~Ta_*I zzRhchE}r#js>^;94)J5T6;5&Wl+AU;I!2-FOC5G+R&x6zkv2SMT)a%hWxR@k*)A@& z#R93?yy?Y4+3WQCIqMsySp^#t3sUaf0ArB74515q*19=3?ma&8sjbKW%OS;AN%5A{e zP4<6RaWS5*2hXm>Q1ESxdW*k~Zx>=^V3Dv#iI6UjrbAd75K_9rMQuS|MqQHqk6D}n)a+g+Ti9^j8%pg7ePXFmyv`j5%l#&GfB z>>CE9;I~t6Ri!&%c!(!aoshXsiTm@@Esr}SeAx~;(HCdGpn7MnVT^H47(O-6#(KAY z)BFMZm}*TcWt^AhEn|&nQ^gk=9t!TZQkMJJxL0+<3UUp|@DzV!+gKz*E<5JL2ZAFD zp>voak%N%NH!y$)W&!=Kq-~Lua~^Xu!HdxQhwv>K4GlECU7rO=8%xj0UHUkyhu%GzHmz0pYc6gtr??GM zv$&Lfn#ch@+S-<;4rqPu(owr|0$w8IF;_XSp*`8m-$W|7tTxD+mq{wdDBWIG5fbDP zo^@0^=uar5HQr*fGE3t0>LrWEktqYXzWFUGN+|2e`yQv=N%1<{F}-T?V-s$U$5`?# zty@X^p9VJ?OymS+1lE%B(k*&9S@1LMlje3GI3~2_ zR)7Cn33%BUc?A3JQYCyrWXUvtT^M5O7Hsz@9qhUM;9}lpMrF{%q=M`YD2(^>#l8)E z?Z>B)Z~q@_@8DdCn&@lCwr$(CZQJSC=-BSKW2a-=w$-t1+qd_eGk1E|?EB3=r@lYn zt;JgFsh{2-0+L}$4zB&v^c+UTpnaAIj5Cux!fDrxLq8HZa&ZRXk0?1WdEbjEpfWre zL2(9%_l}1kg)?r7qL4ALzx(K9R9BVP?oEBbe&%q+iD2Gg`T6oL;w^@gporz)7)$Vb zno_3Ph@gFygyej-Uy9wE=i*0Xdm(vvyJY!6QZN!|`bqJ~&$&HQ1b|ighCcnP78_Z$ zIbqHn{1(&vJWdwds`-K6@*KWHcxZMXF8yc#$NGRGznTkV2H7=qd+z$|^VTQ84a;`T zdQ-XrR(l02f%@T6q}MWs2An$(O0Ltl%l?YDs@!gOvTwAx+mYR8uor4X-dpI&d|s?Q zv)gv+p-E1kzu4kebb%6>%?`=8bC38sy(mtZU{|M`+-sc&>4v{6LHJ5<4mLEn&=7bj zCf2n8;p2)3LZI!vcRaTxA?nAF_QNg1*95|-yPkc5 z*CxYL*mk@Z@)U|Kki1+~tU5jwQe(Fmrbx3qEov9k6a04EqxD~4=^ss}ep$%D-&O?vaqgdw^|v&*KZ$FT0Fx>Krxl+LaN9-*Tt5e^_M zkav4|Yv%S~?5F2Pq)An@1Kkqu;c3>o={dJvc1efUDiBdH+x~`7rMc0mHH{Yk#`Sp|Yfya@^k}#2awy$xj6^Ye*TI79Y z>T~LgZEs{Vd$L5d6qfCmL2&D@n;TI{f+CByD6Uk+rDWUr$4T3+K%VDRksS(FcL_wx zs{`S>6+vXm^IGmu75nt>c^<92^z}^~`n6BQo_-XGs>=cENRozL#e?7FE+p$b(<+aG zbNfIY5($+AW9z;P65KdS95z?=jBodtv-f9qupyEK*@zN$Pz&X(IY11DZ>i`hVe+j? z5b=l^w&8qKmkPs-@j_E=<1m4gW6f328RG6#uNonbLPySjM`P@RNUsK99x>t;bwz|p zvptNLjuca)06+0}Le>Ux1G7sFA_2#2X`Ko)>e~$-!W8S9($TRDUZe8Gz^q-MCq>7C z<HoEp2wLZ5v6{RCbCguB1jjcAIOP2kecPxB9&0Zp&{TZ5>^jc9jpZjn9%= zEmkjSx4X8hyt=ciZ|dpk7uys322z{V8g5Dy2E|}2q>es*4@B9tEAt{z_!uOvdCVI^ zXTj>83^d!U5ct*(`|{qJ02BDpmLcD zi%&2xa=YOJVd~TczX_3Qs26WUMN6FU)?itKnLB{NFY0F~C^n<_#f2NJ8;3m|6>~6qKLWyE{Vz{NVa7m*rXRua)TuGJ!c!$RP127$R35QG&9gS9QSO zT=Dn<6yisp{ZrHNW%3*pHXy}6f*Y3FQ_#vjQEAP}(!V(Dmg%e)3(9R&B;@9nUc-&Kkk6T5z?B#BD!tdWdpyhQlp-I5(iG{eu z*WpJHmR!8j>aAB%(D;5huUbFwGax6!*(`P0YoOL*3Sdc#}UE6b>Ng8^!?+-)sAGG!-bY=%szZH)4!sF7Bd z+Dx?NMaaE-d9h4Wp!rn6Bje++S3N*<2oRTc5%2VbT*)$mTg9eRv>hvP;J zWw(zk(kCC#2_$D!{fXd|aOm8Th*q$iliYUTvHBQlz8`O|?pIf#^RV^mn;?C-ia-$q zhweI+Fn0Fqv)J961tyFI+gFgWcqM63sdGH$Y~lGBoUX4cQNvTwDzX39dZ6Mf>w`9$GP<^xeWbf4Zm}eG7{#2edE0zcMVf!4;r)B+_ zscD>di3tZ(h(vH;`7VENZcD6hli8oT31Gs_;5r&|w(;?+ip>%+#iG5bT0#7NJc>eZ zhGvwviKXKBW4DSGy@^4&*jE6dN-l1jSE4yxKKglVFg5QyPpi1Evu@@2Y}GxD*=$)Z zLuTstN2ek!$NqCioujDSuly063JiHnbgtEr3lR&uEH2U#!@J%x(hMZzL$|xm$*YBE#=bO*Kl!mgVdB`IyF>>oT zEi>wBZG9Tsgh+z?HT{&Tqe~t^24xl0B2md^rw&vzmS_;AuD<%lQ~*@P_ElF0sr|*| z)8yPflRYb^^`XmGw@Fl$E%~z2r=jgC=vVuux^0W300ok0oy^B#LM_#^PtU0>!Z$AV zSGk?A52M{~)6*&SWL_Q@6FbhIM+KyGv!wEN_8 z#QPB`hl=Pj+lS`NlX-e6Ol@b^qx{YLt5+T6DE4RbeQQdG?n_4jo{em(V30FXJ6`kL zFO@7cA&PvVK00U!)PPFT6Ke`pd!5anxN}AA^@NQ6_GBTINisF|$~8V9p7Rk+M_m<` z$;9TuBCLB@0g?p^@=~%(IlvfA7IL<*Zhj~Qw;dyED^vi$DyAG(y&ED@ydJ@rO2V%}PqSF*@pA`gfzPgPH3JGa;SfIaF zdb5fOAz<57ffS_3$*%|1$7%VCW&s5@DR}oPPBXG^AbRT@S?m)w zL;YYfVY}6@&?2BB54<1CQPBDUFG=E>TDVgypU^7!76y{0qI$M>lhb)FT z5YkCbNj{gUZ=Rfa_%c*DaC^mRJEzKiVXE5E_~+AIOWA^`=O%f7XjrCSu~@tl0ypzm zEUp#-{4#Ldgt;!zMI8$Ra52Gxpua~HA5<6wQ3p^JZO9RFiwkab!A|EO^M?!ULxv3y zH(1T4m?5%+xTgflH#Vcz+51Xj49!*gtzL2pBx9^^;sV(5WWd`+?iv1`imc+VAOy=$ zLnyrf6c9JRLRFol&7aeQMm>XbH>Nf+;sI;0XlZQVfp&DM;9En$_H4p%!1Ygjtsr*^ z?Wg%4DRU(`-c_|bUerYYV&$*OWfOD^?+ z2o_iN*`LhazYdSlamv0v(246We&v&!J8djYr<1meU=`Sc+YNEMQCO&bcw@OW8n1N`OFR~_Bv@ns=8xt2&MLthsX`X!hKtNgD;-6XPL_sG znOQ+wtbx)#ixoFn5QO3Jz;zvLLI-@Z&r1^MU}z2yITG}cqg1Shlb%l4U}Q4dM%ODk zn9v+;+ILzqMHzRl>N{&G(@IS)-)DV_;vr9k%Ss|zybXCIk67!Ln(0TFl z$b01_zAPI$cz+hh`hmj-9)r(iLM+*yydxlY{IvsRzM7q8qGzVrygq$2NWQpJ@YkOf z$TT|4gS4|A2?UW$mjB3e?Jxl5-4k?`9m?8Jju&i)Dl%wbFY(ormyZ!{a1Q;AS0_nQn z%A`y@3XGJ{B3)k%`b$21(&F~q$&LeBF{rb1nrQL7ooMsbFew^$W8UbsMUpRFhMD4% zbadVH5T3cB#J%CcT+od$VuPja<|Bj*sBsh+2Gky=~cc->3TRlgtL7xMQ_ z-$*ICHS(zcAnpzYX#^ETH$=qQIFh*sJVy;ps$ z`_AK!(%5qFUt?zdlHJ&!U%5`HdnMprEy&N-RG|CLbBkfPRQI4&Eys`R6lK0;LXsTC zu=^7=XAeBT9>iAMe(WW`7F>s9wN$N=-@!8(aWVO=6XMiVBRAByY_8TA)jYg_5bMON zRtt|p22xbo+BJT3$=2|n-LxhUQ0HU(Oadf*GI@A}VXTnHRpdTjuH`3HTM|TJ7oKB5 z1k};~vf_KYa%pEX`IvM^+y15fRJvkqkaoIZuQkkiF zMP(f_^@?CGX(wiFb928<_lP#V)DuOmaDsKmq_BAMj^q8bO1kqLX;J9$<&=i=p%&O&4Q&UI1Z6Z>lU%Ncqli=|?v$#xk z9w34)ej}a9JNZ&*m?m(kaU5|RGA4;Bau=#k?L{b(tymm5JQGd#*0#tuD?w#Kb$Vkz zT(0I1j-%7yuOxoo1g>?*;c~h=LHH+N#NVZ}7zC+Ek)m+EzxTX3Rj&*Mw>aouc12=| z6UqRN6Vnct(2uR*x|~q*)5++(!uno`cjf6j0-6a>@-6iHiSK}CJ1)nWJ-oUnKnSG0 z06Q){AsM!+9dwC@W!3&W&9nVSrwIQPG$`QLr_-_^=LTkU_g z>VH!{|A$^X+h2L@3>+N)15q<(mkp`ok6W#*Qvzf1V1QDg;$*)aUZVA7=S=!|SBu%eN)taL!Tl4JCbVW@Du?(ew^U&U_UIppm zptk$f=iPTRmoAEyyxaAg>7cSXZ&bRZ*EX95cemHf#~mj6D9fD`nlGn&#!PX*$ay$1 zXhj}-sYBu#A7Kn44!HQw{z`n?i<0Qy+^-hi>J6OrXq(gclO~GRE4gsl%UEceKS(>| z_OhBu#3GMQXxZciL5%Y?;k+>NETH<@HoB3DTrP7=`Z;E>yhA2N5K2^Musa6zRGBIv zf@6~c5DWI0#cAoH(v0)*24j#0HQCPS^H9qT%|O+W_@?_U5!I8VolQAqa*IIc%L`Muku1rTr;t<~{>{|#Di;fhWrP3q{J96u|WF-wdrEEzM zM^Oqutji3%(j^pVQ_?;iiy!Ad>NRb-u|gu}9r5Wl#BWtQxOp;4U7A<>?bKIWC9}PY zW7>w-$bzHyfz_iKun_u*0&J@bT>OH9a_AN04OIh0g9RiI1#Jk!kzHYaPKF>`>?>!O z@xkoN8$!(*n|$(gtMuQ$!DK_T3J3x^-Z3$l`qAPU{IW++z~&`{n|+vgIqMa)h$Zlj zGtJ1bSgTK#%1~gAGcb~?uf#~MPR*ZpGBgqnTx>5a_e{qL#g|b+yOG?9wNVlS95uM1 z696`55S(O}@=OqFpBLvHcIQ9MKh3|MRF$PnoWO5?`X+_;nfWdnIOTP#xI-#q3YKKh zFY+&>zf-P(81;fy(>yV75@(S8B%5SmrAq1MnyG5a3&WPIKdQst5kWlExeVNX4oU+_ zl|>eV)to*Y$`<_6nB6NrKNPCw^48??mR;DX>8Z%&t@VY~7Zjgyo0ZgSKFV5stPm^M ztQajrcwolx*PJwvt|?oNOIv7yz8t?NZMc9#^_Z+r!JmjXbs`~{9iD$xcm#sNoNX@@dD(a< zEJ#)I%~sSH(j2CJI4l4#Bwq)zM-K@Mz7k&T|JqYT1^4PxERpX|3a2u#*=%(`H+a>+>NMT zb}R(c3feV}Ko9N_LD-|Z{3`UkEe)wDAsIex8$j@^16bEd*4@jN6Bi7m`veuB1 ze-VxjECciB7%pR)rD~ChLn^vlLwaTxD}B9%F#(QB_c&hy=8R_Q*S==Mw`ft+-T-tP zA9VI7QrjhFg)yh`Agxy-kT2VDroTEbly(J=E>0kW`nFwzGr$ z)5@L-B1V(F*0sQNSd+o^Aq!%rH*r~$&bak@6w91O_yhobg zK(r)%+P^~CTFr-y9-=_y`=T}d@j$L*^bVjY(cU@9Bht!iopiMKy2zEftK_txCaukI zX;+&otj~@vD?eZBWD^+D?H=>jUCyBPUXKVR2s)_{uO{;9Z$I;7ktJbN<;O}4l_o|@ zN-D!^(A&t;idrkuMUTMCiWfM3N3_Fm6=3`##I!vlmpc%AD$ zxb{hfDwE4q9~z~$x9kiBDB!?L8rrYq0#yCT<~qCN&jqJTL(Zqi4=qp*o{?F&x1zBn zWln=2rmO6RSUd8Un2e1i*Q6EpTeJ4)OOdgwKHw)1@9VhyNaxRe<+n_!S$c>6mI!&| zf2M3`TpXyiq5e8=XM_22em)+S#%vIUw3SnbP~j_I%v4PxW%e>2Q0k;1hN?+ z*8okPYh39UeHt5?Rb36YvNRZ{xfuP+b9ngH+5X_|NW)LAZ+ZzMIW->agi{fxySv-( z6MHi4xTh|S*~q2P#ijccp%0T}wq&Rza8|b4!(tFG?~dF*g&P^bIb)nVg!2ZVim z)$OpP+9EQgP!YKjH8sp<0ni!oPw4k{A-Sp+(%78HjU)SDB)xIp5<`z$*hZ_6eqIdp zEEkMG^0z8r5Ebz2rPP`FlP;h`C>p`Pz_I^mIRAr8{)}V)OT(G%k8^*8W4|vG{i*cv z8&Catn&{6O>hHevZ-(=~5R6{zUj+B}bk^TB=YK{YSvmf8^l@HG((P9}{MW)h0sD>Y z(%dW4t>aaD>i7-WNMs26DtK5BNk58UU@YnWVv$GRAef|PQi6_17!6BlX<6q>DHcBs zedjy%e-}OWT?)SxR*R+d`JOh_b*alT>MQu0PuOgXZ_@h)Vndv+3vdXkm_g^oT|KtL z8ZF)RV;BXQEkSz8ROH9@(?GOeg0L_txkA%GD1~t6+65r+v}=p@O;wkQDM^su!ztsb z6MHuZTFKT13-;1KekovzVwkx?iRO5O<|)7vW-!t)O(e`;Jq%0K%;{37&JodKB7aU! z^gKi5vERdI+Rh%c4PW4gVnJFCAR;V5UKvoeCnt&BBcqu;>1o^SvBt$0QVx+`3Xa0) zFL~;6yQHv>YADw(vctsJ7V}K%=))+|F%Y18S>&1vq zgu%IjgD&5KhnzyeF&vhsLLlU0!m}Nlub4XVnm>D=FMMMlcSoz`eZ+UEu{&{`N3r_+ z}A3lP;XZyIR=O{2%4d6%xyMU{k5+)^G86om8;8jL$aH%f_0G>)8Zr?(e5KLQxeN0jIP8BQT(HbP_zUmm0!${ zZr|saWTk@vLc5#G`BngT8e3-$(p#ng5F}bKNC{mq#WZt%xF6zeZbjR!{ zgaC+;umTiCG^2E>)XH3#t$hd|4RjH}$o%85dTd{yAor%QzU|2DBy^C@zEs+5C>GPy z=~&^|Z)I(fG3a)iyVlzU=6}I&XElR*2}@cWSRa zbFH1TC{DwNG7^Cp$e9UfzgiclDgk(GN|a=WVD41uVfirnbm>NTI)$_05c(NY!{pC0 zSk7vEndJyo!Ep4ogT~g6iDS<~;q|hOG}Uv>^l}&lT@ZVjED;Y;meAmdq7s-p(BQ^7 z(O~t50XXc&>C~=}cGI`#RT}nRbthXosaQbWL9x<#Q>)kb5-yn^}|L zc(xBVrQHb4*j-$@qytd4Qo;(~8TF5r<&Qg|`z3(No?^C_Bw=cm<-3wf(T=n zy7pM$_IzyfVkNqfJe!MU3d-o^1CW>rVw$ZbX&}!t z(|gs7aWW|uPCJ3eSgj!fBR#$xV4y02ZMhTW);wV#1=c0UEhrHP);>x%2Ee_e@|M#8 zLvA@%*Y=3SocB7U5p(#91VNAQtMDJx;MrH2>gwOi$m}yOJCkk*|d0?_Ym-`YFd^~?|=qbPBy#xvecIWSwFhsiAMzjpY+-!;hy9XRPIilZs0d;cE z2R9KvFC)z_=?9_Se|R|+zObf-YB>g`+}Dh0i{-zj?W{C6O>|a`T30#RQkg>F|DMSc zo{Vy__W-QCg5)*$2L8yiNyj2{ngxO~paxe% zI<7{=xQ)x82m=xwvEVUBnE<9NZVnb<;-&1lM0S4M6`stDU5oPvovRy_QrYN<`#w8S ztIGZ_eRzaFv6+Nd2TW5yn8TD$kb$mv$CFokKg`~%N}~wxo4nXr<-nex%^I5y-nCb6 zYXTLcNY{bcE0jaY$MLhA>pfCu`#UKK3C~0bki?tf$X8RhxA_6Sad_kb2rNa%Cn-z* zTHe)xT~Wt&}p{oy70N!oaPPRhC}XH6VT z@g0L!g0*MWM6Sd2xRTK8{=VU>bNW$_DJih;+1Uw<{y$R6oOK|z8Ka1`mvFpStpuY) zMwwtFa9BOIPcb3;qDjY3VcBL8M?(=u3GcW{K5T2l*WXs45)_#!JYU!>BJx)JpV*Pb z3C~TQm@*T)X-F{-N#?YEIL&rf8u?6O2SN8T7_GQ7sO^jmCdzJA)rt=lnKBkHO%L=f z0kf5AE9*MKhFIJ2LE08Wc-uB`Txf5-xopuH1YJWg7qKu?EilfpufQWUoYaHbk6+iP5Rpj zQ0W9Laiq>$>X+dlS(^_0l`BE0)oqu4JXe{1JQG|kKd~hNVuSvpP43fq`dUDXSU245 z$U;g}bMyV(G4c7b<0E{2CMxK`Fy+#ePHGr>n1&#!CstqH4+r&%OER6A>+N?({Ost+ zCpR_QoxYvulIuCwrlm_}8=|kApA}lRaMwevYlESt9+%Zi6?540ZBK4(RP4v=eGV=1 zc9W%+?E1E&eMX-<7ZZ2p2x+HD(=wF3#nfan$b_=7Z|b9_d8XyE)DVZYDI9qw1aB!N zCWhg2E69{Y#k3@dy`WfWU$(Gei^2(Y7@vws2gO`)5%r=O$a(3P4d<8r2;opBab}dv zk5vyywSu};Q>*36M04KYR3Uf(i_n&HxG=VpzPdnQJ=$-c<%)uN&KKr{qZeS%gO}^% zwb-$!S@j0l$#5u27TX*Mt(Gn_F^_oW)4E6zRY-hJF;bGuB%x1;!@(vbos&Fq+zux6 zGiK5-Z%36e_OX=07_On}1Uyy`iXg{&D>P*wm4WP7>ayQ7A_*d;mivm>P(d=6ZUu07 z?vSXwexfrKe<3O+8|}GBB#Q>us>X+a4#D>ATB5xaIEnelzM1Bs_o#WgbZpbL#d}Ek zph!Vf$zXZ>^^qy&L_&4(9$aP8cN@D$pE@>-juAi{z2<)oK_g`WO4SmW+vka;+}P~v zhhG*H;2pJh*H7Y*s{otW3r9sNeo!xB)e%2cG>q&Q$~ybmev1+usRyFkH{s{|5-Ec? zQfm&5kNwVo%czk9O5L0!h-V5w?`PeJ=Z(?fBOLi0hQ=R55jTh??p_!KOi>|@v*ho7 zeQ0?%cErzGC27WH;oyl{(^&yrNqCY;m-xV4{SA&RYU~<0guk~hI0V;el#6gh6j}gi zfFGDvZxTC#YnE3@m_*nMgPd#hav%nT^hqNLN5w`?W_duq4+}%t89+c}bFDrBN5;?F zNEwGIBNAB0CM<-b0nuixO#62NsD$1oeUjqnxN zQh1Mn)tU#u6gti{T<-cFH>8kIw=B(Dq-Fx=))lZ3W*$_Q@w$Qcol5+$$Ts5TOXZ3EDaf10 ziC8mkIan^{h&Tbg=?#VHMDupz-w;4Y39eNW{0UEPmAjv$8- zA3XXGmMRlI8S`XZ1w3~AWT*<@!vRX{H5KK^lLBk`+-7Vt+!uo#zPR!Ct^|2Clu@Of>(wAa;LP zBKuS+Sy$ZH1g%dg>|I8Cw-YH#tpASW*8e3k&lj4#y=?XrwI|MYf}MD}d4c6qgs(r> zI3fF%FyyTGGdBb0rQ|0tB#UH2E!ZrD`Ly+OyY;>($bJXZB>C`dca&ium~p? zY=ZG|I)L0CXdXI`Gz22bjP>_$N<3ge?4twgA8XIip!WI#R;gTQ?ozNXERT)1R^0c= zb$zuf88$zWw?G%vqQkqe#Z!zetdAeCyOwhmV}d^H>|2M)wKG=jzK{ zU|^YMfS>`tK0S=38UhhE9OW(?TX^wvgY_Z4YfKO&)jW*!2Dh<+%j^);;M(8W8+)r7 z%>Rn~hyXRYqbv$#lXZ3$3e@28)YuHkJo?c%8I6((&bOXq9vRJUAz_!y3T+Xac4*;> zL0I&qO4<T5NII{)c6)97WTF-V=_5SK8pIi=-+BpLpG^dtbxN%$( zhA_Ru&)UZQ&2=lxRIQ>ZCX{C@%6DhnNp&JAR2~r$gaAM#K>>(ib?ih$|$hW@Y1~ zg^-u1>>85Z000wc@8VH2gln?7iFnjE{>)L$4_GZXPcTC;Z2ntVtOu|cSbmUE75tf$ zds8%aZ$A?$%r^}gis3J3d&9d-LTO2QwqUVM+^Ndy*eUwP2CgIBHv#_3qQJuEvo)7! zb`jVt{p%n|U%i{zw}@!Qvs&o_TENJirx`kA2r+W~s*xcp#S4q!U|K#FH=@|LJkT_bCiU~uW9DhYqM=!ls@mCA*g%XA?`)C_ z`Hau+Li-N0gUq>nr6&@ShJDy=H$HUvx6fl!sVcQ(=&RT55ER)_Xa@p|y7!*y# zk0N&7FdcassNi9$$HM^+YDMeKkwSr&;PQzg_9i(r8}Nhu1eIoeDxwO2Kc#mL3zcgrHFT8=SgOk|EWg#guDvN<;p)dF`?F_ z_|~`BtbEb>0Zu9+r2w)!7yk{*;W;4Avgu25m3J|H`@{7BZQ2VFgUfJ@KAA_aQx%$l z#}?Te0##vlHd^}f&MMw;2sY9FKsq6ClK`IU{BC2&jcLdgX~YD~380;>ezc`wW#`NF zb_7_=PN`-0732`thP|_ea!I9afqrcI}K&WWqctNwg%r~GK7C(=M z3fgGuXzR8IWcN$qjmC^mz^ZqBZGH|f|ZD!S$by{UZ z=r~osqL2-tK->IM7;3VD=V7Tlbr-uwpdD3FV!|1(L;ifPdnFA58umkG^;m`;&AM-F z;9}?8li=;a=%%kqKouyBA$DY-NTg0gS-80S^4FNXSrSlz^NVerd0nC;*Si3z?grZK z>AP*`Ab$7R?ttB7yaYhl_ZHH$A2Nu2j@));l;$3->t~0r`v;9rwk_0rZm$z;+97U-ygWvP1@Vm8S7+!F3&N}fMuxVC_iTCLyE{!!z}D^1dYhQ zkeY3*YT_MrK&A!L7oUg(;1VhNt$OG5szOdYG)H6o}bfqn-hjOi&qWTcvg}Aq?<^O;w>` z$c52X^}MzN3L74zcK)qLuFJ$|qtNO1I3lS!W;TgpMfYb5&&Vu>?dpQGd#b&v)v7$l zC#(K#k1=?_>>fDgjB`#MM4+l07$JoDcj_rB7_vweJ&W@E8;m*;Y1SV%N}yrn8gnoZ zb@UpZ6|TDv_Z&a3Uk!iFyTcv*G-e2O^{KZ+T1IIOx8~GoVW^;8oJ3~jy)pSb1j)?U zqL6M)CFOu+(m^T_Wgp%$hHOsE6iW?k0T{Ipf)aQnbsC=V%!M(SQ#WwvMzr;UI$q2m zm8qq(-U9RspI-~dEfL7h<&CL@HMbr?ABw4Sn{fgd-i?3mzw+=n0nLajaaOMHY6(666=DQ$~B4GI2j zmJw&7pfRk=vTPQZY56xAIPCoFDZMws0iqWQ8pfn zNcvOc4J-1QoVNm{+5L{clU z4x`q2K&kmhqPJKO7{x%U@sP$bdKH0O0A_l0WCAE9Kt3cWjwpMa z085R{>^cKIFyM`{LYGeu7rq2CJ^vh{KJX086--&KnB@?Sx0Z?{%Qj%nzNZtwWA3V! ziu}qXQJhJQ9>_)eg6D()1hyfoxrX6DJA}!2WHb6}65dB?G`E#e)%qd;zP|Z*S1Fp( zjaZoM2yLb~sg;tsFj2H#=Z|kGG^5!-_<-3ECpoSZYctQM807Xe<&BOT^7O4}@cDIK z9#w%`oyu64IT1fXfnq~%xzIMjOK6s|3M>)Q%dCd@5hoPh=pIKdJ4nm0!`^NY_GRfB ziyc*gjBvEs#a?d>Hv3%C<9DBIMy_=lyT|sad6LKYXUn$b@0XdEjp+mL^L*|=Mq#C- zb3FCy4V=nT4I)q3;f67#DMW93g?OLUK~iYKY)&cYGGGf(@vxy~-#A#SRNOnis#67=?sDEZ(@Z(jz!QyG&A}0h8hcB3 zX}S7N`N=W6UGEUCd+R2%_e4`!#I=yGwYHgLTD|KFsb8g8f4YE3 zil&<=eLk|veqFzxeA3>FEo)?80k!b}h+Y z_H(vN?&r{wx(=EK-a!FSrd`Vg`G}&R2|n2+mn{~&iDU>N$ZEM@WvZiSb?5=}XBuYH za|CU}icQ4K#9Bk;4xS1IZXC761+BMF$`NAo!SSbPF;^S_^QE5YVMqrKcJ<47l225c z_-qz)twhtzP{q@+hb(d=cW##hb93qvP#YIgWSKa(KXno@NNwOs^k_t02?j>S1FmF0 zvzvH)%NZ*9F*>{E{F%`r(z|x}E!@TtG-M>s{CbEz`Z8&h02R=LWoSpW9Jp-noWvN1r%j(K)p)6MG4+?3m)|M9hN5M zBOcep0~tx#+fB&!I=~-4gLY!<{hxEMQWh_=6j*`)X6OZV&}=D`GlcmofuNO-d(?^n zVBu=6Scqlry6nA{6@91W(T)#iU@s~H{C{vNE3Gy!_}`?qeqz|06!Q=P>Fpor(+}^R z{RNo)?zsOonEm5w&EMn7^Smg z4ouxna**U-*U<&YKIrD`dNPc7GissgXAvKu_c@68RI4&__E>#4(Gt<&h(y3PBDys2D@|0&^P;p5AG%l)*8@>6t10`y3t zfS6*x7KbEZ;^1?=G9lGe?)1b<#{Rn`Sy0)+mFu^oVI>*kBs;Ws+9x58_%yjWPgV6O z-(+hv_u$|k5{1X4_i0mvglV|}WMY~;cXs`Y+%HFiFCLs%~^ zOf{&6oh=lqI*z%zbI$sMo-1q1R=`lprlh?I)^5`keX|i-M?KkqgBc_oM>4g&@p7uz zr60Il_6mS|Ps}nXwr^bm_A4TcyW(QHexLdFX>6=@PF7H*|B8*whY#nq_AX{P({Qvm}8>uK8r_!wW-AHwhd61UbLlM+4gTrrMk6>dTXi znP3pdf$0$$PGK%3Y>_>`n;p`lWfBd-VAQ?oNCe&<0t|_+2yO?wjAMvNA1KKqqAgaO zs-Q$q>p(D!S+QSci8X3s;Gjh?EaniAFy|--P>Ox52@Xe*L#q%CEkc`+2lt7`<`|jV zea2YnH-C;n#|Y>AaTq}>Xd}+SBWEis12E#sB`ECb#@J}Kq9G0K2r9C3tyhRfC)C+a z10Xh*pxf%mT-k;9WB~qa`s=vJl)xpnTQu@%JlG$KKQ=LyX|rf;u@=7SZ_LZf51iCA z(_!mX!`NyeT-m3D#12VV6U&ToMJ%7h803+5xhQ3@Otcz47=R}r!!WWj_b)AM%rC0? zGVkGe-r^vMszasBGxgNb)UAo^6d%6eO7>t_QosophAna~eRD;q8OXYY9QqPtoN?iV zFz{u#I z4%gNssA|Ayp<4Z?=p3BO*{yGB>PkgD>*akprBYH?Qr+vp^H-OyCz~>vmQL-@+qv8J zFa$Rd4{$Yw?J)9*&CW(y9*0058A&jd0ccD+-PiwV%X;uB08VYt;|4D`e71cPXmgCs|HCJyx@cjN%^h1 zotPFyi6YxS_f1?isj5R>AhRHsX*pOZI?CZN(UBR98a0flBM!19Cx2S{J4wrr_K;2ima=cV@PMwMkO4Zf)4KgL+9;CjKI5Eh_nT%O719~g2%V7q}utS|U@ znM2$odEAo~K%_n={!sFm6fjJE-H@r?C^y;1HOzIKL#W9sKVNEG}B6p$?Ax4%7#e7`7IYn?7NEJL+VqSdzvT>?w3(T#xXpEY-i*9bdxTr4H zY~szp+jHTUjK^GqIURt_;x`YrE}yJ~%4FHOt;M{OpRehUDQ8mb3R&VP8||m(D&ENVdOsFyk|4xbc+v?-**~~rA(BXeofRD0jV|^Xb~Eo z5gBTeuz1M@r(_1?v9pt!MgSN&Z>|Dt`{fydGgby-n3t6!S$1MmUGx(+oo{TJh)=u~ z%V8QIci`eW7^)Lp&?4tre(Q3{l;G4>!6kgrKeJC<2u`pw)|6=~=j*T4c37-z!nGLU zwt?qTzdQk{Q^PU(KAlC0SvHq}1JB9XPtYbxu&3sQt71$?Nr>U6N6q1}jU=vLgxiku zYw)hfXQ0qD0x`R(!^a78XHX)%C(CVz6nM?7jhKhb!d6L>c%RqIsDrEt)6!8HP$;pv zYyW5+ny7vy_S+AV!j$geV-&VoLJQMhDB}vcX(zG-)hC8Q&}(8#K5jzN zF&v6Zf-4gu5IEiBLsd;l*rL9Tc8gQ0u={r+ zF^Cv{bltZqZUDbNcu%wQY+1YP!u}u5{sJnlWmz1DaSIk4LVyIFMfV z!G-IgryY9CEQfNBLdA2FgQ`Rw06lb-7zV!iGcmzaMgb*#d-zGpjmlPdCky3*x2WXh z_tLoF5%ml9LzxKdlW5-yJTxW7%-D(#;1V+vtf@|vAGAooL^yT?lf;DvHS-^!_yheG z=2o|Fu>-ujGW!N6ZK;Hqx5U*!cX4meZ@zN8n<_r95i}>{hOA3Hvi|bMd2ARZ2$$1zE4{a9_6Xv;JHwqZ(zXel zPFkjno^8I(4xqt3{bHECa^8bGS64kFF%s%iZ(VZVhtJA3uRTN9UZav^Tm-?DCAD0Rpk{kwxqe- zjuWms6v}UHF}mIG4)T;hBm(A|NfG8Cg1DJvvqrw zsm-o^AvFoPoNjg+Qe}sdPA0Y8gp?v*rxnJU^Ti6@M$3&q zFwFy)Vj?&r6Y(C~8zaG|p#?os+`wS8X+I>G&^faksy&MuBwZtuIyIC-M?>kFq$+Hu zk$R@^l9q8>jOI{Mg6ZVxYw5J=*G+o7Ko9Nb`$R{tIhXS>73F4R`(~Sk zLGN>!ma2EY-VyH(Em1_N%x>n~`okhT6J1}I)Xopr!XkKR{IvNvxPoLmN{*xQuV>L$ z0^!~dJ-Ts~Ks?MOgB@j3BB_6@IH&LO#u2e3Pi^_kGqd+|Fi5^fR+GZI`d~x+u`|jE z(Gnrg?2v(Ry_X;^|688)azpCJQjQiEiHbq|1l@@NM?On_rBTQ0k9K^Gp89^O4W55Q z@@o53QvFQZ=i>TIjmLA%)~95!O*axb9Umn+>6L(WRen!trs&@hDA)TyEiMX#4I9QO(ou#N) zuPd|HK~dPk=Rn5nsYMB{6H zB%)7$;*HfF*JP!td=SFvexIr@$G_ov^p;-gtamAa*j=t~#$WO<&fBT!i$|ufNV_R{ zMa$Xy!XBn;?@i;P63v{$)Xbf4ni(o+RPHW`;a%lu)No9I)hF!s`l(OL=PbkbhT2i2 zL(QprG_aWLh^$x?#!UkvI5Emsjf&f%86Wo*sle&8b7-A7AKrUFLk8*#s5{Jf)`c4|HQ3UwCqVW{ zHcvC_d53i@$$KQT$fIX(Zi=g>eZIvt>MiE+n!L>jBL1K*0=(3yOpGiZf`+hK@-+wxAa3=}y=9ALw0C(PYm z%?X{cT>h|_u=jFTVEl!ntskJt2U*#X^p;rmgTPHQaQhskulI<@=ZF(T5zHl@mau7O=)mISy74g zeQC-4%RVrCx?n(I^CRjV4vMU?!^K-(=A|B^1HT_nv4s1p3j-p4=qn5h+BRFe&da_S z*t<)tM*_#?4H%-Bn6*dWXiVVHYMm+Ah%W4nT@*CHg~-~+__S2SPDvW;sQTS)Y1tUY zY9OD267yJN=N;Vo3HDI9@sIAdA=!r`O^AF4Rm*Z;w>G8~MX&F#A(EBh$^4Pwg4n*C zlh4`#Gw&#Jo07+r(*{!^m0QTAKgGAnJim%|x)5>X;-+wJ4`?-ox2NgxXEVl9nUMpz z!Tpl!==39WZvH7J;5kn2jBev9B<~)UlW~$0Y(7WXu?6i{G(2(8M5FJKkPn;#%&*R` z7v<>}1xUlA!>FTUW@@J#v&HFqPm6dwk_v`w`;JOjY0F9NI0vk`2hi5U&YIZQ6ub5Y zBC_=b?lkt?5Fn(8Ug&m0rQ(ldIqlDl{8!W_-H?r3E21ZgZ3#I6NuI{s`O4?Plm;OU zkxxcB!3^aH=qiPd?e?^+2LQnYHGyp*T66T!yTnXV-6mx5xORK1!`*FxH*gn7ZE7Km z20nT&Te*E%b`h6nzH;J@kh|`zH^)e`XqthlvdkBjL0UkmS6~jMtJ7uu5WlMTa7xIp zC>27WB2z_80jPlq;v+m;7%z!uE^BaJOa%3+D7o&`9cN;`37pIDp0#Y>yak_kq2xz#dfg~7$VAO{=gUO^obO7vQtK}g*d34K zBS$G6aGLNxU&_gQ#3^Cgl_}PXAwBm#W6+o2(Bbw=Tx3*4w5#m0K(N5k=pcfcbq3b%o1z-LUDFQsMDYuT`Z?!(qkyRY+g{XROQayQU@oZ!d(&&7uP^!m{^Z;)HcsE?40yV~naT$Nm_bcWME53lQr{wdD( z^=MHIM#Gs=DU+1-Y5cdi9?@EOBcEsYmWr3>(W-~}J@Pa+9|}LQ)Z{bc{$s}oOGl(AVFM>P7LTj6ouuN`JNth&(5q^ zQMXQEXzPICAYgPLYLzd$K|E|)}L2HVBh8O7wyJ-M24@r4*$~w=l?&0$-iCE ze|X^h|9=LPf5ZK!VDcYF#r_ct{-+2153l>r0P-Ju`Tux5&_6O$|2X0Q-+ADF{%i8D zt$j}R|2iFY_@$!rlZIcfwEsa=RTV6~hV@>9u!+~8Ux)3D_9xT|90GxOJ?S_7ak1ZS zuDDU)&@nmI)e`q!%w{|@@Nn_JJw?255V|_D$}z(fD@|NmxURG`SH^mWuuPOq_tx?y zhdg~#uh-S(8F3oFZO9~!f;9G|963r?d+YTQSc(lsneA}-A4|N0CkfTr87%-VCPbh#3h0e3 z437p^5aOC^F?TC$mV`Vbf2YMEQ_53eCgPoRSwn|0t0y006Tm!7j8YQ+C2A9~6Sqr& z;rX8a?p*9LW=+=iOVxuZvFOH{ZMCykp&%O|gMd>H5>>^Iq3$|OHu_;mOUp91>fkA2 z71j(|?^*Eux~T4;tI^_fwCC__Vx7v7xx!*X1U-WUJRz*cF{stj_3$oHy0cxiC149N zv5%f}*OosM!Ka=W1fIU1epLJ%F4Sk4sW#gGiZw8rWph7apK!ZM?r+^$ox;R|?@trQ z=2EYmGe{cbaL{6UV4>DJ9-=?GKT6A*w_q(K<00>-FkvV)wuh1M2*HpxK{Vy;yVVD5 z4d2gV{xff^k{8@4liKy9(1aJkIm+rFF5GR zEIDYZVP6!iCHiTQ%QC*-FfvU^*4?2~flr*do+FezQp$#Oy*v>z<~<&Og}soy<7H>x z9Bgo2Nxk9}+9IY{hm2w8Y6;JIwZ{;{b&y!tqrd(+Eo#0ZUwXG*F1jJ8MqsVECF{@+ z$7|#`j)LcB^wc7{`}TUO0_uxvhx0oi6Mgl@RXDhZ@vX4X>pDnP`EIDc4I{DWTd&7i zhMP+wEIXD0Ag5!>^JNHembl7}9f^JIX*}PZIjM2VuBWEx6s%A;O-M-B3OhI%=d}=L z8Io?o0zdW3AfAOx|1=&=_JnYNea`Jg#}Yo-AiX5-ql8ehTwlGZ^Cn7!8D-K;pE*~g zbgyd=VJpOaRip_KI=$59Di>}%lo^5bY7%`j9I2r##T+ex1NW8# zqe!Ih{-xeWTGJKUM<`mPh%Pf{c~I0>3BI|vcaj{)UCJ8XiODAgZ?3ynuueOSi*UNq zCc;;n-BA}!Ut)LFsln4}Wk*F2gcLJeRBGWeN}PL2av*lJ%rpFG$a$nvU&0??&HTKw z%1MAWk^H?A-pEEh1s1=ceTV@cR&3`+Qf<oN z1+P~9a7e9rsQ#qIHOq>?Q03S9`4s`BdY`MAof3b)j0TqlVyqsiG;?d< zC2v^e;ki-(Dy>g5V3ipRpMcO0h!RcECNi{$+|kM*oYOS z@|7e?Uk=bdmdth0eo@ZC_>QiE5PJS~fkNzZ3;(p9ICWGa)QkA;%I_y_V(o*gwVZEAruMSmbmA9W%)}UC!=Xw`h>sPk|8@EL}1p z!G~^~;tXwi9TGpNk=+HUdnSe%o^vTz=5_XAe)T-3YVWD*8Zl{U(6P>EMAL2X= zL(u205zeOErK{J#bd4Uq!eNUz$Q_gpoLkx~Dy#7}!ArQzPrm2~FQbwIC|MmgwEmWQ4n!rj^h= zm6SLC+)utLRh&T2W7a1gv;ATh+1(1x4ihDllGWp^l(++(O_Cw=^mE4ti<(Y-Ks|rn zED86x=8z(JIg@E_Ga(oaQD|FE_bK1R&pAic&vR*?3rErAQjW=|5W7ThE61?{uv4ic zCiRJ;!tLMdGbps&Ju`7r575kALI?|zRVby;*~%3o*~9cm{diHt29G0q)fw81E1a3} z(}8jYGP8P(lu$*QH>sV;l4Ga#0`1HSpQ)ctkErHWP>S&c__bI+T`BQN3Xx+j>URAu zQ_K6<=4G@DIV|F8hcM=vKvPmIoHkpHW>TuK{V1bqW?xHP!VyK61yT;A!Tu6=I>79l z?E*9EGZbT1JZ~d(3CGj^^Fj91Byto@Yn$rh4K?TbUHQ!-l>Q1Q4~&A_2EoRr&#v{( zxhu`hD`%Y82WaGyUJT)Bswd3-XHv)rq)(5yfufhqr<8*pitFaLD_1fLSsxJey91Oz z=$6pCPSo5o_%xTekGk&fXqM2~Wk#8>&BXqk9yE$OY;i9js7k*i(#^g2^0Y3+_(OV1 z1;D{3wuwITQIY9ciq!no(iOA%#g}wsp88|U4ruKsTX^Ao)|Q(AvT3s%K*i%bgO_A% zCf&CkQ%raBTs_8;WA1>moK6TSBSCos&}x*Cns2T>!aWa;D+0x`KRYZJ;M2?B+*hP3W+*gruE{(~dw;J{{Kk#{2!rMSRC`;X_Nm;k@|l)g8xk2{6}2%fAtFg5t#jVTEVZt?7t$u z|CJ*s@Mj+E-;N;P|3lS)VfO`Iytdtnu{U0}xfduNeZaMY)|uAf+D|P4-2H)t+o=YT zlNwr?Cl$-^@ESH4lfygX?S>LlBkpv zi&+pyZ258NOI-3>`@3~lbwA^7t(EO9e# zKjl34((8Wpqi8mrK05t+v9*s_O3H+{q(&*aut?$BO_%Mb*Xbuht3H1ebPC6EV`C?qa!5=rE1Fc2JM>t>J`|0#6t}bqHxi%5 zKwNZxXY8d$6cQ*W@g02H3`TTrEvTY5MBk?W45Pde(Z* zK_8V$D>x}F@9WbZr^01*4Us}4LxQk6y|T)z?%(=eglr9xX5I65MIa_qn7(?9++J!$ zWOUXxwdZxFILdV3(Sv9SExSJ9t-xnQMxchA<}Mjy-j>R&RKbnJ8*GSjvPq!PV4}AZ z>9yrpRgv$%y;AdSs3Z3saKdvOnk6**$o@XYC`(NrOG^Z_cU4oFK(8-EO6psoAH-md za%KJ1r6F9!Ckc+C#e-cGiRdN6A^v%O30YrbTK*u!Tf5TT?gNE=zT5; z!J#QR^W#MH)`%h+Bq=w{2!A0v{*~Jxxsb=J+$0`eWgd?zbUUduF@UZVy7NbZfgQ%{ zTe zO{Y^C0O7$(r*G1qr6GuY#)JAdBO~^S$vizQR=Qf)j9O?0Unxw{3~pY^8aI8Bw9h^- zX52mlZ_jq5+C({OD$9?Z->AsYs{+P4S5-0v7BkEG(ly2C*#4 zuR5jj)`)*EQcL)``(1;w(-vo%Kk;P~iIuq^rXlkr=7LVqlTDDOZjaLfuehU2OVbjs zboD~`=mPiku&e0+TjGIp^&`<-zY!xQIOa4pwTK|QCYs}q%7|RVxEKPsfq5P}DW5B& z&YLBa(^aUXzL$HR+|b4F+qzzBBzukJKlVS0-3y_JN!6l^#$QdLz-em^9Vca9tQ3r0 zHD1x@@WJ)%&#Mo}d>++CmE0>tb)~SXAE=fscmTIt5g$zQbTX5!KQjKX2J4PdMcUZ9 zY%0-b+o8;4IRCZfen8moy_l<5*r$Y;~ZkIDZ8HGzbOXqdQKE@B+&6Br**XuV@b#KVlK4(n^*ZM)h zP?W+Ka>|dttZ=YT`no_C^Js`19gGk=&2`v|(;fG#Sr!Y&^swGSdVSCZQh;uqu}?O| zXz@&Wd57N0sw{DIuZquF8&tgHFPY#R_|Q0_YjjT7S~^k4)|#4N_dJhsz)}~}Aity{ zQ=HzXy?e^=$In{NN29gR7v@JZ#~N+M>D)ugZaaI=f}(}!QGG)@E?0uWcRzde7#k(( zSIRGe-kd0w=EOOg<9uVgMqNsm;Kxa7T%EUtdWcBDF+|8o^@4uXp<^T3`5l8Ql>ww_ zaXZL`IbCX~3}mMXabs5nFLjpsWl!f-hX!PBXRV8|lhgd< zTBLjV)HHaT0ibMid=V;cwseVlj4qbFvW?NgMWHyhy;NR4fnA|gyghS<7=5Q*Ph1vC zHg0>Ku{n7lv zo|&rlL$l(bS+%p{^T~-MTyvLj&&f}W$fcQQ&7U`>3YyIIw-(B{)W%X4menxjF_AIB zMT`-*=;}shq_pR zEU7pE7El+UxjD$*1z-sVSV91nPC#=PFw`Dk?P_lYbaJ(W09{=GO3o0Vvo!$n@CCJk z+JkHXPO!15IN1L^7ze=23FHO>*n#a`ovApu{@ub2cxeuFf{p6+@b&Ns!wmsBJA;1_ z@$13{U}*{ah0y^c1V$mq(G>^*fbA{8_FxxJz^^V3kF1U7cV;fRXA9 z_5e7;7-k=3pmtS37{Ky#gu(^OC79c7PPQHJu6DL1F+7-q? zu)PZiCSAxM!Ziar!%#z@Fy;JPvcI2!AP}&FGuRnm0kpCLIsNtZOYRTTv4ns;e#ywi z8tVF6)S3@UYUK)s{8pRa1gc5{RP8`kK!6j_0&EV$40M2Ln#XTBP;qc`|C>f`zQ6JR zhWxF6Fmw+yGjoMNKrR4~y~QuP0@?lk`aM&C3v6hR9ni@Z;QaqX!2>811dswjTz~)w z)C**91p??>fMK=(n;I1d?;qC4%kh_nTR`3I0l)S5mvTa2CIB#Zb^5g&cmh0ON@nH+ zwFTLm!Svl3^kDn{8W5&*4xWEub+WL8>E3Tu{KXOo$nKZX!ZZZ}wfe;gn7#f>)15$8 z;9saf763b-`7g7#fQbpF;=hdI_u}wN?VVkJTZGet`u}|gG|e?!SX^pSt) zBmYMq`M>)}yI2EM9?+>ibXR@ouKGuJ)xSFY4Q1yFaREC(JOQc?maF{$s{H_}{RgP_ z-!S?Qjat@FCwl~doEgL!@Qd}Zr3m=Y4EzHYw!Xp)5&+Zx2dx7Df3pDyTcZBO zhF?Yr0|q?+gZ==9iS92b@IxQ)L!ZCal;1`O{<{wd#s>QbbkK+H(1-5OKZb<<)!}a_ z3$Pm)Mj-To39b)-t`C5&e*n7v4dMCF2s3>c6FmR**yxYf9P=j8v_9Tyc3*WXQ4yuAMpCAi(Kv^1Bd*@8~YaFO%nq`VHby$7fj{+#OR8#*fGftc3wjGr;*Uk^v!M=FHuKhKhSmsyQijWlF6 zSXJp$Za+C@62q-k(?%j6X6~b>LY@q5m^D*FK_fN_$>*)WCP0`F3(g4CQ%Vd;((cE? zkm$m70O67`A#;aH1PrLLtI44;FfcO8cVcKsP_-Jeg|ln9 z3p9P9&hE`0hvmJ7?J7fMl;gmi{LO#Q8Z8vz3$|L$(;-p}t?>!}+;=4?>uM7`C?CXE z)%YNfuSg86NJxsX5G7X`80g2aS5aKOb`%A)roD3E*`+qrg#+$1b<{8Lki9dur8v%a%VAM zz(tUJmMLyLJFCZ;|71^IYXcaIkju?bkS&dSJb@Kwk&ep#C69wf?R9Kvi-Kye#k}nzD<&X(oFztS{0zd>+$r%~OkSQNCqFe}`JQ%%lA^=E%vH>qFO_~wB0yD4 z3^(HTuJ^PeX=>S8YsD04-Te`1uDAnQ?e1N}(GwK&#l??i_oPU(o%fY@6ZdLG^aM(r zT#;~!;rxZ5!aQcMQ{z<<>%1t&H`mbT(H~+kju8ePm)(IMo6s)L8)}6dPhlz;O?fLr zo&j`u8m7HOG=!?_3dP)=NpC2eYB$tJs(GTEE0B*2h~K>T=kq3xVM-`dN* zw^5ly+`WC&31(OgyPb&ybSALV!S(HFBk~J4l!PDZo=|aFdD*KAoA~-U6k67$?x~V& zd1%$3XtiTCBg>;D)QZAt37;mCA~yI}jH;aYkaa@fm1SF$%aZmRuekMBS%Nw>SA%Ry zL^%4ED=zf%Gq=CGN5`Bycn7C+A}udC-qp9d?dg>uvP?T)CF85)j!IKfm{MJ^V5bxD z$G7jvcjFPMd_9PBU@eSJGt*Xdoc7vOauq!f0j54d80%8wQA;m3Fi9ovn+CjpRhG+z`c%f1>ty`2e?n9e& zx=492J$cX-aig*oc1gS{-XsO(N$Cfl2u+LNSpiq?aS6XP+!%*VEKz0>GCFtImXnOV z84;DA-f%02BIQkajTN-V!6h%I268Lwb&Q!UcE=B-QRk}qj-TJ+R_$89BSCQuK3VGV zV0I3UD?9Rf;-OWGlvh?NRrhs0ZLcENAVyL;cMNSG)IY-mY}`Tl)C85OEBvV`sAu!p z`blk`f(hGLP^j<3JUl7-zBfWkMw8QcOeb?rOR$*R=-o8D$o=jCrR;G;6Bck({#(}@ zIMhlx8u68WV@KUqR5nxsa^_p>?=r5TXQ72@H8i;k__}Ni_Bpe*bL^L#&FdQd#6{eF zgVhb+Ixgv68#NetP(m3JBJ$^JRfwnuoUyvKi46TvNYg+hI+1{~J=|v6Q z$G6ACN}*AB4tt%dSfGjA#95GND>H7*IzCU<(CUuG9dkD%j#>PwZL9952H7Xb4+*Qw zMGW0z!gIU=6eb(N_If_KIGAUzpYC_MK?9RZCqRJgbKwf5ADvJ;muRImk;R~u9)C{Z zAjqx4L?%bg*RC1*am}xDD(X%XhjEY1Hb-7(SD$+K2aUDH`4rC=MvMuqO4#-sG`Djz zFyM2>ywQFcpBPVFIF)(iqLTaK#}wsu(L$}z7l4Wn^TPgSeoMw~Wx;wQb(?b6#izpE zq{$Q6eR^qVh95Vg3?Lla@xYMdjD}N5VDy}>hQrCwH>Cz@)#96L|M z7C3PekLL900)M{s&dOD7e?6)hmZ_Nd%_t%^C+i0$rIfLkob#%=f+$}3mmupElkl3*Y|aG&y)=qsPn5JQhuh1X}IY2M=t;&cvEryvRNPDjWb&H*Vq~k zIr(N7Rt@Z3@?q;MIix-HWrG0OdnZ}4(ZBIc6`P1KQS(FU>wUKtBQlnf)Yu_ul3dQFb6=te ztSy(1qr48;@a;=n(2o|TYGoEOh21m6^sC;;2xr}1n%x(xqSQo=PQ_4opQX%y{CeN| zZg;q7dSz}#c`}r-qv&L+eGy~!oW(?nD=t+&1Ery48P_xL_NXioeKhL5M|(2erfk8R z^p`2FyMs?zD0I@@cMt6(gNzsowBL`6%-f<(Ey_ zd<0L7LkOVbsJUkWo?%X8AUaeIO>r6Q7Vk)c?1v)w+9o2krgvA#aOt01Zxm= z?q>#=EGoEa^W#Nz#vp#%nB$k+nhn&&Y(^~Y&!O%VSz6P?jMgm@db14&wj+pw!n-O~ z#tR?3w-S4P)Zgtzo~*vOF4!30OI1A2XA^8i6y|nS?pD5&5@A+vB^hd9t96McsPjb&3gzl;z9F`UH+mJbV!q(S*IkvQe3>36yU%m>ee|&tRVtix;)* zprG;c)sd2qETUQAT;^P@zg2|t#_0Y zZWDjKsvquiz<~hUn{L2VlAzwecn!$6?9+ianeg?G@7BP>#Qv911xd7Xl6dvw#t;UI z%jEUEZE9Umb#DrzwklL3X;6iNR-mY30A0$zNY*ezMO}Ezdr`|Hf01G|Tdr}|>WV0b z$>C8X!}mMAAGaaydzn|Ol0iDJX^Fj>f8eg=Rhe(C&7D8Dp^4`GD41`S8?dXl5g^3G z_;d2fx1~5Ct2mF~uxnrCkXIr@>w(jegsT1)9f)V z!R93S;Gn@VSWYENu&4e-ap+xfo|Z1g1zFn8cdhP}vG%?@BEqsG@?&b)GpN|Vs; zWKLMtY#W|a7tiH^WOX>t5vJWUY?g9wSC~VU$dms0_6*Zr0l2%IWfI<`DtGmtmd>D2)^7!lU@rkr(nk2Itg)qXNRio&oQ^CBmX0I z7T-U$vZg%YN|-pj-80ZKyoYJ~di|v2v_ht{^tGJsJBKgMi$Ajiu3dIrvjsA$(>wbP zs=_%&*9N*@X7y_ouZ_;VBWYDpL>Jzl?@{)bBZItgQjAIpRp|WFh&P)|hNw8X< zKy{F5-3+TusEzncyza?Q_`G+Rs&rUC;_|onRMG7`mu!BGLp{dm^k;41COrs}gViiwCU3HNe1$;?i8g5hYlM+lI<!ra))!0Lap=xRxd@zS!v3^N)Jt~7u}UHE7dCfIy|PzrRB~X=dWJL zA95m?6zBrKZ8RK9m{y>Nue5iCVqX)**FG@$L4oH0$wz2uuQ}We2m(k%` ziW`^MxMIqO*UlGZzHS(`OM!1dy&bCdd?t;r+X%sT0D~$B3c;U;B4(C z{0e%pWuAL>c&JneREf= zy`jZjEGu67RvkWxb}2-kJ!e@$;YBI40C-$Ckmw`hxc1Zjz-##Zt6V$@J`^3$EndE_ z!L|-!^)e>glK(2&JRS?{B(np!XV*Xai;L(%HP*L;QPMBr;E!iWNOjOqLof5N)^jH~ z2sTK|m)?m(?kXru?QpS-KI{81w1C^H+b6_(D83)=Y|L9t=d`@qYIu66B|nSwx_5xP zdY&8w4)^WiFwTwc1{RX-rc;y;mrUMqNUN;y(Pk;ZU}TplMllW*mGNkBQ1;VlgBP^U zPTI$TK-`XW(p>tPG-tjsZ6XYtckcP$M}FEN?@-UCAsv@W{fIi+6RrZ|))YT~mF1a6 zMSEW^gR{OO7JWZ7qL`w575Rz51B_M?qCNFZp2v!$Z)WFl3F%piN`9>J3yeEmCnDaDkh`Nf`yz-G@ zL2!BseF}EGM&>BN%h%IL4st$&1#NV!pJNot=pamS{XRuzP37)$p84Jy#x(IK=_f}x zVFrhs*cqCEl8TFN87^;H*AnUKZFsscj&8h31#NB}%9)BYP&-SkvPPERQfrMMo+_J>pL~! zlZlzmr=X$GrGt4-sP9wvL0tbE8!D#^!58kGN^F92lscEg;j~_R--SI(+e=dd%{`ew z6~UC33OJU2@382f;qF;YT&~%=x9_9Js%sh+_!;0Ftj+-3YbM>YhK_tU4mPcgrp?B@ zbvW4aWYc9iI8CjelN_jjb(+?ZqKuyo?pV*AmO>Nj7>yVdpW+qSJv0cUMw=T*o%)8fT z8aHL_qjJfjq;bG|6+5+Snu*x4ykp344% zoRc$|_$8Z!rR)a>i!X{A+l-}Gl0)`tb1y=;HFCXeZFn^41RXw_Wp1YFrdNJcDXt$T zYSAyO++X!bz0)diZ5G!Wezo4J{Ve7Z+zLo3JS%nHD~V5cm(<)HS{O>iWWjqTFhtYM zmc~hrEW_w3;l@GiG~Vq7^!;JNoN=501yDMpf8y4caa!FrR3B|)VJksZRcp`;b9(yB zJKx>kZNy}m@F(BfPnSQKb7j}R7hUXd)O*ZZvPgX=eCsAOXy!9{9MIgX;;gW)%sPYL z{zJ+ylaFTQiDiutna!KQnQ{fbNV8g&TltJ_@Z(^&D>`^gZr+ie_YwzK)~n$>%*!tC zgwHPKIH6Dgp!Ye{dFWN`0zNgjG30bmtC#_u(v{oynNd>=WwIM>cfW&@em-fF(SG7o z@HB{4zHYgQ+Gv2iH?=n_)`0oyIBV0e8~s{@($6P4M{UyH)f2~MwB$0Pfw6w`1@+VZ zffYNSOX#Pok|r$WfnANepL=)22>S^H+b zwBd^suFAD2QLT9?1NGq&nt{ zaTh;$YpCCEk9jfOEA_>o#+lI35Yw!3XT+lMRiMz!`hoktd+#R47OBo{rVMqu-= zn+p)<+tQ8C??HuQlEL-HCSqF{s3&*%b{NsO8>{woX~i+`yVZL&3MdnXb~dXvNSPEi zrl^|0JjH|s$Sksr2W-W(Dq(|JW5cs5WuH!o5i>MgE1Wq`C>yjtMtc}7jh*_V@SjwC ztpNiupYypcTCwnfwC!Iu=avDLE}c5^rlVe}?rMEk-p(C@92}4g$5ho06UIkp|MXL3 z-+_E)nOC<(6wXR{m4nEVWwpXPfpwz&np-8mo}q%;!_q zrtNRSMNaB(J9@OA;?CFJJf9$cT*3X^a=4VcS5aY>;hBO=d7WXbfy|WH0;TZ!a%vG$ zWUdMC+y@d_lQ`t>@{^W_1Fb>jeDa2S9+Qp2=2hnMp=ty!ReC)>RB|(E3#SB_8|ynH zNiS13^(AOd5xg)qwrLwR+-cr`ZoWRbg@(k)ijsWI8*_xfm&iFXW4~?TV<+KV$j~yu z{FIsTX{vGdxT1m3mM3pJT!DSWobT;Q^rpppW&4{z=D^;~B-tb0-4A$Y^UOGoIOy(v zJ{UN|c8ML_yI+4Q;bO*7ZyqJK`}ll;Kg}6CS^8OJwB9vKp{7eW_QK;}&b^_dkMw)n z^DZLK9cCArvs*b&>RpA+9;d8NlQ--L}fhV?_9{ zFWYLz_8LBrDa7A})$Yf|aZ}Elq7P5Cs>K$^MJNbG@Ogep8?e02i-#)JDNk zK(-d&0&xQJnFWz2NHi({^gbuzHeGF#4NHS%WaeWiH$dbLLci zhDES0&l5@$qBTjRXd41IYjBWbOIbd$#kOVo=Z#3DP>;Hy&oLC*j_CyBw@!MDZ#?TY z6jsh97~E8Z_)}eewuqt4-9C*Fp22FLOlh)KN*oL;ck!W_tzHSHO;v&Em5%h=WR%V^agl_t=J4S6`Z1xY8!ystff=B9Cq zDygkCEt97%5}SYGddV_DbGj>Mb1Z;c0M!p?$LjVb4=3QH!_VU0Ra- z67)oWAlawxS*Bp75MA(z(%fgS+@m9WCvK3h*l#gaZTcuWS%1f!_rqFaR=OCubK)YoHUA01s^63YNL>`v!K14FjMH zws5g_rV{w;;GG0)Q~h_E3qV&wQB7TqSp{ro=IX2gwNrr#D6#%ZpOJR~LSSRUP)mWF z&7HswE>I^bSkm&Z4DLV5yZxD@1B-CMwsfgrn`0ONNuYz=?_`IE+h1e+YGdVO7kC&| z1!xDG%m0D?7ZG4{@n1O}RID64Y+NulxPa_*VA%ug7y!M$FmUt2w&s3ODj@;&pfZ5r zV5ef`;^d|h5P;?H@Nyf$S|LCyXDV(OT`>M=f?TK={>*j&!g3oP@)>^TGB7@jCIg0H z{k>24=Zt@|5OxL;!+-~dhMnr+^VbzS6&Kg9!;t^};e!<);eowu<6nKaV6Te%^~VW& zZuCp^zsBMIGnf5g?-8~W$;SZ`@xOK=xi~m~NfeeG;9~vHok(tW?*IBg;l8dX|D^W< z6o2lyfyL#V6@)9;qG<2B)vBL_OBB=GatPB>E15<9sloGb2E~Ca8iQmPeg%e?EYB1} zq7t=|&t*piGT)!yt~Jj%-+5KI-?1NTTsNeQ`YzA#RK?d~4|sW0@mVX;eMwShl4ETT zjHO+z)M`fL8p9KN{_N>7Ra0pxJYn}Zx<&l6WLP!-Sig<{tXS-#TsQ)<7|Rr7%sv9T zq?KJ+)QmkNIMgbf7X*sPNq4#7EMRC z=h4~W<*5i2ks!e>kx1mG^6h~%WN4^9eOdt*MsN-mcv&CQxRsGR$MfLz0%YJFk+wlLtNuYvDMAW5mLg^*3yBRN?GMMyiCaFsFdd+*#f@v6qMB_(LBQS! z>`9Q9q6g zGm6CIog*>aHoHecBzOC9+oc&Iy42?KsT+LTdn=qP6#UA`>|sk67Of_Ve&U@r&X>|g z_>p(^RAaBuF>#@aIcqm?lq`>JMv}iqhM*QpA)trIE$&d}lzxc1>)+g#ZAXsdZ7M6T z1R=;@WS0bZ%zc0dT5s+YLd!2^f{XUVLM+jP$N5i|=7`KP5Bl;0;EqkS_1_%%W4u+n zy0SoVkRUCH3^^7r5g!bdk?>dR)4Z2lWTlzJnZr%dURMNL^zoAlT$yo@VAmt!UsM^_+TyM7K z#mT`1qDH#x72Y*rG~%OStOBaY0s<_5EE|r&1(Bl-ALAr3A$4C2G7l>guq0uZF=ee( z6DHp-YxE*(7LQ3mGbtjHMc2!)ki=0U%qcx&K7)HNOa=z>bul(--ANmlZN>K?uL}s4 zoLKszS?Kv>4WlR}Q#{Iax<6>S+m_96WRGY}(+v|A`avJl4Dh`VJ}i&QiVv&XJZep} z<I1y6e978~kEqPbRljtZU?UmNlc}9_`9kq(1l6KTK93d|mo@kVUh; z%aK%D9w9~;R)JP~b9AKNDD|?L#lNjO@3wAJI(fPuF-kz*+v1a?n`3`wH0FRn&f2CH zq{>@tUD5LWD`|05(2~&$w`W%)l{F5#9pO{27++mbHQdKdXlU8nFqL$!EPN`Vb!GQm z-6Omr(?y`T+vAkES+sL{$B%m5%0=gBG@r|vxeuWfko*n~obdf=0e-Z(N-*$b*(8Lk z?4zg8?hh@4S^fpN+k6ID^PjtmfMUbg8Vv4D&Rq{A>g`-N)&GyXw~nf+TjPHL0qO3L z?r?7!DUmKgLO@DNy1PT9L%Ktd?rxCo?(XhxxLbWy-gDk_&-vYP$Nl5NSOZqf6?5%9 z#&>?^^L!r`MbedTu8Fdvi;*#xjH(sa)de}_Q+Yx|W4qFN9U0K)=}-!T!TUq(7so9) zuoY|z5*|V#MC?{7%sRfo`N3PHAOHbcb`SW;l_DgIyyS%}0Q3#f!@qhSmv0QmJwMD!nt=}TNty)oCwv^-HdY6)31R{mm0tWihXgzyt87Vx~lnC|S8 z?CgrzwQRn|9FsSr!Nuw`<};uIZJZuf#PJ8p67fkVhIsN4ON)uP+?FuS7yJD+JU)m4 zm|i-(3}0K1T5UuDgal=-@Lv1Oc7EC|&DZ|!Ho3I7jtZYxrv{A`HAR!NOG^^-tlESw zm*nbVp57I|K#zWVZPtFtIv6muo#BUiI47a%+_E89S7b(whNC?xxuFL>LR(uss~3DA z@KWz;Uvb24He$4U(X1rsQihxGl1K3^TV4Xvv+>2inU19k{+lDYy{19$TS4r*cxM+V zeh=RTB6yM;qEotZE13!SaH!>AnDA7g@?Y zmC$r@qsny@pL<0bCsyIJdv1p&`?v>AAN66(n4}1_~Y5x z`_kAC6JgVDOm~GI8mHH-mRqLU*J0jy4w@lT8oVJ*6p>3WlpC`ySp6z1A;xW|JwPc5 zs-9?%@4E6W6W}3fG39$>JO>|hT63=UBGX1OO20denLuov_Z4pc9NpPH64tUSB z;uw-nfNr5);*q4d+&Stf?i7vdSrdz?tPTy6XvOVNPO7h@<_Gn$%+cjSJ-B27jD-rF zW}0O42mKO7Ex)Sbq1kK~{!)e-_Ek&*f`QAov3M;EiEqO;E=seKm#5quHt%TN_^zvZ za_>CVM^3UQ>rP4Uo~gV$+F+?hN;z(dc1qYhgo9jq#(;hDm}c= zsIV&M4j+iCOv??2@O-S*^UYKQM+n!k7HoI9Ueh!cT;#fZZsqZ`VqFIFJA8ef zr}&EH-oZdMCt&*Zswaf?8wdXOcE-)3)X6dr!oH2d0qFbB$F-1kemRf*?}@`Xzs^GStHryN#4 zQvAe?l9`sqbG31J8Ji_rZfAXrhI(&1FjIAy$$P;HYyutH8e{If^G9% zR{n4tvP_D2(XIGr)p$>@g<=^j0tfJhD+4Q{Dh+PD3|YTTim# zGUm7{Ym2X_$b%Qx6-!q_R#Fo|28@R$C&y>7*rf>BiwROyFZdeHo2_dO z1|3Dp9`gMJLc$4Ua&1G`a)>s^m2Fh_6h+zBgQnJGdR%nbETWo1)2_h}o+p%2)h~NuIZz zuunqo5@yF#u&3^PpR3cQjBMka9=P$8;jRk%o$v?5`cJ@$Z4dYfC5|2Y%OpaZNr237 zPoh|qKNf~OSVWc&-L<1*g~+E59s7xk+Am=AAvNGX2#Xr_kJ7K(AthCEuhXz-HV7ZL zM%YEzGY;NfNEVlQ?Zov88%_4svt_A&Dz0D5NN7vSiV1A6TyuFl^0H?urLDEjIj~8} z1s?yZD+26es3=v)Lb`F`2Zxn8C8uU4t>i>%W(YM%EGH?}%sU|qf3~xrVWy*ngmKFZ zsY(Y+Y*RU8l;hQRFH#Qoa4a}B*N0G5f*^UBCmKW%SF+F=M?cipjb!C5#ne~T4`Ra5 zt2jdLpq~O$3!TLXhDLyg@jZ;L%}Jek?UBCJUEM0NLXAX5j)Er6wQvVC=tY6`1W>CbJmQVTQ>JE9ASKxGazmPcEj?G?quC?u3f+DT<2 z;;x%h?sbh`(thTNP%)j{aWprbF%y_M=fWJ{@p;aE#9l-rQpZf&gj+}72=FSFJf9=U za1AM1S(N;^UX$xbI+3LxvSNLC>m&5AZCpBZA3}uasKM4|Ba&Owvo3Z$tvmQpfmRL% zo5zhozfyGXGw}?Abk7_ocY+jG!$?tMd%P~EmWX$htlLN;M6b+|!x%kt_w&5VTttBh z->veB0k)!Bwt=NfvdFU=%3Fe&Wp1>mC_W(f*e`M|=$iLD9}j6geG#ICw|RCK!+AzX zA?mZjI=VbR#8o`Er2Bd#E7GlspWaLsjJvh6{0z@)&64H3PR~HKDM=H)k(``&isLwY z@I{7_0L8aLxe$z3$W9D^q$s&{s~2Y}m%(?_1_1*lE$C93L7SpOFq%|mG?Ocn(xwVZ z#>Xgc_r1r16r(+vTTwBmCtK2Mea!S^+40oyl+cLGd@;w%XW0^wcr9AqV$C-%tPHFy z#6ZlqBAsI{z#OhoPu5?vHk(C{uQD}7a>k>59y6PpoZ~J@*kRPRlWNeqR+7qAP8*%{ z9%&=Q?3r?8IoWpWw7x zp=VHBx2%&1Xce9@*nIDR-|J$M~5x1L!#jBv%VmSAI47<2!kHydj~ z$BZ9Yj`2BgR)O%v&Dpq84j6pLM#beDg`W-IRI+ok35N=-y+yRT`rg-YOfCYCuyoJ@jz7oQYzShlUV_PGN4pNjKyjdZ_r zv{cg|V5jQZ%V_b=h%vEHThAF|Sk_EIlgOcH(=vO(549d-u8KRlYuOlh>uY_ZYPC<8 zAKIsW4wGpLkWr+|WEC(P6#zh^gr*4_h}dIc%rst2b1wMbPi_zskcH{erw|A1yHsst z*S>lx8HbjpQ_&2S{Mm8v8()0f`=ieI4NvV#@n%ML#{5r5Piz5*SR?1<;&stBF>`M! z_k-=ucPGbJdsbRr73*2{XuWD(Wp>Esx_Vv0Kx0+Zz>uKspKpnM_w7@=*Y*i~rBLJL zA(}eW2oo#fQ2upBG_PKD7N9-qJ!8gU486MM=zi|GWcQL_`}{^MS|Yz5$5-eaLr&Cy z#tn%$?m<;3X|XbgaIBNm)Iy0s7-R>t!`XC<&FxC@2{vTiX2E$?EY6VLp#1ez8V1J@ zwN_z_)Z_t__}cwYQfynNQH#)9qNrzsLuXIayfMm-G;2>28FEUCN#|6bBRTLc)gP3! z?{DF`iYQ;I2`tdCaM(dEIa6wkpCssYh|b7fSRThpFch(9rSWB`lG5xSPx$mNASr&z z!8=H8?teOC_5QLlp1yv8if)5x>skesT1Yu}eNmYuw{y7ZLS3@&gGw@131Rlq?3a(m zb#Y{lBqT0_Yyu*Y9xAl5xz0-zBN1Ns?#QZH#%Kk#3k$2mYP($&LS2f7Yo`YgpC6Wd z?jFGJrNI_`iBEUJ34GI`iypAedcWrVJ2_(c_XPa^MvlJY3Rw{C_)U(001#LCgN`^r zVC5G&`l}?sA9N%rru^=eIGvm|D8gLRQb*3gM3Oq@jz&}$XogbMRpd=(~eO*w>hS`tY5qpF0$qm1fmLB7yA8_Yy_~8{yO~TYCz6MT#bo? z6NCi+iK{WQva|osHMqhJxJONH+N(>01uL`i8cEQU+wr~_YbSO^xft{!v@^Bf)KZs3 zgnfmg=}Vu2Ajj(M3xT5f<_*g8LZ)Xy#P7|OFd@Mi;9u(Kw1P>oi@cO1K>66| z@7E=+3ULI{&7t?4yL~(u?2u05a)=y}`o)(c9C8TwZzzylW#|UbXiG4gE1z*#nj~;! ztgRtWU1!aqP6rG0>$vbJ5IkRkVL*$4>7QW7@*|o5q+|t?PmSJE#R6ccC`pha*w5^ z(SXSgJ-yqBZbJns(4+Y@zc&E~iqU|1bdc4({JKYyNDfW}MkVs;w7|k`P}>r?;&7_G?;`KW%<) z$>O6SD!yz!?Xw;BAbNwsk$}HN@=)+VR>9ZQ7%d|P3yMD=rv!)b>k+iE3PBZ%%`jNhqu)R>^6zcYW;G@d4X>wHeYVs zz9R;Bp2~bN@lD8EPr-~WioB~3QL@1q%_!`Q)TZ18C;*CTS|mH;h{)2;-z1Pw(ZM2L#Tz$qj4>WBs*Q}x6kMLEi%_h$r`ihB3uN-S+?5lZwb+i zQW=&p?W*t>AbYqAyp2Zk+;kGgoG*n;90i1(kkpm3HNEO3z$aAnS%5pQfL!VG*!1rQ zi#$3kE=#(T8)nws@;-)PaKx>8rCX|Me1M*1E>_pS$cPS0IqDUvdrTy^OlT)Z!6TG&}9*`hv0c?GUX zcLJJ5mv`5qSC+0BeqSux!pQM0UB_!A;$SuXwo5wa*j5@Y&a9j~sBZNoI?(C~KaUMc z)P{VUy4V{XR{B_ln7EK3i2}dH&6eD1%Qd15%rm*Eq}!D`nT=8%lZ1LVK*@_4Q(<9N z&f6B3j5|>aF&x9&Mq=uz{!kE;6?%B6Ag$K`Rrsu1&I#o!3JNyf(H$qI{<4W${MNDM zfk)*#b;u8bTz$SF>FFrp*}6i~e2oanj$b()=v#x&XFFxen`!GhHCUV23p>yHytY@B z<9qSc&$XNAr^DJSDKGW8q+2hrAxk@AP)N}#RXG+nl&*%os~Qd^UcM=rF7q zr$oJa?Gk~bPq02^n^-G=t={VJCV1cj#Q4H-iK%i?l<)=}Gu4&nlnimPU}fO#Nsn)& z88RTP^+rxI&mZi%yvZJDJHMyB6nTwZR?_x*mdn^sgM>g9WxJQ(d%iNnn5<8eDBhA= zqyZrqMyQV`|MZ#=4}~!`TF3Qsja2ruMm4J@nYE(2zQ3UD+f z8d#-Hu2JAraqD`#0@Kc!N%<>7s@AsS;czZAIn`yO+S)nFL(Hj~fyqMr+6@LQBq)o^ ztKzgsC;zOhcp`dkV48dh%=Acd(vdnxffLda=X}x(qzk$s1`93^;aO9=jFVPa@-uxp z@p$4o@?nE;;DkDR**!)pF}D45(1^GNjrL8iwqMZQ760Wf0wHQoXtI;=)4FqqVLz@U(UaF4IWk!w<^1CmpukON6|+u~qsZ(qJx!&q=Ug|ou* zl6l%P-^0M7@R63+g6>K zypx-a9vtX*eVE>L{H%6bJ&2IywSncgZSEZ~Z=S1j_27#Q^KiUI6)J*YjooDf`KgOy z`H4mvQ(aW?^fEp!yoOe{>}O2*E<0(%80{7Laa$`%59-bcdx=BbuP@EAJ-O@fwWZA( zYvRm9DZ1#RWZ5P^y1mU{;L`Tse#L#wK%WP!`R3Zs=N5X&dGdm2CEkCRq|yGQ%e1lD zmJoP5GaL)oW4`apCL9$Nv2#>X+1oo6PKcn+9=t6gKW-^$cu_LFxMg!lyWdvwe-)%`>y(4h?!n&RL}C&DW#)fom%-Z^iB3y6?_& z?SbJJ+?T?%9(rn}$wx^mic2KU(gvDv@TOFhNwIf{e@sSaA%bPr?OvxTm5M zF&)e|xRJ^>Nwl{)%8km{W+(DKM%V85p=mEv?~e>C$S$_qswj1foKF(R=`WD^0y*T= zsrLS;U)5@v4PvAo)gY|!Ll)1DEOj)%scooBhN0Dg)1SVDz^~tBuwV25liLy&H8qWe zy3$n>U;UWr(@21MP$z}PhftoV1htAmzS>BhvLkr{*J_k(XUn7$`LcIeEs-5Lv(w#k z^DGroSQD-65LJ2-ur|y&(-nIweWk|cLx734%_IQRt+>n+A3Pss_NKs&14A$G7=R2_aA^ zm>8ZFPhGrvKHJR`$~|iJ@kLE#K=626Zy+VNRb#?jsY?4qU{BdliC)awJ@AZ@4QrNv zXj;BaD(VX}|IvhXMm{t;CKTD{1vu+S&DwfNyj1_^!Yz|Df*TrEbzqsCZ~)hxcU@1? zu}$&XYMeSJprjhV%=EIFioWi@3YyweeqGm$kSq{&+Ats>Z9y_l7nCqKH;0uzgNAe(A9giI22x|<>SDHT#UeZVPTNboA$-PPkNipE{&*ATG|_W@>4t4 zjd()1oQX;!VvLh;?6F%nHM5~P2jRwSDWTj34YF4_P;gA44M^%~!MkMcc>%;Kg45@W zn?YaCs-IBX9_bP!=UUzkv)Z+F`#V3$Qh>gg<4x7KO~hI_TY<{vx;xdzRxoX=Xiutt zLyiqxs1YQLGgrOb&frw>t{0|TmIwO0L>@>ByJdx*ubkFt;7oqfzq(V_=VKl*4XEU- z4!O>iRY#a2ksU2ieMaXSlp;m;%9opjW+6R(Y$5S!t~|TUCH0Ha$tH)GmL*S{QXe{yH{G7x z(?Jsx4#9APZ+LyVqmuo#nE1=_kk`)%v&HfI^VFnGdAHfw+C=Q6Nuz|P=3o8pTJ3G@qvlY;w{-*(p zmVw^)5x%bJ55I@+Ymb~v9zqS0n_V<>**MBwr>q6g+FRaZUT@?l6MtX6?`LHK#UO!}|8(sC-F6O;@#go1jg9?p%RjaGb?mRde_+w$ z_@@5~i+;b!@2~k!7d?9EKf3(Si~aQ?i64<8wx2D(ANg+|2oNs%jhL7Kzuw$mC;j)2 z2Qd@V@55O*{+##!wGRt1>z^BEWBGG||MjB-im&^1gMXu6-(lge@B1(M#Q}H(zkp24 zpuoU?f?psO`o9O2$(nG>!{ap;)CKL7oSn#K36y=+R0p8eNUncimYk<(Oo-*w4*swn z$jr>4JG;7vHjc?S63OtK;wyfQ|6EoUz5yEhcFCu@*};<4f@uTfin)avqVtyh%)32K zjs6qvhm8lf`vHeM1|<(cX~t%69A8m!@|kco@DC~2;gS&4=Q^I{tc0Il(ggaRd&qWT z64zGAc)S!v_-p_cyDLsvEo%U2{)RCycAW)GI#DGo-KEb{~jNo+%aQvD*f1JIAQ?MimaFn895^xA& zSg&?|RVRp81ar+`jQ0XVMZSwg%e^A40$|hc;^@%bsN49nAlaWzE`BfppQXh{g#|d9 zKWl12ZYn2s4tr>q+3CV%^7w{~v3zPYb1y`Q(F|dXxWs_|a?|l8br~BP`f@YV(sfP< z2F5o6={IFy5TZsjO3m)*#EkG!mX~127@{d-+~msz(d`rEw7Z86)MT?;MelSx zibV0e{2usgJ=KG{9s-Z@Q_LYy_)DllJ2_C?_?(3b&`+=|P#Ed`p{ZZ@gZZWs3llHN zV^C2oa^SiPsZxWxqaFGY?h5&0n1Q!4WfSl*MHC(5+sT3XxJP1u+z;#OK6|YQCirfO zHWkKhi$bYVlV3H0aWY|i5*!{Y{lyP+XUJ#kg7pzdq2 zTp!(aEq9}LMMopZef?5gO2+2lEXL|ht?K>^(X#4Wm8v@`F}AWN2ZZ}Mj4*|p)OT_lxmNV?F8t{4_})2> zK0}?Dbfp}N#cG#<@njw@*iU%}iG$Jc)@>^Wh+!u4xlwadQ(RWk+qQJBl=G`Xg+;aM zja{aK4|e=PWkh|zl7h3~G3Dmz_mTkURk;^;B{BBB&9lzi+{$bNZrei0I7Jt5>v2Z1314hR{7>* zFhZ#vmxHIl2oa>GM9r_2_v*U2@C=^tPP!CR;mIZ|C+V2h6|wRvXa^QrPOUdakIjUR z64kxA%ThlPlpJo(z}?di`Mjhiyf%S!K`}UYO3kop*(-uN1=8f zXjTzYTQp8p;r!ab930c|rrhXCn$JN{@Hze*1pGF`wm|yFzBi@eZ#aXk=n0=Do`)Uc zD=dfXVd!$rK67KGC1heh+jBxAuGRovLp6p6I_f{?8sn@OV=t);JPBxG$#@fjyVsd^ zXgTdGH0D%#Ayt&Se(t9zHC1t_mBdud=(cH`vgQkDKh)MU&Hu_>wJLvc|6)y0h|b%< zIQUh6_Pl;^R=!JADOGmgz6!brVg&k~j>Lt4%UzK0;Xw8$9?2#13#vlB6 z-6kr{yX>pG2OIY*y5Ck@_NkOIRNz73qWfHwk}^)TIi9S#QfiYPhM&^!D0Kxs+sgE> zsAE|NV_?@%ex^rLa~SdQZhYI`r0(8VhI{GrM7=7z-YYEt9N8%1ix3!EDLoCn(Ol!$ zX}e8+J08nmp6J+myqRt{rg8=4?Lt07BT;jCBxy#qXPu5cGbUQQxA>davl=gWnwBdK zJ9*5O@^TI~n*)+5z&o()OoqE_9IiDL9(3w#J#U}o(@?jn?rbv)eXw#YcS+E+$3vdH zDajJAZhTw5IWlZj17MY(#Hp#_yrB<30Cbx2*zi)n*`e zGVVenflPm!qM?p6%K6hVcXK{@Ez1eG*{(r2_M3bXp4UriyLJst@9202$?|i1iw-S{ zHit)pgnJYBcwA^ZvPk!LD7DK1oKpDM9hx?~qi**oj(z;`u2m|tosOtfO;N1MgUhB^ z=|zrf=&bUflMeu9UH6gww(k$Swb(1_Hh~&^N{-Y?$0kEa_iccD2-mxHB#V!(q)}~k z=wex@gak+~?5r1vWGz+&TQbVVkL>mJklCHwch!&#!?d&%jpc8n1f$m zn$fXJb(`9?rIlLC>`_B0W4b0{B1Y-KK#T9RGI{piR>;?fLz3I%MK@1(GWVDA{xJNf z)JtZnT%))DFednGzK@uj8}3KsKB%zce+lRRuG{`LDf@jE_V=9Z<0;v{+%EqN3Pcoz zm4)Q!q~u;n{nMb}XY~K0LBaP8zeK{XK>^$MDEUXx`=GhgU*m$m4GR9{TK_yK0JZo% zC}0Cc?>`z8u(A>}urPtDS~9aRgAx<|!+fjk-=y)+`RYFp!1$(1`*wAs`Vz%ET@+6CT{fHorX(IViuuz~TX23{)Yi1JDzhpN zc!uF&IL0b|GU_Kt{%o{xr**CQ@kvDe25x<^3E>H|=?yn?H}yB&j;Vs%iwsoSZ%D)d zNX{bj7{t0LuYzSPv)^()IkX?_u==2^awALK{GNQt2e65Ok|*;~nF*TX2z+5~E>RcJ zSu8TDc^MM{1{MxVmMK`-T_)@9;1)21*=lHG5%XZ6EQZ03z`7l3{f)*l9--I6n%eP%{EWAU^3D1h-*^BjmwNCa2`A zfJ%=ri(V^3-qBm$vjT76k1bAj9}JmqR$#_B7=sEzuMuV2cjGm{!|MuWI zMy#6;=LHxMk?fN&f=g5G&Sn=TRVuq@w@W8jcRq%WEP;n&T( z#{b$&W}A9(mXS8gu2N}f{Ky-8lvP>RgD_me#FOp3Kp>9bi{D+%X=tYXsJA6Rg_Y7f`T zZe@A6s15Z76jur(q%s1N>Q>2BD6z;xiX6W%Dbvq56C15|eer1k%vGl4&#m8#M?W_n z(8#H?Uy|Hd=#KB(t=boq_CRJLR8B8lRCE2(OvQAgDygm@GKk?U z10PL%%k1eDWGi)QW)Ll(Tybz>9Nreu{7xqB#N^1PgN<3?#q>@c+``-1u>F#>mKON- zq?LpcMiXT5o9aS)U(GD>vTvkL1AT2D^n&aj?)Dd1qh{0>XkX8no|LBda9Dt*z!l01*9gfdWTRC%ucreb+xC)~tGx8&H+UIHy}#!P)GRe30y%V9=zbr3i( znit3|h{o-WAA`j*u{q{P3Ll<9PZV%Gu@rxx<21VJBNY;Fs&T8NqQpc`H8RLez5a=M zWN>m-$=$s^Y7ZCKk^3QMVP9-P$%aR*(s;8(+$vxG#hNFYdOoF-XHU|3Jsu6C-SX}W z8CuG_TSR{}qs#$|7!#gMYcjpQ0c3g8`B?0efAYhsfD7ooBcbqO;T|yPLO6#6q031wbC1Nw}tgqkVtZOzL zkjola=w!NMo0N$xCXpxFPb?OV1;0w}#?toCh(2cLM^K*m9AEtjGG%mdhktI?XA*CK~VUVSm54YEzy2jGKkau9Cv(E67o^)n}V$x9s(#PDAS}wzY;{}feMX9qc_%bIJ9ry+A z#hUD`Xsoc#B`N5=tNc*d0u?!EH6}4*f1*uIr>_(;1c|n+Lh>4)337b>Yq)bbrb=iQ zDl&ium6hxhy0?R5yHgG{x?<3c82d3jy)5uMjuls#NImOI@dQ={P^==I-m$Y75{`!R z98O|oY8eV)MGKPn{T5mcbL=URZWaE~{WQ;=6^3}M3oceP5S{Gv%WD;n@0Wef+}s~v z!El2~F$8E)4S9DK4$1Gm|6Or1{k!=2Z;JD0R_CKIK(_Bv=2rqK6B9@R{>7m|@qs_p z=^xE0rywjMC-=87z@Iwr5sqg1R~-Fg!!L#QJNWNklqZNN|5Ba|Oy9j&zdy%cMEajD z`i~Oyu>$=?wg1W!{a<7Le!4SD{|NQ_ZAkuDm;R84kCE-qZUQ|YoC+K8yU70UzwB)P z&lv50KlA?|jsTS~eTl98+fjRQ9_R`juua*0=l^bf0sm zJ$2!jNMj20!XWV+eY#r~8yo3kZXdW-T0;JX)zff191t ziqd&{$rSUll@tL+NC$#G&Cpkf8m6@kMv{^lj7W(8+b$v$j5{VE6jA^IFCLLtP||bH zoZE9KrZf&R2J)%x!F%dA_q>si=y2i~faGukaOzN$;4fWZo)j$WSP9$Ea_{c3OV+V3 z#07^KNT-aiI5SPgm;9eY%=#$Qd)VHq_P`p12PTl6YV|?+A3293M z6n&ThD6t)w3od=4*6buAX@h-9`U>-q07-k$nIgi?>P5_#{RZ`op5BaM(_EDc#WSOOY9+Pl-V>oN@$`ZC}HFtbEM z0Y10)#ipiJOl^+nPnE2y^uALtNLri7#a5=4ROn!S(XTh2OMokVO?cKwg;(pj*m$28on85a^GiJ6_5~(- znE63G%c0yDjYn@UFVC5!K)~>G2<#BQWWhFl4aSDidyl-$70tdl5{I<4Nn|6ceTqa4 zYr_+=3boiS{fgHLW&=A%EL;2iH*vbj0!BpZBdGxc#{C}!?rjbR$F@+->If#})!Blt zwVD@$+P~hJR-X1-Vm{AQsydA7-WrpQ`XtLVD5i}qKB3lX zliVjxcJ?dSWJcUN%_e*nxw~wYA~VGX=`7;Qww!HQ7mG34(XQHI9dPFwo>Zarz;YKB zYsVR0m#wWGf=n`F2kmD(#HQPCsdQTgjqQgqE8 z`w2bm(HZKaFITRjUOEJH*&S_ZtjAf2+4kuYmpjP9G}~96RLQ{kDFNsCMdy80DSv%bv{8cr!v!GgN|fr|-0GS_ zLxBP8Jo_dn!O!^pw*J?i5Ii^t*y^|n)3q<5URK%Hvs>9?R0PHWH5#0}yWPld*@K@| zswGxzYF^VCFlv+QYy01geA>7(Tn;OonHbG(R4M)f1}9!V|CX5N&6;AlM$~O!B}-wP z-8I#DbJ(cWz?Bp>MO!P0dH1Z@MXPXt#OWj*>wxH-z&*3B1p?{pnz00z@OuHOOxZ9F zy~=h=!nEZDYc3+>tSm{+DyLoL!oKYgZ3Cnp=xb;PO3Q)9jm-K!`=O1*D#?M;Y%E%Uu69IAh#ASbgA%Gc80TY-8(86T`N))NmC9D9h;}#D&IF^$-+&JM)CLPK!EM zOYAzjjTAs{ollMDwOxo28MLTRB|804HKD}-5%-Hq@QSanQwPvf&(vdrABkMYzlSM?jf$`$U-6l4Vf`$&f z_~En`Q(+NaF@-5a9cw+huWQx7(_8NpR(6d6`paqgu(Pm>$sAh&uUf*){31s_+~ue^ zg-aMkU7JgKf>)UJCMtBp!XWdKVOe9<=ijnp)h#oMeJno>uHo6w2JY99M7iQ?TUvxs-DKnL&Es&gnbcB?>>ie%93wC79?ni2Ht##&xNe>1x8SkoX+KQ@ZN3-b9hQn|`5$}}*dq{fjhCem~-hm_jmPqkKtk3QTc`C!yY-M)-k zTaeMy!3-a;y7R^>ma)&FBY3Q8XMDM9}PO|U+et8Ab-&fjYF-~CPm#D#?v zKw%S7V*fx$K@jmfd;J3#e{A>{oyzt-Y2Yy-1#!*aIu-bR=O3M_`1i{_R;Ua>7DfQ* z;Gf|W>>$Sbo0R@b_yjW(D13tTdsYg_?1P>4KakSD%F+BRQS+lz!rvt7zoJth;4kC*?tQsVo(K>A2&wK_IpzOZ=&kE zQvG$kUzC-D_4h0_NK~=1{gzmNH$q_og7ou`A5ixj7=vnqfIz!3sHl*jE~sddF6foQ zSy_Xs44J^$Pw&Y(amepH%Lo@E(;mgJEb_8sUzz^8ibfF~Gn@YI16C=^2PNhfVz~+l zak0>zDohd**(sgw3M-m9HHj?pukka*pYltKjQDErHaOi9H}cAp&YT-BE?f^BCvI*= zBNETIl?Ig>J|hNn4UuexRe-%k!azeM-a_+>QetJLgM{D&1XMp+eW?P57Mq7W`LbaX z!leQS*AzJ1kpuoVF9iU3o@oVULl*=U2Kycrh6I4A1A#>Bg9Md|C;u6ISNDykFM0;N z5&#EGSMw=;%1dJySP%UgB{bNSCV8Yq_^TGlym?Owl?)8-Y>HVv3XEo22H2TU zJRX=~Si2TeGZ@~g&zP0Y7mbfH&mRy~`21(gaS=oS=KQWCS&ijQFJn;8pL$^8w648` zS^SpD4|5`t!&SE02cFtA`;Dl!g5Wc_97D`K0t_)DKVSxWou7p&Mj-u(EAdA}hGmrS z^E6nNY9V+>3_V4sLbZ1i%xb%w9)R!_G^|rK8;?4r@cX5 zmr<Ijg zB0(L5hd}l1a=+z(&!>nueOklPa8Lve$6U30;12Bm=vlo9(@3I&aU}F|o5c47Td1VT z?pC_5G4q2#*Rs&&CVnW`>8Jarp`y^8?W>)QfNWLB@^)qJ2>r_iLp~frOvoc*+H(i0 z07E?V&u=jmdn^0hER`kYMu#6Z$UBT0%jUv-U2TOU-b`v?=S?YY0p&=QKH_8G%flsx z>m{Q+vvt)!;iToDsn>P|tS+Vy*9p&St1hCPv+1{(4IQK#=1x=b;rQ(v?A2-{EISkf zoyxZEps3CW83pJZBZRi=1qvqg+HvCTCt+|3I<)B6@u=kvx0>3HygM8Pj%f6vFL;C3 zpAw)KjynR|(JU1QRs)iylNK&!rbmY5zl4FOYlOeVoxWchZqv5U&eg!*kBZlWxOYN* zFO#Q|Fsy~2SV~#I&E;Hw=8>7k6q2_>_=?wP0){8TO_BM0i;jTfeTt2{tHnhr#Pa5p z^V_X#DUH^a4H5TI1IwgA#w*|L+_Yq52?{I51k0JsC5jAsW%Lx%l`-m0=T|UPOO&Om z6Do(r_?{J+&OwWD@Xqw4@KZ{ch_001WVM4EI}~5#d@;x!sU?U_!1q75MZ~}rlm-qt z@0ROo#h6~@x~RW4p`sZ^vdTwd>_M8y&fkyxz>s+!E9c*R{#JSQC=EJQ)*cuVc)Myc zVcPil<5-{yCU{Ld6nZ71dXs81=erdh013&*@(EU`ob*?v{!zZ>BUchmykSJW&^7jo zaQK$zg%WA`)LpMFbjw2gb6sr*z6Qvj8PkM>PR^f(ztBq1H|*MKE5nIS&X^wUQDG%R zmOqn>EZ?gUl!nrvF2Vllj3LGt^J$h!!{Ugmr`G)x`6_ixadTL9i!$3RtsMZVvJpK$ zyLRo+x^QAHkql&Kh$mFN(>hKV=?l#(j%%^$LzXo`CnBfHi*8bc z;txHLhvU&8u%Z$~DXIk+pM7E1*ca?>S8OL&_Ip?8NTGUTAgHsrDqwiqIy6k2`DkKNkS$I)3^gj+;nuwjAr=XnXNhuN3W_FXv7(MzmWp)c z2~~O}Tm{@BtL1Gb6bxMhtpVvwZ=AV8a-;jZ^+dA|4cg*+M(yY#c7b;j(qF}S?AB&` zhuDjY6Tf!k9AG*cV!|)f5x3dR#k%q`xk8fEdhcvvMLN1f+zQ=5z2)lgIM1y=s`2aD z+S`SuE~hdfBB=}q1{$R3B=j_orc{y>&%o_)#d{;t>@6tVWySct| zfEN+my=TX0dwzMGRhRNr`f~VXF0Pvn`R0YDMAhli^t-f;_ko3yK653P2+3d{*KCfG z{l$&&?7FHo@t}nqs)ZX`AgcJaRs-E;bk+rJbwyx?7N&K%^KVin{7c>QOi|bHo*C#B zkS``vPt4^v00yTtXoFl#Y*gGV+eX*MuUrQvd~=NI~UZ!)cQ=Hqz>PKgOrByvpU0t}0Z$x6Gs~ z0F3T-^=K|zm$&XkNmOyo;7K?UZhe?P9pM%CiuD|9<-bj=hV3C=yFc;T@{jWkEfhkx z@LObMSNDNZiBXl$3=KS4mEqI(5ScKP2z3qh)Pg%b%DK_mD^~n!hv5DW}NA=a3@zK*RCciN@ z>%d|E(klM8UCAQ$0SrlzO3^}JT~mopV`Wo!+09<_;rSsS$xGdr#Lb#eo}DDSjo|$j z4yFH~egBWG{(yj=GVT$o{T{^o8`W}xr08$$`(0W8Eo4~sje_JmQIPhP{Rim_{8wwg z9~*wDvA+=Q|B3Yd`_&#RU(g-@6usZY+|6R^cpwKcS?Lx`vqLxAG=tVgAuk#E*&`elIZys-kE7NT7r4C4Y6?_aIqNq{eT0 z%E|m|&yOx8=KLMW`dHQfh*SP`|G!l|`)@--kg8|;?il%V*WXn=C|eu&zpHu!B~a*u zP$nuYgO&g~e-Y6%u3)e1=g-h>&=8Yvlu2{djqlwCE33hxMOBb4k78IOC z!3Y|h_CzA}9e$Du0MNrRQWK~8z7S4;h(E%=+2}32%9u~C*+{b6ceqfG6EKIFQz1uB zy=Te}Ljn>be}jinhAjqbeg8(E<(WsbxFqG-r^u|Q?z3|wi~0W0C{K&3o-xuRBSpV@ z!X2wB@O}s=4hY#`5nhHcgB5=dLk|UB!~`Ar84o7#BMPqP7jeWV_A4ApKwAOuw<&ND zz9K>haFF1r-qao_AgYG39z)h3Pyb{Vxk!{ES+p(9%aa9aJ(MyL%-{`q_%a^xt2T@e zDS>&P!d~CwXYgWPC@$F()8mE{9Sk2F7eThLHUf3fs>S`#h+k5^g5Am-g*p9L4JPlE zO`iPWN*t#H#ms;u7~)0ihay!@BD9!hBDu8G_mY0CV8B4SK?{ONf8O#}6=t(A%uJ+` zC`&81GpZfoO#n&-Z^KpU_bxgi9fKV)yJ#NSO|)1a+dM@{9VqWpd1=2m_xT$4s>Tn@TVS;_w&JJdLR6#}MWT${ng#tx5>!0|%1RcyzL>f= zV%n&!^rnM?C8An6eQ~Tg&a-N1KeP^Zwiocv95t%vW)cB%Iz=$z`Ksyrl?y;U zE|X0|(J$A!CAQ<pdNgtN< zRmYo_8?Wr_TW>A+iPOO|l2p-pi$M$5t&a&cU#f=g7Xj#~jmQdJk?SU`GYjoIsmk$$ z*985Ju~8X-J~?N_cv$}_<A)b`n&*q+PI3* zOId*>QXYnp?49Y}DzXbUm-<@txkiSw!}ZD4K(9E6ROFe&{v;66~>i4 zd>z*$>$2F}w1szTokUhoREaK%FyQ}s|9aebcskMHOno=ij&D7WQ)SYtL(R{j74LA3 z1F0NSe$sX|S0H@ci4#wZQe(Qi(Y2e_$|0###U3QmWFo0ho4 z#Q#OxI{??#rdy-IPIk28WXHB`bH}!A+t{&f+qP}nwr$*e-KW3)`gEWBpIf*7RISQd zGjp!F>U~qS#(19bj1dZG3f*`Vt~I+BOFJ0)QwuXC(l716-GPQ<(e)`tVXDGu!_y>M zt<@`<5wEIRsug50uh&(7AP*sIggg*Wp-#GRFoIj_(c!AKYyf!ep13HZH=#$B_osQS z)YTh~TXzpic>%=^eXS7T?~G_eykf=`C7S+Y&`q-rFZ637B$z_6tg#Zu7$Nq680l| z9ZxhYI%}1RLJiGWZa9w7-6fmR*XFjoJZMA$jlNywqTWd+7+q`V2%PPr4mA7dNRo2j zgS0B(rCLIvcfK%kCRta8Kw-4IHe2N}GNwkK?VLD-rpr4hDAB%CdP6W=*!94*eFW_4 zeu8WwdD%@7v6xu=&N`ibT_=nUfLXk~8Q)DXq~NGs zG{nv~UeNpSt^sl-wONd9ALz7mQV%L4Qq{g8W!b;OO-(b1#c zzk^!ZKTy&?zV81HSN;$316rE@*C{w!nlBx|pP=^N=HQf-6l9e6zCf*<%6~$&e?R}9 z1>LVm_J4l7|3bB2CDs3RLHEDi?ys=+Zv|cYFI@9?aLe-b?0*EetT>c^n}_={=l%kg zjQ<(i{ykaw&k$f8TU#rqzacGZYg-eGuQ=YX%;rCW-YviKtN(}z|9d{}SMKvy;O}4Y z?cWgCzvA2fT7@s&?B7uB|3B3FM`ikNx{&_~)_#e6zoy7&{x(DQKcDk|=P!SFZ~vvF z{r_ng?Z0yG{{*~rUoqByPh`gV({kv`^qcyhJA*_2CkDp(V_fWyefn~4`tuzaY5uWm zIE?>vH2N9=`%^ z;LLvJAZNzkqM)>&p%A?RV|W38Wv^K9f&hV3yn%l~3&I5hz#|3t-~6`tr9(l7^-}<( z&b+RZHU-d)pZCi_2@i;h#1s}~ggQtF4nPVX4MtW)TASJjz}bB?3jhlTgkY8z3K8fx zAPPqc#5Z3S4mjN_i4J@?F`zNeB-*;FOe(ft1y}3-jBYw;;3u!u0>c=W3b)tH=C24{GEuk_&Fjd9B|*eB*Xy`lf!g*pALJ4 ziFjC`x)5k_5CD?h`$47gf=8qPdyMDw-rVr`JIbf~U}>`Ger<+v(}YF-9>RGl>_?%= zy6S)Hqv?PKzM`H2qv?7Fe=gMHd4XiuHu4Je%8agO3`VVhVFtO|w$|f<)2d0PJzMGo z$uZHV`<3U(&Hj<+rAv{~`4d*(*LY}458hSS+*-&&-6T)r1Gu6pB8#yi;#_t84Cq1p2cTtB9ZUwtI%a!!3(0jVdsTw^kIR)DI@WXyv9}mb^F0Vzp@;?-#bW; z&r__zYSQI&hO7*2fu3aph( zT$&JAm*3H&CULy>XJ_1aaRwz0c~+?0T=e9db(Ym!((?jlEkrRnEVvECD4t6z-Bm5@ z$}6YZxJ;GGlH0oKJ(4c*>V6L%MJnW7;fG49KKZ1 zIEMl;83}Bo@l33w>?91QDwR(sS0%rMQ74wZLN_v0ekuG~PAN)4g|l;d&imP&4@yt0 zd4Hg_(3{V>@2NSgkv6(Pr8t;^DDzg+WW%g(&%Qf?!mdCOS86zB<}ra3zJZu-9xi)j zRqxylw?s!3%x8GC0V}p$QF&05MaVSFC33}EMoJrGwTxnmMsMPGq%zA{VKaZ>EL3J? zTGMvgqTz$pv7aWKgW?T&TDhFw#bz7(-p`09#QA$Myp zJtlm;ZIetmX7qSoj8TrtMO4-b|J`zdb19~GWv4#d4$q-)bTQ}NT4o`nWqsZsVIjX% z5D?N#@h7La0jp6In8Cr_NndKBUpO8Vr^B#r+U#m%>YL@K z5};8E+m!K{i(F-?OP?}T*U|RW`k}U%{ji9C$XBjgdVABV2w~#s4kk9j>k#g~k};ga zd7F*Y{n1Sw)FVQBYeGq5@`SK5lgIS=`ETr$3|(_>1NE_pmC8B~7yICRD#{N5EnL=I zFT3Xi7R!5RxKc6x5XzPmEs0i{ro=E@>n zy!07HffK}~U@&(ChFAQ(xNnM^D&M~^)d`92?A!cA8uBbW%@q`GLo{0#q>Y}jf&Ow? z4pl-x&*LAxWsrZ(!5`)SmGZh57~);LfS85No~j`Ni`b`>AOT@+213Nvkl%E;8CJTT z(KW+4CUe?l=ShYuDLDc&7D6a{BN?_KFh)K|#kePlW7)JqH>C8yx^CLn?Hrs0sQ*J= zOw3Tqf1!)9@Tke#d(dIR3hBqAWQd^f>BQjGh)zGnL3Mw+yg2uH*HxG#uM+Z2eW1zK zY9K?SfoOgd^$tcuQ^1wH`-s$BJ#gTHBEqa2W9Sa0lc|B%;7SO! z^wjUDtbpcUBX%)2pIPb+?o0jm!x6t=LaKz2GWN{(ruK5vdRielO4xpvQxh!QjYS35 z)1gX|R3}8<)(}inq;DS9oh-2B8I@Qqb26KDEp_a$vt`J=DIY7u6H;2;%QjyH_BlIU z($^y4wNG|MYxd)vmXLHit?x7o*LrA4-tiY&bvh~u5k z9XLs(aw0H8@!`kp%}1_F(>^oczKSQjUUz3?%{)zBow)}XKP@HK!yRZ!VED%Ykt*;_C5WkI3y_B%E?O)sThzpUH7-Vs$eq9${FIo1kh*dO9j9)$e7U zm%rm%Aq&+PmE4W#mAE2x&L=`i>mhH?ub$0pyfLlQWXocuV4bhn#xRFfx65qh#IkB$ z{c5$)b4G7{6Te^2*57YqX1a)!l-XO08m5)%H_&xFPv&r&wZXlLm6wPT6VvQ1Q&j3K zO1p<_i~bo*)f@v#JXva!FU4NRf}QFAvD?q{9l7G91RBoG#ClOJEXNT>7A7)g8pM~$ z@h(m>)2Q>3eQuSq&)&0Y)J*s%i%ceRmiZi2-;^oq9{zApqb=_AfWF{rKSoKV_s27t z6NcVTW^BL6XKL#{2*g6OQkWA+Xk?@niDzbQ2D4QGJr3AnzQhG$>4}ini?c$UAF(xB z2l?ajg!$H3O<|Mb)kYWGkqfpA&(4Ks2A?AI*k;<`W(EVA&09c0;$wi=alOd+=LD3s zXe$ww59PCIT3W^Izni+z%_@xwU3)sUOgLzTLQ<}E@gMj>f>u>-CYqYkv3A0qOs-)@ zUvglklK78#g*D|vX(ZxZ$6t|k=-B|%dr-B+qL*7{>^PiXm@KulfyWoX_3oP7zqn;^ ztr=li(|8IFgn}gUZ#@GCM%Y4Q9?az_EoYE%YbmWpvl6@QClEJGY|N9{ z`joVjTu+3^5x8N&`oT5T@TG5L z+{;pm%Veh)MvzK9K?$1h2R*F7QyDkDMw`KmC6EvsQMTS$i&pAl8P1bT8l#vHFSL2F zNf<1oEH5~aw8x%kJt*>nard0SXKRPwi0(8OkJ~x^5>=e^h2YfbIIv z!Egj2#Y~4ciPc7xmJ!<03(`2&4$DR5MR5|>AE@F>sJ1rN2f1FE(7gFBomoLolpu{G zkG)gA`{Ik>V$mAWrH;2qHJtb7AMc|U7hq*7Ats1IQ=H*s#XDL^nC!4@DW=spSBi%N zVY}aNXNCDU8J1WPU+u(|%AkSU>;?zFX_83|8AlM3K(h&l-C+#Rx~>y#AU%O}C!Ehq zNNbIhGj^6vR{PY8@TR)u9n?}D6tV&@uB^t_y++85aiU^?l59&4RZSt^iMk3<8qIKP z$}zsda1VWge-MLBeS;M&h~bmjgB{`qv_t)@`42?=->J_3k%<4>=;@R(ZxBeon`opaCpVF#7 z45;l)oT&|{ji{}t?f!*a|GmxjmkPs|dB%S=j~Kr+R)0MHV7CAG{eOq$(%>-s zO%})ax6ajH@4@huH}&_|3}17$e__J^J|^;yM6s_mH!(Cc`10S;GqA%^`?~y3Hu}Y1 z|6GwTTbX|zXZT}%{*||W^^(38_n+r{b+V|9zK;BpA=A>*Qd@l~<^OUHEhDwv*Ab?F zyz{>h-M{ur|3P%Wrf|RNL;qm9Up~Rie-hvS)=Q$N`SMl%Py}Xl13DJt;MX6|hJle$M3R=;+hrc@#wZ z=;LxoI4`%k_=oq+ZY1Q;$if7g{_Y*`wHIa)6cAwA7!Lq~9XTw|U8-+ET-!HqRX$B5 z9KaetR(FQ%EpuZ7%WqMP%s|U5zQzDV4bT9kUKjvE4NLhe0lGBz^W|8S~1-_-n+`Q03gKQ!V8=i`5mUl=_rY$<1l{;i<%KyYNB z54o%74W_lacD+-N3Ma6WI_RY`Is2Ie$k^OWZy%ZlG#Q6xc$Li~@0;}JX7Sh)H}TD< zci$&I&}Zb(>n6gZ7UPRlEKw$JC1+z(=(a0Cp&-G4Rt8BY;Ym*60Al z5x|q#cG6eAWHyhP9r@!Y*^^fLJnv`G%O=Yw(uXjF4*D#NKZ-I73hRdslhd2&1t^^& zjT0Rma1uZ{7uBUzYe_imQ1{3h=pF9O=Hn||-`E>vKxo{Ze4%OD*@q16`KAU% z)Vq&kzXKVFi)Va8dIu>kI>$aJwSrGr=YY#*%DPeHnWj^oiPQJis`4VXSRSM1ZyWjy z>n=y7apmgvtsmm9{X@lrCvX{u^fjl_s%c}Ut*N;oqOO9}G=96~=FrxMj|`srR4$%L zdrpodTtdV3)5;dcon15~w~-N~yD%4*MXrIMFRyIW*{x1j$2B?Iq)+NuQKY@^XSG)# z_41>fxm?4;3yG0Zh4*$8K5+RpPKAivOqsqiiAVVsJke#;82gPk!$TKGKs&g@97Zy)-EU(11r!+_GHp{k63{l>K zc~H4%>A$%kZ8hQ;Y)ps5qWQne@@SM{WNZCU_-y?)1`uaJ{*!X4F#N_Zbn`-svFW@J zgRK)V0|=Tf-TqNc3`lre4TH%tS!)0C^V{%Ms_!#JfVWJjwKXm7(hnVTI1o=y&#tb8 z2=_jeS12kT!LXqVOEhx>MN)DoH>`)l8L9=?AF>O6!ff=Yn`h4;=?1HftLH4utxSgt z*M~dqN=CjMK?5=u*-z?%vh0~+h2IH78Rh4qJJWwxsG%E5zpAj2DiAn&Bj?j?p<*Cq zy2JB#7O$@GgkNRP=Q`h0%9NDA1(V1Ne4E8_lVJG~%Vvp=)bqTG`0A{og+?i#XwW5@Wv*kHwE8+n`)fOl>)vZ&6`OHvr zEUUoIy_$O_GdH*rA2c;8g|wYibt=SBQbiceamB&=S)9C^Z3JY+?$nJO`Bn-aI^u;6u zJv{y0ARK2T`9_6X7nNDhIS4lhQic1N{zAZvv+o->;A$ELt0xoFHVrF?aPy5)RFGY} zBSk8F66bWzlVOwis%BS>seV-hZ_1kw2&fRf22`M`Rx3p$m(zAVO`@rN>06!6?p~pI zMeSP*UUiK;4ChLGF*BR)y{cdZkTVl2Vsh{a7DU`-xX!BF3F=A4!ls26kt0|*UNU65 zjaq8DI}pc*DFt6aUN(54&k*t{I~S$or|d)P0q^w9Uq~sP2#id0p&RfnA0Y${qLK#|7nyaVGJV2r-)lNT!Ac zpI2a+JE9TPmG#=74q=M?vfx$F3^Wx#uhZ5s{MARk&c``X!=A>G+t)QT8N9VBU z9m1pC`pK8{#n-aH=mZKjsWD0RN28h&(mKcr%HSOGfeBX?O|gObcQc}OmzT{|*xtui z!q75}XSBCrd8IYWs|>V2M_lARgu{bc=|oD%XYe?`m`i4zZk#e*mv%YdBDQo7cjrcS zdKXA9&slJx4d>CO`x@thAjdb$c}#lu{8R|E^9NBZ&&*Pjo=Mq#^nll5u!=jZenLAF zojV|uN(m99xWMPQBK9vgsIp(wb!1TmGPMV-0O)1*s&fe6*n@};9Ac)8K9`Cbs*4&$ z$cW%M6nC-1l7ZqOekUO6Qpim>==Y^XjF9d1M?{cC(e3AvD@t*Kn{c(UN!nks`#6(7 zro)%b8KGp$)JW@BmzM{E?(GDQY%Etc=kM}O$GtYa*-NSXB(aPIOKbB6w}}wA#72=MuIBkTT1&(* zS>vUtEhg)YQ9e;B1O-l{eAE5aTzyI=Ir$+mJ#5EeigAr0qRd`~?&hD(>B;%OlXJDD z<|H~##=e|WCBfA&1q>)wBy7Tncm=A)jdY1W()gw;dPZe|j#CkWV-XI_K2NhF1hI$Rfc&^^%JC5%0D+$|pi zQS2uIdSikon$&2>aVQjeV*H7t{F6QPz3_j9!P z3mq7B-5uR4tw-)}9-M%wmoUfc@M@yXqkY`xueA;+?4A*Zbx>5onw|lykvft@R+$Dd zu_DP+Ga$mNnbw?>5bK>n;dl4^E?#uZze`zWo#DdDo=MB$32J?Re2*Mrn5CDNokZdR zlenkz+b2gbnby^gSuM)FR`~(4u<7@C3}v>GrPx}{vPwfymu-a4;$1~pc-PnM0@es? z`haeB>~M@;$lEV5uDe+WD@n!ghqFztJ0>+vGo$us^hVJ)g{B)ra_rvvpz9*mdF86Q z2DtPKo|*uLz|toG*YI=kPRDKzo;R{gRa%cPy(hd?$-rNlnqcE49Oh;_kqcc%pX31k zv69GTO7j4ag~{*O5yKL=uqre5%&27;AZl2 z=ZeGZ!0tXIVYHoXOLYXxo9CF+O|&aWlXEH5Tut4`M83)} z%jL8f-H;tUYGi}wi(2@eSP|9Achq`!l22f+D&^0!NN*?UY?DOxFLxJcDcm)iTdRvc zO1}v}Q5cmVDC~Fru95U&BdQ7^>7;1#90K*do6xwyT);`}UMJ?Ap7ykeIi*p7MaGB6 z_GpqWGS*p&l64dR3iIfB${RtJs|bGHsy*R%IsxE7Bcf7b0n%C*kuV&rL>+dyFj0s> zu(Vt`$JqRF;+;xaT5TC30abY}S?ww(+HH<+3G;|H1l$CaVHn^oZOIHEU~rzhx(vF5 zF-24efX*G@;_I5-oGHcVnqtfzfO|YR3G~R^)Fl3L+ZB|bmr#DFy-K8P=Yvfpl#=mt zGV+P)?R02m`<$y%hi4TE{oE2jiRjrh zxG(LJd{Up%&+{!yupp&q3+@4ofW~}6*C28lY0Pn}-Ix}hA$Q_=9DLP?j(64v`7}ke zct==f9s$2z0-`?2%kLK!16LI8<*{qz48ot6 zqiDkz91>W>Nb>L?eP8hIR35>r*iD04a zM_T|dR~@FTJ{@?9sAoppsfuKhZqeBQxIFk#SmSohQW;!~ugy75jY$qkA6S330Eee1 zV-Za{qS;vYw4!iCg-Rw)zu}9Aqnx*T$~cuJ zGWOzi;x-=D0M1!kE?anV&l$xK)iO#0qG>4y!Zj#DCXCbwvS1JZwlf5lFWc!m(oNlx z&$Eh0#M@t@K?O3@!=_L@jI3Nxl*CI{08wrTv9n$B)5}*<;J+OefMRG*AWgz(838Y1 zX2SK2&qQ&IkK7v37qr5SI^i-IOw}oSOIYra>n?`>KBzHN;hDcS^oorCkq4k~q*Lx1 z-0f_0XYI}A1y3=f=l72HEy<(|$0mc!y!U8}zR4{^>f;1Oir2cxY>SLYp;m9l=@7|a zQ-_xGB{SYLgZuU7zNaBU76 z3e_tKIH0Ny?i2Dg<1S9Z{`kZ1j^l{Uc42%sb6rK%cN6Bs@RdT+NwLD9gNMbHd9k2V ztY$5xzPNUFjy7xp17X^l6hAA@E5KS~*7>5IoS1sPM|S3$c1PM7DM*;$1E(8Fq_X+i zk_WYC7dk&+&|5PV4H@=^#c5w!H*h zF0y#m=v88x8+(A)c?rkwYNWBm_8^XQ8*uE=bIXH%+SqGMp!ycuOg*f|EEj37HvMYKetof&{hM)l)n+62pAwUXO zkOwbs0;6iIj6x)f=_Siy4W8F-5=m!ryGgs%gGFC63i+J>=sWDGx#$x@3gk3X2PyVjQbE zt`mUmM01r0Q{Y^?QwQj7_2OIRPe9jY;vMg+_v#5V4E=Ywc}0B4FL=&o?c z3&n^a>zLBrP``rpo)`Qc_%dOzC-EYAYM+4?!1CK9&5y%?^zv$Jd*s_v%j$S_VIY*P z_&J zAw#bOxOYakTBFx$-Rx~bQEWsA`pf!|5pfX}q*hzc4HiO`Z6_cy>MXA0vT>OP9-+yf zMlsAP%FnoG4lPR`NjFXnUicUbo={^V%gh`t_uCAf=Af{8p( zO^^j#5?a1jDZr24Eqr#e0P367Lt-6Bik#<7^i((si}(jvN7jHWA~T39Z-%|OhO7NY3zPuB`aLT% zzjYKEyJa@%#*Uy#6EdT39zq+@6|-4}A8HhEs2hEMa+uy=->iZb#6i_1=%-l(y_GHQ z&s7~Ny921uQ~=>nxI%QV)I^&tf< z79<|o#k`15K~T61n$5n|u}PI}+Kzc6y9okwJURBTz@U%20Tbt|ro*f??i`E3lIVnbGq2#!zzMBi>J=Qimi0aNt=Zaf&MYlv zp+i2LKId~wZ}f$8w2dp#+a4}vxTOo2+Fh<=S2h7G67ib~yo?FX`6QkDB@#4yH!?mp zi@_#M+#I>paTkfzTpwQFq6}tou1M*7rmP$D9+D2D-y=~ zfFSa{M>-wxIXqSjz=dqb6#~Hy8bVNXZ7Xiu$*{{DCw1s~%2AZiMSRW|qT&{m1fTIZ zhQ5NP!;`5@m4l%MYEg(SXLf+=#R{yRA=Gc{U z_+Vinmq-ULLs=SEj6-*?j5d3<*_RrD3X9%3r5cSLg9FN?iCG&ovpvi?rxOcuYnO4j zU-i)>{^Y?qbN6-@twNGpIUU9o$nUA29~lQr;3cXNIP|i5FAR|CJ^{Sbqys=?HY<%B zR#@I<(2$xSYx8kw2TUYq!G;ma;*c@SRf4ey#Tb|qI|bl)3tJDA8ZpVoD?4{e2Sam%K-Uu7l>VoAGOCza0%^9LA1bmovHoXTYr(crUDqXN+IsD_4AxI)21c%8E7vJ1$)IhelN+|&(jy0dd45Zi74rt6lFC<214#L(NpBh z{U)(|BuEf_*^KV-2*3@=-= z3=x|ARG)9#L@Fiwuz)Ty;M#W-{=2+8K5w{AobMoG%&SLX#%P1Hi^BSy5u`(1D8Nx5 zht@nnmhu~fPbO5P>m|WdyyNVHAL}<-_rVz8BhO`j&m#0?MUhAuCZPHZ$12e@{U5rE( z-yNGb8?n1PC4Fs6gGoN{Lt@Gh6g4Nu4PJfd#X{|-L85DOal>?nbTX)DyEmWu`{v^7 zK{8D0W8gRZrR*8hN>D-BBz8sS4^l=^?o;7o6z7RmONgAU%@cKL>g)SAbQbVRdvHyD zUS!Gb8LbSiB3dAl@A`zBa)Nc)-JL)aBG%(8E=~kI@zkj9DP20?$gi?g%~IzDzL(gq zQ^o?_pPQ9Fz^CE$mIT@^irc+h{rWIL8oSI&XHfU)fR+xc9~zlX7v@0)o;)N8wK4vo zi2D-!;MQzQRbf3KcTsf=`})%>o|!-LDNc%<@=O=J{XArc-3M5BoEL@!lwfs9ruACs zxDF&^lxWk!!80I-gMzSH#@P6K|1AnsuayxknPwI+su?|Ku@}{XDWaFzl`d($wB07V zoOH31a!h+^1S&1R=vY7#_=heB59?iSgqg;++g($}USV{2Kc8C<**9Ki!91?QS!Cw& zDdl?G}?}P=Cp<%slS8p>DF{q5<$T`zi;Gb_LPe__6ggjlpjAQ8F|`C{*>a< zIj03C(jV8zLsc7*PO?BIV;gm!(FkYbHL0I23fEZL^h&H0GY(F9GleJ^@)4A_!hoomCn7&K@9%tHaU` zjXWt7qFPC+p4jSDGD=GRz&JTClOXOcl(5|9IenFGsmxq6T*!Wji)wIY5(f3O0*{R5 z6`Bt%FY2`r!PtoP9?6-xB;7r%DQmuqnbGc(Sz_(eEFDt5 zOhYb8&265;A^ zEowPT-k@$@k>%&-vt7XNEKGHD9qp!Oz-b$9B;R%*F?EzVXM2BG!@Py1U!;9oZj*cy zygnKkIVoy@_L<6cjZ4_)f1#D9vq*cgY0_{`304b3nG`mPd#N>4+tdpzL`J5S}7Ik63t({JSMLtL?G{qGnJKp`IueWEV$euh%+^Ltgrs z5eGcr0)uxkIQV?Sn4KaHs^$sMl<^#WB>0q`` zXDTisiodIJEn7oo0PO={$9!+E++A_LrM^yQ#-G+a1(7=pve?eU>T=2fqq!gus1O@^ zN7t|%+zrJ+#v68|0ax4P1d7USQAL0?Eu6dpoxp{KlnFo8hY?d;eq@(hzcxwsTA5dx$|9K9SX687P#?y%g@R zkq*#Qj-3aNJ70;zbH9U$j*>*>rNWi__mbE z87fG8xg>$6VaRq3+Tmxfa76U($egkGp=I5@G#}=D%ti=o`40$uMtjCqnqe5o*WXEi zA}A@uDnJfZZ}I6996|QK)O-^Pb1!Z}3HKK{Y6V_lHzqHgZq1z^TJMc1du`4pf?9Ut zk8M<1=DIs9EAhSJW|YcqPh&fyREAhqdY`cr{OgO!1VnIh%Pu?=@JiXob12l?dD-DZ z-u4D`Ra^QL{377MST_A(;3v({Pg(*6Uiu@&M4tsMi63g#t4-Ik6@2L6JsH~)(2mVv zGVi4#FHL(^qO%^7e=U$$=wKBxhpi2B7&34X)4Pt*P|Nk!*+)bN8E8v_)R7oAYIFjJwm_w5T5{jRxf5SEi-98T zJ|{6?)XWLRwQG-{DADGSbs)Tc4)TB%6HqF0TcE9RWVd5(;ie*j3H02}=B!!HJon3@ z@HHPo_L5)PIG|wY6C1y{2$TvEnQXt8z9to490?sl7}CCdZ&wOYt`Q8%TmMA>{X>Q? zy|kA`wx(Jv2s4)?fMXK$&ZeBnMXz`$nPro$5$&Fxw9kp~X^F1w-P#FhXkExjiFD}F zi$rv-LOGvbxpQ|dm&zW)+YZr$-SH{!kOs40e;p(%X6Z7ww6(wBLt#>X zV%vB7(0^^XJV&N_7-y)Odt0rTezJq^rKu0Kj~e%d3q&y z6QxKEdm}Ku9iuWD*#GZQ6WJyxLYWdd8i zLqPK<7VhRd;HC#r8FKhC*Hinfbz^bn1Wg|WyWxpiFq?FK6g>&a@Vo<-mNPZonbz5| zY$22bWX6*pP%Cs|2W8BgLxG@Iz#OlY*48e8>lzT>C^MbX+Eb!8OJrm7@=DBanRsvE6+&bd%Yx zIB>Um*EeqQiE4QXFmw`2)qm9-YnXb zax5fVRl2_aTty|tAei!)R}Gdavp9D^uHel=g5?;9s^+&@+#G>aKI(ecq6*4z!&>(} z_yAtEwcP#pG8A@jin7YgP==6GXM@%LMgEe(-#rv6xU1$1| z^;o#nZp}rW6%>9qiGd~UmrD=}!j)zl!~s@DtL^xJO6yAoi`nQs#MvBpQCaxJD8zF}=M%k&xu+2=oC z&SLzOUo!P_i+R3*1=KsFK=#V3yKrMt`%o`&KJ}ve`hwqSd85&D_tx7MzSTpc2aF+< zp`0PVHTOm*UD`(~U8Ct>%<*gHpfRijX03F+7-_xaXj8SV8mMTr(6p?vhamJ3evY^x z)5HS2bU`;692E(+#7J4}Li?eGwLW?j!Y>&>R1?=ygawY}#CS?D++T{!tp!GbFyQs% zh)P7M{RvK;u#P1hlfVrQ)k~s);h=+pLF)T;l2;_@rQ~G%$^V3C7Z$PN< zJL)87Fb)*C_so*shl5p^ZN;~$ZM!hP-3C4+rkrzwn#1ddBhPvxMw4sp^htw|c5fTY z_H40|s4A~rV=`BNC0s0o0S22k{p+408)GMAUP)u>s17NAfE|UORquvbGqv;+#^Z}j z$2)hFvsuAmiyfcSX0P<@Ib=AHfS*dfE$ck;*7E*`={CJmhuG<zR4xX zd?ZX7+E4w1&dz#3wt5a)8Pcvz)4=X>H~ErWbb3nt-Zy89ZZa~vku zm*|&cWk{Amz>8+rt?gLmhIrvJbxd$nXf*XCRW8~lWy2$9InX9!UWC9I1 z+C?ug)*fR;6p$C0)e3~5$yBP6qTZUMnvhtCcy>HR`}dGg_NDOkzJblVRvC$(6A=!) zACo&1>?PAXm;!bZ%f{xho6ka%wXRBtQ0&Y+$T-NHp@{l542|8w{q*Gb?5p$XEkJPC zgY40DW=?{Kr*RKclwV#)#~TNE+~)-=2J_jk?ChR#mIhf7^#T5UJJ+`|ND5Ee994sZ z0_mWIJ?7HSmN-aMe19BdPONzFaHnRMi5~$c(YuIf+*lSS2~$LFb>s@J#-=g_k?~;t z<*ge7)sdjOC*Tk4xFPJ}T7zKoPCZW$Q%4Y_(c*`ejs>V%s-@a8B_p*eD=pB;lfbqa ztL-gT?@hf$`-C{F3ArK#h9ME%rpvmQCXjnVSV|f~EpZG5#Jl%F~&N;8NTsiGWdn*TRH0&neg$ zm`3CRIgZvddm0mY`z+}8+GAuOZ*#uv21&W_ zCW)?{shu)IU?#q*^_aguF?!B9%8UWNVmU%JpZj!zx^-?sR5bosWSlsV`i@8Av}PbM zo(%YgKGeK!lF`MC+oy5L+1if)4jTPKHIx(O&TapDYRb$Dyfzn_R zpu*{H6*@NL^(3-MQ7#XZ>I5(9N?+!FsFJ7h#2oD*>7b?kq$2K+X$?-g&c43k5FM*w zh55vz?9bQ4dBX15H*`Soc)W&tC2KzqewxrNxp|f$wrCScC!p3X=JmoxQYTn1(L&N1 zw8eRM02@9dzNtJ2Rgk6JWsQC_tk=`tNj-%Ygt@S>;0drwzN9Db9k>i(<0iju5x!!x zlSzs&qn{O7geK{G_Z=6c=O=oRZrRViCIuhiaFzU|i#6DTSH7E6^5ofFD-8gTgtTkE zLv3M+*oK6Q!LQn7QqM=jA3GQMyV8;yuk^plkV9i`41%eYdd=0_`UQAABQjKp9n!)1 zYm|l9%Ig#Q*~O~D`}#^`2^A1P`KUS;R$VYch3Bt?oA)~-4cT6t;)@U6gL5)E$Sjq9 z-|dPI;g9t?R*oqlva?%HgHSgvc^ZE>ek^`>hj3HoyuZXZ^1mM))GnebNmtvz7 zODv}ir8iMW^u_kc*@9)ZpL=YRi3l!8^b(J!)EhO~c0C^>M?r?Rn#7|?4+*=~tj|>p zYG8z*nQCq*v9xe6*q%&459`Lp_~9lnbb0Amilo?CoUmq-^Ygb~nc^PD#9Z**GK-zO>@@bBNo-3HUISTh zKY`&LtK7Ni>1}`n)>-1#n$JvyzVkxq>~1Am;1JAHR*tZj1wG>jUq@OpT1tF3b}3@< zQ<`0VkC*6d=EoiV474N*FuVTfuoq{Lq*pPVQ3m;@X zO#U>oqEX^XCDD|Qd;OQ62TKS9@y&2X-pSOmm=)Zy-Q;Pj1ImWd&(dHpgLQB!Q%Z}& zncn5G3Oxj)jWe9St2jlgPetPNx{|(49w6@yn<-I;AADC5pD!#9x-_}8{w)$?6d)5Z z!I^f>&x2OIE5t1deC9_#Io=sJl3l;Zv1Il?GR`eK+v10p=fgPwf{kkp%TQJ9I3X6H(yTKpp0RY0 zs2&4XgXVY$o!M?90u&1A8HNkq(u=6J%+ zR70WmhS<-{p}80(Nq<4i8eK|VIDx*;bh9MjUwe&u27JYVG%El9kam|rk!)?+sFB9q zrEzJTg2th7_r~4b-QC^YY20bt-QC^Y-Tlye&pYp)`6kXcCr(skHN>$d6BFO80 ze4&lSb&l53HpEzg{g#eJR2R{@PiXE;Y8*_)C1%J^WIHTYGH$kjR&B?7G&F_c5{$YP zStpg_5@x^9e8-Sktba*GH>d7Ji_)hx*EFLSCACiRGm^*V#Mzk)0Y!gCd}`F+r8Lj@ z#=Quh;TX7RWUL3s=nOA3uMiZT-v7}>^f2vMv=jD)B}17C$l6u>k`k|TW0qjVG?WCF zL1!90s1n|9{FEg>b0F;qr0OwL+2a`-T{nms)0Wr{1C(NmtUqwex^C{Bw^YhB#DHqB z*+_YrT*{T|u=~;nX+Y}PL+a33#$`&Bq-h|s;3}=$LMD2K?#CuJe`D%-IS&Q1Jf_$> zNs7Od(BbC962^s7qvZX9@iJ@jo7ef;lwqwx)#xVv{Ue4S?DRErMQV-R;izIcVHB1S z+4Z)goEC!i(8zG1KvfGc?;y29G9fCnvuPJfaM}EW-VD`m5((E9?rgL-F{qN1k2HM$ z59!N~FFrA7kcXT4W^neu1s=5mzX_NA4~XnPLZbgalrQ{0(zzM`)WP^yF&X;r-~VCA z{>~iyM^$q^Re4cC87e6g3tb00St|=ED>exlSpy@7KfLR2zV*k0*_v3}TiJeEqEDOj zUxQ6PJN~;V`;#*G4^#GM^WUcIPh#S~P1*nD^#3$wH1tfgpP=kN(z`$N>;BW3F@B=8 ze>gLG=FhN~?<{{pQa-Pj?K|WD49)(|?dApW0r&xe0AYX#KolSWkOW8rWC3yjd4K{y z5uglE0jL6W0J;D@fc_^&GyLRe#sCw5DZmV14zK`Ne&RH1fDOPFUHseLAaf2NH8Z(q!x(R_a`pT)sHqg_6?J~I+O^V0t;3=Ds8 z-zR!wV*aeC_^17+_fOBCd4D2V{*3(T`+L8?dOv&q^#1ewf6e@y&B)03*Is|tf6@{E z)&HmcXZctEpCkTj>|g7DB{=?Tzdv*T6g2;{{K zK)7YkY2`Q3d1;3<0!aYTMiMZTM$ttFVGUjZFo-*mcFm3Uwy&?gYVU#kwq~w!dOP$f z1??POADxGL#PC6AY3kYV$H~CuvRw3dPi|s9LOj-AcSEOeRumB_{Qf=$?08%Y?E8TYWvXm(MgYJI$-w26;}{% z0=qBhf)EQ)@j%NT90@5O2LkW-(T`pNn;%FnA8y<4r9vM^NFPocHywQ9%}dLasf!-4 zo!pMFn|edZi=bThusnE|3pqA5FB^Okr)B1xAJV)Zu4*v12=zJe^_^aKLyf8KwF15C z+x+N?hVx#Sa9# z4Vmw~pe~Q_X`?wWwT`?*?pR#Vp=c-+C@ca$berBiWS;aO)#o^Ixf|cqD4^jxKUiPE zh$)XZfiDepcea7)Y^aT$gJ!Z#-@15>G?%xiE zHnp@#PRDS(y&@t~OG7v>^`_r@E|XS9$CjS>H#_h@gy%kCncF@u0YWrZ_jQgRmRGPt z|ANGV>S}A3jZNFSCG%j{&w**zyBuF{>>%2Y@L-yCv7LpBU!!nw?iVzfFawcRZq>Ih zJ!`D>j2b4{H||7Q(9M}3w+_e5mVs{s=smK#qbTK=7hx_>lH?k+ieqnQHfRbxu}YZR zL(K3-jbRYYK+q4qK-9x-!l>Lex6RI{j0Cf^|Hf-ISYe`+UR z-EJ84bO(N+>U|LYO5IKXsf`2Xtdzen)Zdmpsf@X?9s{f6j&9}@oH48$Qzc~&k7`Qi z0u#ifR~Pf!TZZa^r!By0Kbe-~9!GF;|0;Z-*@I+lVOo3E4`mElx0^cg86HEjYa5xj_B2bO=rN8WT{VYEyiyaA+uRfvTH^W=B=L3;&+v3n5DyIEDa42 zw$%FXFgsh5N|L;}txGB>b7z0VXR6>EAbFIsWKx_f2w2Qu+D{4rGQEF+h?e+Wa*jN| zNB|u>3)pF+lnqAiCwhw-BX8tiR=yI{=9DjyJDS*E!t8ACN=I>~;?RiDc=gq=#AYncdH%C-3YS|lN(rUE>H1-dSM zB7dDfFIX5%!5hKJq~-9u;(A_1{eQ=`Ov@ARqD2X9H3%dl}(zfyv1>S<^8df=xU3)oX% zjsieKWAy%3nI(BDuFoDRiXcOEmSO)#RjsdhMQvsH#Z{$S93sFkn{-2&L| zk7D_a73Ap49VYKM_-L%|-n&FK>jwor)zi4CHOlMIPc-75gf%FWcPkb~U5KZcNSP!( z_;QEao(1)vUQ!Ltfi8KNVTjDln|YKWq(8N@&@YXR;O51CIAuMMvca^~hlz7G-a26A z8hcwe^IIw;hs!bMvR=#TKdc+VjQ*Hv#H3z)No!@T*pVbQYWXeR)T*6$RHT-mAH9nG zYda{HJ);i9g1~P2Ntr(#&2Spc2rvpgSNB6Tbv|>LSb{%y;Oli=L%S)~{yK4{Sr!q< zF{dE6sh}==Q2{wW=co~?P(_NPR$iAs)?t%fs!}R0d`CsL<2*`ZBG%rQ_!wZTOznVy zW7njr;)GBStiB7?0(0qP9GdQ_H)?tS9o1XfjZSeh4kZBOH<^GG|H$w-VE1 zZs)r;S9?e*g^+Wp>l)OS=3?H zJM%&2_eDt=fj>OdCWP0^TfQpr87elNF5F5dRz#4}tox=XfVm6zoVOE|27Kg3Fq&Ig*kQ6o$u_h!$JIo;Ps{S8%l$*@dslF$$LIyb5&cB1uqX*e?f&Hzl&V!34^+I(}e^X--8fE5}=+^{j8JE-I zth10+V?{k(o@Tny5qG)JZiyC7o!wpR;i$*UUV@mGn(72vtHVZIy^}s#DyeWF4di54!&Aeky>Lz zo{5~gDq{o&ZRuAx;*imAJOcqN z2nhv%it}M;9(f+eaT(G*N_HVhytx+i_;nMi*;pO~Smq!>z&9l)nI0Pebkakl(<=oK ziAaj>k|%Snpmes#Z6cNPDgX}cyqEE-dOPjyJj8?>Cvh}E)RcQ%j^N3Us#qMJ<3+$Y3)b{^TF#`6=|5bxwTP!75Q$)&V53VK+S@1H-zp z=!hHVi;ZIFbZX);MJ2|q7+t6(>{O=DDGc54VOb61B_b+h(X8zQ}x}>^WG=+7RtUj$hA>Bpzmu zg1h)dV@>Y&Y8zxYdIK|hzM|Rah?hgo2osZZd3u0QE;$Aw!K|8}K z=ey0UazkYvsg-*~#P5@N5VFLpHJP3BfpY}$CN@a3u|T>Pr!IRY5=>rO{e?P*ju|y> zRvk$o$5k(2HEz;M-M^~)7OQx9v4zH}h2lFo9GUK@+rU~cZZfzC&7b7e;do{@dZSO1z*+f9e~J?uGrf$(iN%L9li|B~QKyT~t|V z_wSykmN7_{4d6oGkKw-dRqs);Pg3ozbJ3ZhBs5nN8JeJjzi#$-1}qV1ge!=ynKYlu zdl#tq^)lUgw%)fi z|H6K@;cwrYFH#wVh>FT8u~of_Kg?*JSeAH{#q>srGqBqJtrAyKLgM~(JM{7=-vr|u=3G!3 zBRq);aBgg%B#*?R{B@(=gK%xeuNEO40)pjgN|hPR%tCxU4vc6uYAv5`z`{*KTp zF(>FF2PJV%U(ZX^=ft>d=YNJ-WG|$f>Ty>F-C#lC1P&6cs~9Dn^y>b;1Ysy(v6;bN zHFV{5RXd6X&YCF~%fXW@QrAQ5B7Cvc)7Mk+%HuufaGhk9dEkv$8Nn=yA(!{xdat0A zw;4aqkC77y(q>A;GZ}9+D1)$4($n3Xgnfjl(WE^^9^8znXaCuU)|a=0#G_^F8tjJm zL(n!zUF^7EKtfv=g~2hhA?iF(3*L^KcpoxSD_mT7Zb4Enp4tG|5g17!n)QPq>F#TdY zmmLtWez8k$^^*9p!w&V}^sgW8TjP^S_JZ9%8wa$C2D(=Tk~a(DPbCjElpSw+r7smC zd1!ZsINQwX5n$Kba_}Q>^XMrY&2=l3)#9LpO1XC?<8jy@R=r|oPkg_KK^rc7XF}4J zm^q($V;WNn(L-Mt^)(E@A&xe{d2L1NNz&R2;=-nCZ)Xb^0EAeR9`JGC+ zJ&6>wLcA(KM^m`9BVfF$e?MVGu(eNaB51xC)3hQ3uY3^#w3cGmz+_f`CTkRC7tx-w z^!r?C(_K%6MNeHu|C+Den8?vEDpi)DgRFYwpqJD&aSiUHDp@ON3<>CqfT=4rM#k#c z&?+{tW^nusA-_n=3WOE9ME7g*uICWDeJH_?rVGZ6ZRK3hW7$S0s({zZsSnhw71?#E zYj+77i$hfmPDG4O&(?aHYM#$xb>rH+9TaeLT+lA13T5c8Wdcpi4H5R`gv<#$A@b

qXguE6g$G$%l!$vAkct=13dMr+hN@TK0kM>eM zmqEK31Hm#IGYg2Y4D0gP@UJpSKaV`W^LN&XMzmf~E$WDZH&*jcXF+M^MIzGiB!flD z4GSTMB(wQ9RW)8OAV-P^=fl4@+gdNUefRzn+95h6W1*)g_APuTAV&KG#}DRk4RAjO zp$y>_@Ud>+FZQtaV8#DCxL9ktlj+ofE=v1&vMh26a0=$Ky0Kjbyvbq@=i2fcm0ENX zur1NwykVWNAxB*n9BI<5q+uXvwh@ac1>;YXetacbnWmL%MZTgZw@%163BJffGc)QZ zsiXD+opXVabmtnbG4reFhYWaFW6!P@D?su7$6QN*AN1q| zgKg=a(`x?Y=#2OwhD!&3)^H|QS9fekUwsl&acZUw_(C=ctJfULbDs)arUmgiuA1-` zeICd}FBtJ@LJ}5a*b?9Gnn>MS4r~FKcF#Cy6g3NFlc(@%f++{HsLCj!Uhk>Ss#-qN zZ*ZzrEb7zS)MGU38pzkICG6rmc$?)z;c$zd1+zn)+$ZF+y|qvT1T_^hRi{Mj_LjK% zQ|D~iEd@UUJY`M;JEFN38_LCkMe~SeMiC*5iptAVr_VM5y#(w~-dlvafl0wDaNgMV^_05EaCYh%u{(B!17M zowzlXI9w%#64wo?yA0+-+k6jp4~*Xo`Q3h!gc-R7aMNH`K`1J;Lr$Dtd6sv=y)aK^ zH<2z?s$^;y>X4s*;y^Pm^Yk1ss<;uXQ!`0jS*K~t*S|A1RwVZ|2%|Pa_6ys(#2XZe zb@YBgzMwgDh$}%F8KciKvepe{&hc&=Jgl;%2-oL7rRgIz=nah=y8(6O^$14Z{^baA z{LiVjS0k*fq8eJ%I>n5{ykI&Sx@+=T6Rb#S<@0IPx`%^&h1&IZ_}#`^@*}d>g62Y3 z^VNz$mSOj>%U7_-7wyOr@Kzn$tr+YvMUUA776!x}Fqb#Pc)4lz!#GQG zYdmssL(yHk<5?m#=Pd~gqF#m?L}&i!BmVUS>?3pLtBG23Owi^K?m@RQtP*x<;#b+Y z)D7CE#Uc^y1cP<24C(zYE*15&8y+qT$8&Z&`s$W0vg7U^6^Ccl?+(Ndwk$wggM<^^41TdRSFrJ zZw?UbW3@Iy;l|w)iZ@=rf7oPAH_uJ83ghOha z&58RG$W28a5p|GA=?O`ejS|F#HiH#D{IZJSK~Qj8u^n^~7M7Q$Dg2 zt?OK?Ix!n}U6X19OCjs0fF2rFfVJ%uw`?6M6Ia=a_b;SoJ%0!sgy(_S$qv3Ov~h%hi~_Brt^SZ z?H9sncZN{B42pD6O|LMnsXAvzkrKIQm*%u2+OYaGiBTW}8$s!R)Fk1drjflxqZD>< zKd5>p|NN%Z!2cNA$_1R-sQawOEQPx{T^t)wkx{6^s-}OJr}%78Rpy$Bl#&K2x8%0Q3kmEU3+P0PCmWN?%msBf<#*#*WAh1>%%*_ zbA;E3=9ttiV4srS_Ur2T6;`f_~>n~yLWyX7wA4Iz3u~_OQJli-@WjY)W zy4R0_1V!DMFPwfq*Z~{Oco`(HCIQ4<(b{s5xpm7_S4r5z2kZLG~g!o2~qzr^P6?cW%(s4Q)aQt91ggb&jy9^RpY=TE9&CKntCpYqAWn^4OxjuX;W4!!m zBs&bj7iT>6z4Lt$0TIsSJ2zg-TF#)Z!Kxo(rf=61x}^#E3oIo()S3aYf$u>kFfEBh zn6g9Kd9cviUoXmc>&HDHU&8G%`FCP~O1Hq$Iz+;RqU|f&h zq^YOb$WT{T2<|*fQGnD>B`Hv#Q#k)p=OBnXRdB zB$?KY@du$)q!P*TyN8{3Pu4sEX(`nDpo{vxbI}-fYaXVF16q`*b7b-UMe#iPEZ)KZ znuz=4*u%Fr8^?2Mo!+9LEde~M>K?UMH!vBXiYhBD+g~U>cF8N2@$)`W&4!9Bzu>YQ zC^u%XJjR!kCO$>;srDUmTIoY9Qt#!6wAPs=RnM`cceq^=8(a(xF?oUJ(vWFbXHZZ9 z^DGYx2^n>oGy~Q6Hxl;SwG*k_KI<)b-*atD4C@W(wmOwVcs)<&!Rl~uoTw~x<8^%K zvgsuRmv5PeeYrrP>&hUxJi#p;=Qu|6Js=S(zDWwSc@Y8rb9kN5;l%+360+_5%L_dl zd~mAOwL%oJO!!y@@VnJ66P9*k&T~b@Yz;z6){b#Gh^AKaNn^QmjW`Ja?x(g$edUJ$ zm-0N1u+-ASL@KJ?CSi@z+C0cS#>1NkakP3-b3DH%sfy&@Nqa7=obZmD6gYn#(jaAW zOl@7haMn#nly)0&E8p#Y+kxsvY^H;ZToo-OxP6qt*u}lJ{Ul|1D=Sy6D$y(OIV{$E zs1c}RKLirD>+}%QAlypT%N|G8=+7tgYSs*eZIz1qTUJ+Wz1H~H3S{2U@0VX@8KvO{%-Yr_O1P3>14HP%9IAngPw0v+h&mv9DLasleAO zvEu1pa)wBJXF)ur5qzs)dMw2b86m|TEWmC~-og%DxKUco8IycFFtkS2 zOc^9$pNq+u2mjzz#!tquM{3?^V(G|RrEw|qaRluhStWC#E<|8f11A<4!;}??2y2x+ zeuG+WhFYh5#fyUZ)knXiTHWxa_l!q%u>#p<63y5<3hpQZ@Ml8mv}f>L_r3M zTrPv^49oCX-WrV<7s+QF1^9r>eM-|L)>Wtfdr7I1 z(s}4A7{sxbj;}0ooO@sQzd-^6Y-_mnrCA9&jdDedB1VRI@|84VpDkri)HJbo=tYl4 z2b+S6+)#A}prV3}cE-Dd<1>D(vYHTjQp9J6MCn=n5l~XEijp0IND`rd4ArM zTD31PsszWt9z?+4Ik4xN(HeTonm8j)k&BzhrX9m(TuwkA;V(Kx0$-?bK6l9=o$TOjWUN)p$jwanG-oam*5a`?jiVm^Ld4S{xPYTn z!1={jD-`x5Re*SE%YqIjgMk8fkjAOc>{Xn4m*!OnCF1br0<{&|p_ySlq)qvbHOy8k zlTJqtI{ibGxD8G zjcK_IaX|E9kU}l{#(DP)tAb}-XfU*FcqccRRBI*di~OAEBL|~}5G2i$%XU%BvuO|X z9<0&xkQIFJ-dTewn!b_y7zB`*r2DmsX@qg)#O2RY#0mA6_+-lv;whQh+n#mU#CMqS zJ^Bb4&G_UD?>FhA)aRN<8C8e7{A@LBUdFj&zaYp?Bd6BstPblv!_7DX)T&)Y=oc@i z0-Fw@30#U~QwL<%4(%pel>RyU=@Wh|9X~HzyGZJOpL&9FC-#*=E@$N=+w-%e0W*Ea zTPzrFrVJ@ie2(rNj9AU^pZ&icn(OHH=64WEmj=J6aZiqfq8Y`h-C-8bC}N=faEp;~ z8}#|5gY8k?Ov2Ber?(!@1lV;vZo`ewl>8!_=r!OUkGaf)FP18ZLUO@x7^Da$mf#{)es|BQlfE!-z1>1 zFOuRD5v^Wg_>EEDi4`^21bD9P3rl6sqz@8JPv>XiTGs>;QeC1Cc((ts!hnTCq>R zn8FTagv_#LoA*FLmd%Psra8#YW~m?s)7>+CF3H3SgjLJ?P4o-M>kA!idzOtYm!F%N z*6zS_=6N?0k=y~w}}25vySHkUNi+_QR=;Phr%P&4YHt#*+m19J%U zkL)w~G`I4Tee)p?lc-xIS{j{jFcSX0xKdsYJ3KxYi8vkP)@G<`KyLkUj1(Wa&1i(lkiJkBTJvUwrlvLLjp z$<*pV%Gr|A9v4#6R-hTJH<-=wLp*}ZAr7XQQ)&c@!*;y+MNx2YP3WANl|JhKGisOv z#@~Iv-Ba;83Fqf7eM->q`s2OYuIli06*tVc^_Qtwdg5kD^D|X}_{#Dc?s?_vWG$qeL(Vcopn4?bN^Fl%5dWGQD z9jf<_y@EL_!|VKOb}mf9mJ9|SK^q?9C>O6e$ihCqZRu#E#)El^2OI+~>Jg8@PTR*h zo()?fQ*^d#2eSD3dFVwhbdNplFoPS4zwrsdF)6=_)5xs%ZdbI`aR74;WQq1d*!6o$ zGLmX%Op^0(66v(|LNwA2Qk_t|JuB(HfVOx~x8d!E0_7Qr>naZY;!kvRT{S2CT2m6r zdg-=7Y^kzFQa~A9DJ=IC(jHwrtYJ^1#hMucwtM0GnlWH16Wr=lpMTz3DRn(op>u79 z)>C%k2#adExkP`4v5FOc1pww4@kx>h!d&(7Ai-`=?Gv**u8(HSQ28nC11?!gawmH$ zFkw2n#jT?qINm7vm6-C$1LgGb1IIso1qfHgf4Un9P$#+DE|DuY6;8)_T;p)e6ek|t zw~;f({yJpj&Mz8!{8RUbgi7xSjSnGRrSv2MRUm?);J&rzNJPJ}@-4zp^)??k^cL9Y zbM|vH&+b;vRJ(1+}qWCK45%X`Px1W&VEY8OU|~Vr;=47IdN_*7b!JhombWS zJ8{!833%qyxs0im&WNUzy{;PDlpfWbw)w~Z=DDw?4R$vX_!g!E=3-R8 zsh`W?Fj)jOci?bC%ak(_>C0lwz4EK-rG0#52DES#e@PKIpXwUDIq`#AC{|CRioR!FN~WVhhoSsg*xgTY zESr@T7zPxVg>D}%!yh+n4-BG7G+vYAOBxT~5z9NC92&7l1mO8~bW3oeLi^dwR)xeHPIJj=3Ti z7&0;e$>Nyp>}C-%lFN_gb0AqvY5i9^u|_#Kuazc=2Q{e!w_4)`l?DfJYzlZ7x@RTk zSSJ%-C!zDg-ctR601330{o=-*s` zJfLB~ZVnYUIceV7(cy@El^xsUbXHdSEF^WCuA}kzZJJD!w+S{&3tI?k6kzuLF5Kdj_YSDC;!AZZ1P6NU7utl^nYLXv$oORMciXWw@S9Ol$(*ylM zehoI<*%jJ6TPUTUX!3qp^DcI5{%!sVDyWvu0POkZlZSq#8Jn#l^C|?>XO@pZ(crhr zGUqsR47%ZES`b1RwkXkvUyRJKzdME$AKM=8RBe9C2m~oQJg1pJewIg zJ?)n=l_++dg@i!r3Y7GrI1+a+Wb&{L*c_XepZKNgUBXMpkusmX{khz?=7X3?0cu;W7XkWr+7 zDB6N*;oQIV#mK4xhHX{NFgE=40E6G>2NKP>&*8WLZ*jm^Gv?Zm))7y01)AOodSfTNBPG)l z1gjDf@Y@0^pJD7U?NE7PCTx8<2W%aB=Yyk@XN|NFcQDLDAMKiBElT)UV&7|KNDq?@ zI<+8FzRk&x&;s_IQ_vCRS%lot#+SYP5fZL~ zBT>2S)4dhGv947{U<--*TOPmmAuuS-q2N~1L0YW=Lm2mm%ZKaRNk9+A2BUL{ATZgn z*+XKUh(7k+IG1YH;1&)V;f(krCbcMrpD0|cib1bt{d4m!DJ=yt>u}{l4deEDxlNl| zT&8eb{mrTy5wL2g>k_OXbBn4`*KK^Q-e`k2esVyIY(yqr1=Tu$7B~t6Ynx)AbnMs4kK${*<9D0tvo}h*9xS1 zq^yFpDFx!9R#UpYNZK!&n`o8NXk7nZ(l9PgbeQ$gyS#{)P%$&Gmcwz!f9}8!<5bRg z3Z4~2rE}C4kxU>)O20vp`hI$)Cv2fpe*2Tz9wDuD2P&t9bEIu@(hK%nqF_}h<|?&% zA%ncJW)--SrOfV7M1)Z2YTF~q)KjleJvs2ALeF{oW0v6vrB{Bvn5NRzkdT8pg}=s% z2*IXbozd>bEz2Pw^ykdCJl5_hDdw6{3_@88{Hfx-k4PFtH2@%QLuH}J7{_S_GJ z!TWSx9%vTc3x!SiUNh3h3UIm?kDn&Q+4Z6izV#lgsUX3q56Z)Z<$yKE>*=0fUUM$B z1uWW5Yb{itPSKHInI!m2O*Hh4cpV5d=1Whfofs~4gj-Ub#N!^FfrEXd>;)_tbu1}! zJFea0VQrCvI5AZ02vOxpk#K3h*Ir0`w~TORG~)1;7vHncO-+AH9Wj1XF{;bM(P*VC zT9h*r+n%qwyKHwYQ-0KRpmXy{$|=tpz=jBl^A>b_Yd!i5Qpp|)TtJI}joI+7gU@hT z4I_0P7o2^~5QHZXWsA`hl5>TYS8PoZz?w~a{ zp3mjJl_4n)!3Ng}1{pNNR|$#un-P>)5SS-CQs{^@2IkuHAU%s{URL(iApr~G5k^#3 zAE*m+#CXNV4P@gJ%Wtx1q>g$KOj%In6XE-4r52Ntb)1}EkQsw(J7)MlWOcyU@nC z(QJV%GA{6CT1hz9@5w&cZYDm((upd`CznUw6yYQm1825xw0nRw-7wvci09t>Y8?mI zx^c^uT|`lMeEW?YflKlW-v6A(}|=ybst zgE)esbU6he)k?q(;fpxbJ>luf_m<44M&)5je@M6-J zL;VEe8f92^WZxIDSiwBn{~}3cvaqDIzv!A!eHkagP7HJ|O zE>m>w3dlTsGDT?b7r~TwD0roD1(JDrIEzCnF44$^@z>&f*)H_PZ7uP* zde=3wg zUL{#>tY_+FJ_mP@yM!{=yhM0Mx5^a>%})t9*$OyD(vu_f1N_DvSrC%*tla<<#P$sV zw@Xd7N8dnPU$DiVM(arj(HRF2IVJF4w-iwJMb+bV5`^p7ogf7&kO(%F*n?wqM#i>y=EgB|yni_1IO92vNj)TTKnD-;BR|L6eGIwnDA=F|9v@K)iTy&#E zgLUx8$C-=?(6e8s>z*CkvGMH3w(!GH_k*!%X}Y&4>}-V@s4q)zZ;a6nVSdpFCkvM4 zYb@w)76q5eD=Y!KBRj12748GboG=MGbYnRs+hxeL*s{sbxw5(Zt~(L;0t?0(J=YK* z@d`G<>1;)gbtsP4)r>aTeI^qtUZBjF$QBFd6t3AiJqIxQqS?06&4evV+Ks-LrcMK{ z6oW3{fBfEV>PfT%00ZQ=I?qA4(Sx${v&XrFFudvNo+u)xk0ZT*D)NU6pjtD%iV^={ z9+vBt0W5w#IpFW;hDNl~4!9#C{T)vovm8_0U=3Pg9I5%Go;Z5L(GvZUMgb4^Dx$_w zcCMS42k!@`2g4PS4n@Ha%^z2bZuzWnbb}FNW_Bo+gOn_{UoM-BhWpX4PjQm1wi!I4 zetY~bglmi}e#nwQR}LIQAHr#`n1OG;@m+CKL_||pxV3s;o~R0SCMlwUUSAsx%jXhBdqo}>bwd8)1tdmHd&5CLn5FbcDZk)hn;N@HtL|w+enN>>x z5n}>nvvdHWus(WiCkS2G-t}`(mY5?HvdS> zN%a->e%WmGk)&cb2`~AVKQiRU6JFRn-Mel^3~qRgp9-J2%o=){DNLok4?+SHL;XQX z;Tz@cgJ=Ia3spWz81&K6L*V?FWnDpl_euK#D5TG}$ufFwJgj2Z6EoHHILp~NQl%!) zg$5Tzd^YDZolI^IV6=C%!Z!U1XtubuCNEG z9CZr&pJb%3(QzZ(>rtxMHiWNz!p4q{_!zSTRvBXIF2;l78zAIZq!$K(u@`dGcha+Y zJ^GZ+Qu;LHc`O|oV;>)dSlegH(7s@5p2q$iihE?G5HqR^}naET2-LDq9tROA= z1V}aTHF_)Ipq&`A<;1PzT{R@EO<}%XiZpZgYk-G)6d*<)9L;->UO|T3@DAJj(a{ z{>iVX>iE^~q9~qUq;&{M%-(F8K$!TEN$a?3!789NY7yRMk>NW``D)=o1;0G>w#p_9 z{OlDIu7Io@$DJr(nzNl}Jc&-@-4=ZAB(aC_?$q09yHj_(lWD8?v!vxW^`>q56c&@a zyxp!}7N1X_)1$EC`Y>rBoy-IAWu-LxE>bKb=>1lQri9ofAI6S^bFnhtv<{J<)nbku z%Iw2*>5ZbUevoQqw%WFXA;Au2RZ~#6xbq(BJ-E`*DV}lgI+?S-X|jbQGds&^tGD6n z(ciX2wEPAgJLP5}#2ZZ~-lw`7G6Ic-nC)btc`DuiV@y49qFZP91)H7yYTX$5`xO7T zxn%H`0)3)*iKG~Z6Kg{^9S&VPjqk|;(T(!RERnI*HF>R`$q{vF**$YaVy5cEOFu_~ z390UQq{U+O@TZf=)-8aoPe_&|IpPyf$kx`AwZ4Jsi6S&dMmY9Pya*5+4yJgm9+E}J z3Rz>{hS7=?fw<;o`)SEacPf>bT22%~TuoNZr!t-Lb@j008YO3)j53I=xT2f3u=!x2 z+k91swW7CHta~CDNXtVyu1AI6zA}k%mre2gynR_GmCr5@Mt=;5F5ZDK76z zf~=3H8RM0KM{4hxr3M}CtY@<-fo}-E$WM;kEjb=Qo2fZxgrEbj#0Y3M@U^d)Q*m(Io@}pii57_@!T%sQ#;7hw4oW3vZ zW=Ey5Th9eq51Fbwja~WJ<2;CltvEi;uhZ=IbKb~Rw|sQuc~S=0Be15r;-jWU5=Svw zl9_rL4p9pu-Mf?C`30$u)&)yAKD0S$iLK1Xrr`W{d*Zv<+sDJ<=a3O{X2G!5CIkEi zG_F)Dd8BG<%6(gc-YW|!HD}`?@bLHcvqVNtN`Ca9m(|JA&mW>Oo3#@;kK5v?4Ps2~ zs;D%P#Z&%J|wGKUm?8AL)A{Vk$$YdI4Y5@ zgzGp+)V;jfN8=eC=$Z;l{MGV-0NMxL>6jNu|Sm| z1&r)>8Pv;kf!b+BsGjeMF@LA(&F}R$sqdqELz8$OtsmvDVgsEXU=xcuW?_T`Ck+qp z^3b5tA1zUhWxT+!DfP<;se$YM0O=+mcKtt@>VE*n|6fY= zzf?N>{z?4)Rq60Ql<7Z|s-Tjvtg!NbQ>u~%`X+zF&wmKjzY8k<+gkp!=-z+UJp4TK zKYS|N=jMO<)bDivrRL%P%ZdMKQ$LUJw@amG{A~UwOlAJ>FqM^nhJlg(6Q+I=OEzY@ z{~4xQ>wFdhG&eA`2mIBtH8C=_2mGy7ja{rii^u`24Qx%U^Z~90wpIWuOM`z`2m}~f zIoJXWO&tHOo@i&__&M9)uLD?`d`|pZy9)f}UH@3upZ{T9|0m)4Z{Pagbn8ED>)$mg z|NU{(|8?*FqOE^O>c3d(ALja}{Wo|07Zm-!t^WyA{|2pp80jB!`WIyVi@~ydV$^@l z`!mY+2~7WN|C`7DA+CQ${x$2rum8G=&pCf+>YurP5!KIY{a61V#`^dB_|y7>YyZsp z*XZ9=_Am1KkCA_}*#D%i|11ysZ|chM`GxtRQ&Q7jLju zPl{b{u~MI+v$CjTusHbpvmK+eGWy%1?RC6Ztzp?i!K>svYHc|c)FV5JZCN!fU0EhT zb8&VZlR(GnKw@IFvzMR5%Eat+JI~zeGXt1Lyb_kqiSU`qD2R{@!{G}io7(b92o@Wt zb1)-Nfq*U$3K2Rwk)frfC8jNrj2i@ku(%zJ5fLSm0i3C-YV$|@s~(^J=@ouzN2XNb zzM}xD7rr_$^F4e$5XV6W;>SWHB@j?d4Vd@f=rlMFNlA7QDJeiyfRv(Ahy?04C@c07 zB1JRiigGIAkZLN>X*$rXfZ=_l0P_bIV#?x5it4*uDoW4ilXGN5#6)Be-XVKhEZ!|p zom=>5xG|ueQ}fe9M;8n+`6w|>xiJ|x8+fcMC@RY-i;cqARJy;IX&DTh|_g7hI?2S?^QyRXvbWFsA>L~b=5i3RuHXg}g_0c%>x9jZpe z;v8f|M&2zq+*RSg0tJau@XSJZUV0y3cGk78O4zhgiH`dpDZscf#GR{yQ?uZkySEto zfP3z>rwR6u_oU+p931l>?|T*>fYOf?zx*1M&i-)Vz?3~J36z75sxg`~ZOo4pGzty| zHzLCVuMtTNoOk{MXzN!czoPdPtm6(*%#`JoC1=DGkWp>Sy|avuK$4v24!xAEj;P%a z@X!x6$akw>4<8Y$AH!20wjm!{7dKu3iPlwBF)Y<@96%rI^a5T<;W4;V8=U+k;{x=S*`D-b>N#DNALKZdFc`F^@5AzuK*?qScwmGRd!M3W>5(VTP6-U@7#!d+)Y5khba{jCj-ii*Hp2pa;oym8$ZZPhXN4C%!g{1R`YuT zcW!)9d`>d**@t1*`^e9$3j)?sSJv0DGcS2!Bdcd_gpbbP;KddcmnjB2Yow_fYx<8i zFE5mBL!Fza4gXgR#2c^7z3_Bgnza!7_xZ8j*UICMfeUVF*AFnE)$!i-+pH-W8|G?; zHx7#rxyz{K-oB|Tz|e;(kXPw@)J?}e9*{Lea%UOMO4=p3O1?n>$AZp2ymaUh>@B?? zJOoEPa|t@y3 znCJ#_b~Y0PFZ$!8?!qiH0T&Ix@VU2%9bGa0xg;gUNs>FyrnFNvJD&!(+)G?D`eSYk zCmX?IY94cMjuRmh@UL04%nUh_%pcq`@R1R)2zTqg5BQtY`@MW|H_g6XastmEqg`mT zilw)qyoE^Y;V4qk%^Z&wd3UztxqOCIR#4=yG1ddcW*(G3WS#}E0mF+&-0|A!9dxp* zwLOZ4vhI8^uQKNHxMMt`?w>W}=(;F@cgo_lQ4%5NlS;n-Mpk3VY&CIPWER-x!!Q=v zOgpL71K)DbZ5#H}QCmmx9B`he;RhDst+hJW6%FRq!RBF8A8+tSAYsu_MM1L77Yem zW&}?D-?wTWolThbnV4IM!Ds~q6FJ101pXh=?m0@9W^ELFYqxFNwr!icZQHhO+qP|Y z@3w8*n*Dxf&i&5ZJ8SqyW<_LHX2g?~S!-3Th~Lx82vV=->TV=2Dw7AfxgoEuKZ8`nH&wUHdFXK`$JZV#6T;izbq~I07P5UN?{=e) zlJ+yj1e(dHr=#rqHTH1;Rwt_)brO5jR}uZH4IED0W_O8#%QN;l?osLuq6U=)VHQV- z4tVHR*km)g0n|yaDl8)9;YKsHfGxKxDya|H5V4R}kOw@yScu6nxtNkTL)JwcrW8do zxeKxWwwPD}*NNeg;CGHMWoesvoOit|Q2^U?9!v{(AMJ*$k%p0=1mE+5wI=ZDee4v# zp6Z@)Ocj(T&5A!w;nO(Y|N=Dh_ z6e%7Ag8HOUNUQ2-zRlz+eRzoDzsKi5c-*LH++4qG*uUhP(@HXVKcpSbyeMnJL}_R? zxU>4(9=+*TWVmH22dHp8IJBYki-bcxNThW3BFl>h*>=ly{q_mPaF>-(I%Pd%<`m7K zLCpd?guHd1@4?fW+`_=`wZaDQ#uRo9d|C;91{P{T^Nx}t!SYryeB=XEl02f&DQ82zm)HCd>jc43JedtGacc!Jp*I@ z5ZWQMi*y}P-ro*4-B8i8!1qF_qu$0l%wm&VgFE|b$kq{FmK9H+R_&Cyy}eJFf|ad4 zFBY#Ce^V*tR9bb;WBXMFyS1LuY;5Z+lZzDSWOON+jc2lQNOw*1%-;f36n~iB;A{7y zfgnq?s4&@tT*Kpzx;IGe*6T%S+`8Ty7{|KS0VsSU;RES9s%xXWd9k zHS*}4NmYA@aZy=gVre*bB{*c!kcHOeuvOo39}*8o;_(G@T<9Z0r3(i>Oj398 zMhu<6`ZODka>5=>i^tW-4uSsz(9_rslXHn*HP%F56>d_U<<*(7?*g7i5Itb80#A}E zF8%&zDYHiQlFxitWLbpBpi@s!C@-iBF|NE&6LdqmSO;q-?-i3iJvsah&&wO%S4r1! z6vTBkkTWi!9^+7T4NW1%cGDBsC)nEjl6$vJBJ_9ltTWRMmhd`#7g&@MliNj7m#1xY zBtNiy=QH`qo!e*1&62f6uFZ4%vPi>F)Q9n?&UmyTMQPT=qQY~PWgYFx9LzNlIf4E$ zGkt`@2t%uFHt$6sMqE19PRqct((?nrn9(>^t>6n2th7+)XA2`P7F+PPQ?kv{_W5^8 zB>Zo*#X{7RedSm!hX5Z19~YCHRDkS<1UfqbR_sHA9~hydfG0hOy(AK%0@c$}H~A6N zW~@@l(vY2CwvxSqUraAJO^e8Tow~Nk~h-kc(TgdDO_i4IHjAWg1w?Yj{tEDpvsMl7zxTTUHqvZQJ z^8<;YhY^iU0RiDj=&3Ph3R+!`FVtW` zt_`fEFH^yL+va#tiR|V#LI`M@0?kylS#||20A!H1B9X7f%f2B0OA?YQfTVwv49KhEHH}27HK$c@!OY^x^Zx3yYiFOoi$BR%>@2o*3lr8 zgM`P(Kr{Jm6;i%#0jN%iKfQm*Td&O2Ore$5s*IY$K<&KQJT=jQD;CzEAR z9y{Od(wy>Vh{rzW=!YJGt)-w^nVcG1>>GXC0;)WrbHeDJZj-&9gIO>v$tg=22vD@l z?j$jZkF@h5=BNCxa6(Y(wF89d84;qI#VTHrIY3W1lJ)Hy%wDr3ZP}&S@V*YqPpV)? z0z81H4!%xh0n$U%6l$9hI6r>nD?$$qfro5ry;)I$b)1Y|5yP(pfa}t+QBOYM#;>nf zFKGo@%2zsWCD;-iHP)@9j)^dkNwDRp6w3z?&u`Q)D*MY5UXO_PJ&9A+@JMAzF?zWr zRgf*sZMo#Dvs+GDEUWT1EOHd{)c;M(9QlFePK`$K`>9YY`6dLUjA;}XE%kN77tg2T z6;MH83TTtHcm$2T2SCZF1l={MAXL&rVz#-UzGhrzapIW0{N;GQnt5#Y!++Dp2YS8C zK`@`@VfK>ykbE=rPzMMCMBE`uKZybX6>P#|xlYw+*!Jg0HlK0jO?ClV+hE2N7HvZ+ zvHUj=CAT{8`a)tG33XJ(>y_EY>X2Y}7!b4fEi((7IOI*rp!!Bt!e~p{2Ng5>5c;*< zPyF7rRK3|_-K<>#;cPpbTNLdSE=Q9QBVB-gG`5L>Shr&g6x|sfbU97D*K^F~v_p;~ z8ww4P$gdQ{6vI9$uxI|H>$|I>Amynq4p}A!kQX{PbmR|+$fpgADgTfwBzU^owCIY~ z##DH8WsRgS$rw`L!lS+_P8-T(N${D{UmrS5DmX*Lufw~?BJZxA!n)jmAP4g7pL*9& zgmn>@q=~73q~vZv$4+KyCTKgHLmcs*zxxH#-cf1Ub`b^z6qMcIy+U8u_NNrrv4J z)@F@KxbBb{fM`(I6g(4yFF83o0;cMQ8!bY=hzDNvfrKwNjOT-3g>`bBT~7?!w+IlH zgGSL(%I>#xOtP&s34t~1>oXxYSV?qmPXr=m9!*w0Wd>3K5uoX=T9Tg77^fgEs*KV#wdrPvDAU zuRlO!mW}rgPR)41e8gYeK8w+rx+t?*+%4VV73U3~Wp9PZzJRSrb7MGaA7xPvTy-Lf zAkBoO#GqK9#@FSo_RoBFWSb@wH~(RCU`LI$?+?E2QwTpurDR^6c)@{26xBQ7Vw1fL z6zV;+12C-%%PuJEcAcFU$P%{JLseASDJJg3H4xe8GPuq#T7<{>fZ3q=#a3Hu56HU0 z9r6Vmst2b)_=RVq#QL=JW*$+YSWqr;p@R3PQsL%ESt^n`Elm3@0dhKiJabtQ{FV+o{PX8N0qU7@2g>*!FLT(34iU5&H;w{gYHDz4HlT?8Rt1p077E(^I#Mo1}q+pJO&|UKw zq?&F@+f*lNB~!;@d$z5WqFjlYT_ag_!UTO2eSu5k9oRzVlAzVy%K2$JIzT>`~5S zm4RmEdJYq2=f<{3lJFZ`y;nDO2m03e+Va(CF9n<|{nB*lN(&n?_ALKMgQx#%V5}bn zO^I1y5)<=mAK1h&Djn3DyNMB+%qN8qbJ6lcivY;!j3apq#uUT{_DDM=xZVq#PG!)3 z;btfP#YrhM@&G>q7Nw+xg;75p^SvH27ubplSuGQYFCD6%ae%90{(bjHex%4a^!?A< zo7kKuI~;Z$d4|MfxY5wXQGqpSrwUVUG0MSis~r9#2}zr~J%M+ZctOR?gbkvgb82@c z|4$I_w?=whBu;Wt*KW^K8(s$ST;`6Gq1b3b{RRPGm)_|DrT)lg*J%w0{cz^21^p80+=nJ!X z70%Bd%vt9d)|P-!59MaD4mUK3p#Pi;@eT>%;&#ZMSTd~uVcF2bA?g$hX@R(TN z<{-3n@0dpD8qpP517+R4RXa<@$TmS>xQavR8U=i}zOZ0cdq;J9Y*0rwl%oLtG6mB-1q&>1StHtdc}VVqnc{iFm$D%a}D|6jOPw?k8G8tdbca5IJ?(1=fI2y(8xPmr%dDZ zfzyK#?o1s3MyuipcZNxhtn@OO)U@B9 z{UEJrR71TnQTi71B1l>@4FakMlm+^kpw6M^y2zD`%(|9U%y6bQQiFmq#iYGt_J~w^ z(8{E?4{919qfW`wTA^2u!8B!_{UP0)&LgoFhlV~{Vup~10iRQDJwIMGbsVrbJEUw; zkBZ$nQb|4<*Lf#}s6#1~jM)zK01&v+xqC7CMCJ{CAHv@!FUxG1Sfl>ksEE<`?`$?eWsQ|aMd#?Ud6M99qY5gaj zE7Rjf?-Cx?;WpwpZs2@aaw&psq0@oEJlxMgaYKV>sw9C?ru(NT07och0r5A8AcC*k z()p1_zj0X6+9F-nM?@kqk38SY5kaIWv#_c~V_!p4M}5Z;P_a(HY5m$O+3Xa)GP7jI z=4J?vxbHS2aU~{mEi;CdP7AGoxkdp!gumi*gBJ*!KTgCrCw^`v+j+fx{&L^%SD=!q z&76X&lu{rNIIf+yv%UqA{QP*V#@f_Nts-QZj|OpFrej5-4nd4EN7DTKVcc9g7=N0>Q}~p&tvPa>$dkxTaKL4oVP`;u zPNXpA&Z~RL5#s_trVKP=DA`J@{@CsU>M62I{xUlWpd0!)P(Gsma);?}K01i; zrhBI7(3f9_LJ!r(Z|r(FN1z6Z;@mZS(Vg@r47fu$CFn~A&=T*1QVwu|S%h;g;9u8K z6Q2av1T@m02piIbFD_5gG1P03SB<||olIwQr_tC{2>Nv?v)v#y^V>u)7;VKNnQD!_ zh6s_#*tu0l9(nNWurDzb5!XfwEE1{KTRT53Qfg=Fmp?DK6&SZ;n{Gjlmx zTkRJ7!PEvFO2=3T?J-R0kwNMj{ehBFe073g6GVjFbU05|u^Q2_j(X{*3o`FAfInhC zKkhj=dd7b*?ImNL1U$l>mMo5=2u^x-PsDvM~Si0)MisPV!;*tlal5IjUP6r`wKSoIz`mV8Hc0!?IYW}Dry?B zkZCVAX}!04xdf)4pN$m{G!XYJXH#PN0uotQUxXsc#@!xGwCkGm!g8c1AoRitT^5Tj zKP~2_%dboAlrQqed8`4@nzTQR1bMHa3*;t6U059=JS8z^`t)0`V25J{RNPFv9jbU= zAi62@^A?aDY^UeVi=m1ypP-uHk1L)*96)p4M6$knc=d5U;07H8;v%lvi# zJpPU)1zDnPP3$RnwkqE#PSnGPtF(!_(}`!HdTricn3{gpY|)(cMFAY^5LV~LM7S+) zdsQ?y@C?@wmc)Gu_T|C4zEnk35}2UN(gU3vQdGW&-oDPkf+p=jPOQi@er(3*H=5syQW2YXn>p9;p}R=*1&IOciC-VS~CHqE_am!&`!mH zF%bIKpS(90{3`ty#2fG+>3KI)R4#cW8+1|Hz9}Q)*=R&WGXBMOI1exJ-QdNHvD$)k z62_LeiJ|92+?x)y!utNNcf5%`sRXq)JF)`T+eH)LV^Uy-_f}_xw({Y|yFNY_)bDiQ zO$k_OVuQ*GSl;+~+?P2xu8N-t+2_e)0hcc(x2~LXlf5(MrioL(276S$VR^3<;n225 z>iR0EB>M3z6!F=~4HT{6MC0`7vh{5?&B8 z6B`h(`obqy1g*D;a>znbE?^Fs zZ* zKnx{qhh!il_~FR-wVDYZ-?1#!W)0*JA(l8Y#50vb(;KjV?d>zs5uq;@$Wz7|sa7zb zf5~AnQaR0Gk#df_5p~YFChI_;SqZ1}uv0sn?0w3usJAcugt1L715HY5IwflbOy1$% zmI#A$Egmk#O#9Q%n!-!pO|3sNBb#y;(>PK;us`>9oreYouqR0H3wGqq?b(K15t7d{ z#JB~s2I}_}EGW?#C7`3C>swT`3`?n?tCQo@6@-p{l=SD{nU@klRiq0HEL^X2xlSQZ z;A$vE{_hZ8M%e)jZWEwLvs>y--b8DAeGU=@E}9}G2Y-;gMm0FCv>UPEIA2d(2|;(A z*ftMg9KA3yRKg#4iEK7kZYQMo;7+s^|D*I5vrX6ldDj*(kZAFn{gvGTKyjW)j>4CGv$-KI#OSviLbu zu^K%>L&n7Ij*6w4NvgHqSI9XnI~(L^jPWmw*|c?cRpSJW*T5!f~ryfog`Q^7)I12b#&*`Utqr$A*#Gg-0un>Vjn zV0+!sv5B`Nm9!7;5>k)9+Ax1k@OMn4^UWnCO!goLqSoZEc14O6YPrQILT~4Uq?0Lq zsZt4(1cNKpKH`zjh#%3Iv5Dq({AHNa8M+-g*b;IIS)xr6@~24QXc}aJ(#l`chDlO) zrAZEb)+dJGK%^v&{_HB@wy_bjK5xRsYF0vvx09sMn4X_?#mrhTJmjDnW-(3YTl~g8 zV31kt101h1^b2$yLsV<=o1@KlW8PiWG)k_~!;L?t@qH2lwI#X2AEELZaj#@@HYjsp z@9$^a{0-KI&Ye|N2Drk&X{|exP;#VloZNbs@BIpALddT$ud`0UUXb z9v2Er`%otEAhdD(=!2-KwM|{3G2G8?BegCi6P3|$h0Hi97kG}utmTiFt&+ecoh!-z zHG02o;uRj^wx)<<`7FuOU1pCe%v>I<9bC0ql$IB-qQCS6q)FtKj7e2B8z>&@#gv!S z$f|#nnAsk=Jl$o@JMD$1U31Sowj%9FOX;ynidue?JDHJEX%wSsw zF{LqTqC10fkjg(koP`d!9ZwR!HEorL@lci;tsa$y)FNJ>(?N)NK!`x z@wkImY*wiBkq@#M$6Njd{pyPUpo&>a9S&f-EJi}$rhqlXco)`LF;DQ$pg^T+PuY5Llt+g-N_@V;Q|%`tN+R{3UPa3t%dKu7ofFj zp$3hbypYN-!$J!a#gXb~9QjSdh-%bIVa)|qI+0fqE`LlQQpbm=&Tf{@L?5kTO*kGz zSIM8!7nTz^zT@Z)17!q6`~z1ueunbo_Vq!{2GD2q7~xJz4I-RzhX7{?J>k+(+#bk5T2s( zC}s7OXKgWIyFr%laLC-zyVDnc46DNH2OoAI8ug9F=DDD~2~HcV&L4%mj4rBGZc%}q z_kwMRhgwOyXc;;gjf|xNFC_2~BD(KE;NV3b;ch9FOL}IfD4Zo);Fn}xH_{EgZqmdL zIgB7~dGr%Qct8MDM~HhK+ANlTD~5V2D7eV5t2F?@7|^(zaH`Cnb8ybBKf`#Y&Ycza z4}3-ZC1%DfOeKd3CVVMbx%i#_oA*sRvv%Y5gg|z0c-?%dMl>v0sU!0@Lj(Oq{vq*E zQVU3qiE6XWg*U5cb_<6P^asE>Is006Y$=NO&^b&Z%Sv=wP|9}%t5t&Ny1f``J+bQJ z{V5Y9KN~ zH&ufv({kU4VMjg2`nU)&6d^DnBz(zv0R?*1T0s5uIpp_Z4}z9B6_7eGu=6+uPDPxK z5qeMXIcI6!kX;kDl97xD3`hb^f>AQgT;PQT!(MB0{5uJRc&c?eGGbQ|2Of)3i2^Zp zrD@ieH!8z=cOE^JDiU`%7aDQp;G`{&4h18+$wNhh@eNu>h~Cx-&e1}?Io0RiF)X$Q zGgjbaT^r-EF>^UyChuQi0=ls&M~ls#P&9lFNB*{e9#H7`ncIQmIGvAIcAk8I<2!B| z&>(xuBnF#MB!S2!&AjWu%R&!CA#7r==t2@UXOryTX?@;*og{|3EJ?SQ~D3AqEg1xU+#(4R^W>-xB-+w5-^7Ok6A?2JoN^o z9t8Ds`D%0}bp$`V*+@yLUd^oM{Lox7s2hPXv1J#yu}}hF7@QC*WWPyR>nX0D%xo^C z{@`7ugh34}`VH{Biu;My=3w<2W_G=6EY;m$kV>ZcW*FJ8QaNDERCRvOBO(S=&mg8} z5|AV1h-ZFVI^BhYkC?^zIonz#`kT-Ww^A3=k?bLF;=IZ>#do*I=(c?_?J`qiHjD+p6XS~DSrtH#C(%OM$z)X5|QzW4AV-^YyG)Nkx>?$0tM4iLAUGzOU>(S8Of9u z2iXJpp?|M<7+*{!s`rdELTU%egIt5ad}#(wn6td6}jbKAAi#VqAE%CQ^bXd%6gn`1In}IY!KYBE{r*6!}y!%hw1k^a;Z^Uo!E(K7*oT+v9vBZU5_fo=5`83D1!ZaYS z8@7_vWAT;L&TZyi+aJ!?A1e;gd^e@2B0xv|o%AgK^P2<)YBd6T22%jsC-4}5V^kXa zbOZLgeros)@wYI4P>SrX2vyT>H%u5SQ#J~g@8LgglG9_FWD8J|rmPn&Jj!s*&90{A1u7SmxAvH~MI0)^@CFyxPRGm2=S&p{0T-^XfbP`XFs29T2ah zt7tD7>#24c1?0fLl&qw?2e>*RijG2^HJ6>%;}1NXd6Ndm6NB?}m0@!ds4K=f+6D2R zhtB=j%C^7mTF(8e@n z8$?ZPqB+eJC$!bGrg@X^F&MedD z5f{E+Fj(zI#1~Vg1y?D^h86Lx17BOIYfa~EL-xt!R%!T#3#Py*9_+i_(l91#4sPEgq_JPahSMwBL`?D$#r>T+6rV`xKN=%h z2x`&;>86iwb4!zHvrk1jUk&W!Q&PB@LO3ypsd~6k-fu`Song%SzI+Qe%}pA4Z#8PABjgz&Wd?w*nGVdXmQOk&-Z*3|3W=oAA*xRs?uIe}3! z6dzV;%Ofer-YzgpGf=CzOzAW1W@FoOQ}}==`_J9`=?ps8gh#LW9{6NrIOhXssMR8W zeIpV*x)tn>xLIHSPPamT&CNKBcF=9~kNqPJCBui3X_xSq0v+8hKmS6yx6ytyD7z3+|Qqu+x`KRyuZr7F z6|5)K9yTHJ(33UEKMbkwNYKpe>fU_@=e7HJ;Bw>gV(2U3r)^qmKY-i{wC;X@lPfiRP9jP{$$gOT3+qsm2}==pQuC zV` zuVbM@7dh5^eB98duy{R`J_=6C8w*Iww#EtE5ayxG$7#2EuMC>em`~`$(RS*SONY0Ro2?v)%{~Ah~(9`!~mqn?5RgC;Bs>! z3P%uZl}8=HKc-jP#YzCR#ac-ShRJ({J>mNv1Rou`jNU^Q2sP+T($7~BpOoIp3bydN zV*!pNw{t4_qI?_dAI5&7vpFK!5~k&6TPyOy&e?(wxI+)6RXIKP2E)%9M0%}&^`F>V zssrn&l{AwP^K5ba`p&^pXzuT`)|ho|N})i?!I^UD$ff1f`2~7F(zeE}SbLjEPQ7si zS#yt%*v!%r-wf_Xycx8rd0bYuvmy`VbneQX@Ovk6`J-W-QXi;ek)egmsj%^9w6}z>kJL!CujWdI#*FmBg-S`+#Rqa+Kt@H9wlAFoJaz=Rms_UQ z*FkZg?VQxaAh`WyE_dF)6^iKr`F&ZbjX9+{)|$0xtDm3NjyfmV$i*;CkDe>UA#?P zD$HNAuggsHwH#2C&<U#vRe3TBIgH7QE`D~MS|9*dm}kT-{j_d-X!j8q~oWn}y5L*!;5N1g51 zzN6xNg_mn{xBReS4zL1yj_zy(Ov1>N%X~dhd5QM7njC}EEd%MrXQ^OjOi9a|#FG_M z^^#?DIjsbbT^9S)hBM8UQ>hUNVBNYB%-mBmjq)f1k%r-0Js*9|eL>Z|Ptl%cu8@74 zwI)QSQqXSi9_d|viiK8WpLSyM8g1VKajm&0d;<6;2EV&`c|7NfF>QK!%Cz)xp_w&N zvRqk#MHPEbcuftZ$o|gHay2elE0v#-+3SHYj@pZ_tEeLVdc{{+Z6&*g*`dNf=f66| z;UZ1E)_tUQ!mE8{?_(Kl)jIh;fU_mJ$Zf!IORhCk2{P( zi4v!rrD5t=yJuHMbA{h9P1oFc#O`#Dy^=NzRxNl0HP#!jKjR2-sIBU`bs=3yRE*r2 zR*7PPQeTi~58&kptoFMuv&qg+@y}b=fU?PPu09c-c&-KGcxqc~P6ykT@jC%!mLM8P zFR)gIp_|63OgYuENHW{1_8)^RT{~=F8(J7`&N4_i<~7yR$1rCZMg!`Ij7JmUZ|ni! zV}UwCRaKMVqLlout`^9u7OXeBA&&`3bP~zaGrx7>uE|65efIT2bq*y1ZMZ}^#@BHsv*xkE#xOk> z8ab;voSSQLBYBq#_D>}5bGq99rCN;}4Mrb+lpK>3rt8#P-|QtIHq)#7T`6HTOVU`y^p+{^G6s7jZP9y)3QjUVkLBlk-ZP-#7T=} zD}YhV!KF0H{=qEDzCEQhb=S9LEaz&y}h4|i@f|AO7O}P$g zj88O8>LAbxx;Z1ffAQZu=@n){ZSg2HBRQ#gK{3Kani z%MG;&V25UfkY&^~*+!xnbUgivVLEww?y{SWnpz;H7QER&qd8-6GEyUkwcaf`DFGyo z-o+|67n#+tNitGLcUdWp*FT{~tsx?!rTv;2iRYDh-yzwt-DRBsLn}iaIffLWy zz0q60eLI633nTV#H|6;|Dgbf zd!Zp|I(#l)=wW8uJ3#9d{08L5H7peQV<9VFZOrT#MCH5rA=snPdOE#f;gfSf>Lj?% z;JAEVHlP5DyGGp-CdjJ<&*Du4=DL<~MYI`G2^iT~7krCU38}ImSUhzR9Vf@#pYD~s z`V9JIeAce{+RXcV$d7eg#<{*^!&oLidS`vp%zqzGOGQ#t>sNF0xEFE|vLCqEc5lV1w%?3YBtRsUQXVyEd$-@s+Wv=w`m%&GJ@ct`tb zdCy@8;OJ-$Mx)NrXU4UE(i3`H-^mQCbt3`07;O->M(OU3YO=fqhp@K7sK!LL%LtQfrJQx z<{t8JV$N4NlDoHPP1kLrzGXKn&Ty*n)mJoty>iLL>m{D)Z_^3}3^@Jk0=9|-QR)4q zDD=Fq))qr5NeiLrT@_p}jc`ueOpIu5Opi@>O4KVYP)F41aAr*W9)cEAA*MoRGttlT zuo?u2i1NtT7k9>->gd8>#38GgMRAf8m)Mj#o-nVa?uuHm!PEW;^f$p=f8U%|c43LL zYAt{@_P0c4uC&ZK%C7{@n=@sf;#jLjVEAc)hFD+{&qUxtf>JdkpzOy)IZ;<|ke|EU zU_CG=?=l)ggJwb3-R9r%S>i>WYVw%AN++?RN0OnFt0Q?i!oKug8%UO7e9uQyaRmBoCwsmjife56b~<+#7`<~Xm6Du^ z1j@fs1u}hltJ*R5V=dF0mt4idup0X2EqTl(IVg#bu9Dx!j(y4-$bertW!z>4i#}kO z>fw`xU<3a&N7SYUn1QOUHScib*b1}VSr~eXFq*s8?Zc|g85KV#+>wSUzCppKM8?L! zz3A^AtY@uj^vnCH&6`uzU1-pKDh+`X2d2NF20~F zQbYX?W)9yrpQ`LGYJ%L;$Ja7E=p}&AwKMBB)b@pZOTEyzKV0fZOd2oP-1~7`IU0RM z$5LFke1VeX@W)gbSFbGD{HCsxh(s3GDM^Gntsh8ss)d|xrf2L{*%;;$jn0_fwh_Pu zCqz{~Lc)J?@iBaeXN}-0k^XTPB2G9ahf;Y! z07Y>^>!JN|k7$_^sWhF6b_7P*gf{*a8xvJ91V8gyK4z4Q?(3G)XuL>XC&+lsA*1e< zu4Qu)C$LFrx;^sZ5st0j)X1=+W+y^q43B26f_wR634nQ_F|<=ITL0q4ek{1y=;gZs zig2z(t1GIsPne1RDZ)jlD_15YGxQ;JiD3F;APXq|Igj230gcEW7!g9;0Z#Tke#Bkw z2yVsftyuADBf1ul=fNq0&+R6p%cogc!_MZ(@c7$`GN~Sh{WrI)#2|g%v0AB+s(jlg zBk}Jj$7enIt+Qr#Up5ioTxxH<{^GftLkqY)%qYvTL4JIO-F~>8inD z%PQ^UPhS!rcEMjaRcR{hGnhvoj}&56s~Fl#XbcsUKOFOS2b4K3T4VZk05qw=@J545 zO)t|is<6azoK4W$#vImZ^+anl6ozV)h0Ktds0k}4G$)inUQHAZp^K8fC94|{)Zwdb7co3(w9<3ShiaFZyF44rMgj#U8hoMd~!_I1D4 z4*;d)XS-$+88&n37KSQu4cs~G!W;`hRjK+NX)k!|*_e%8zUVKh*E6Do7C|C8%#(?IL?PHI4~^fydchL}Ar4<@DIFAf;V& z5w~{so_Jlf#Fzg#xt3Y{?AmhtG{jNnH(G?q7RAHrm?IP^zkpAXCXm?7obBzMUo@f3 zJIg~G9kL)xP8LF7TcDrM)x8~7DYv`0ux;SAvov5aBG_3U`qT(r`9rDxIwbIs$Vk&+ zk}kihLGFEa1T{_Rt8$i=)E@$KXs$*r+-^DtYcK&)!RyqEs1Zh|h^ zNj7bMsHT8J-=hp1mqv11N0 zyBz-4;89iTYM-r_a+nBr*(M-R6$MaM3THf+L&}zsV_O8R~SC=a$jc# z@2tnx-m6axICX5ygr{cRP5w$9NzF50Ah3c&v`ckkSY>KFUXi9Mhu`X3`Gn~$MbVlf z3HT*l4X}!Xa?#zgS&6RVu!ykfQ@aAA_hR(OOlKUXY@Yb_ zCD+&cdjsr?z&>n!Ug6BG#~v%9)#Z)eMK~N;xk01m1o*&iFDJQ>SaYyY;*%X#uyr*? zKl0UPZHbYSz)*N~=7w~7A&ozNKLZ_k>3ePJJnnkZk%tfm9{e?=VShACHyDyieNn{c z1}Vphf9s%2xNG#fMuv_7dpsp#Sh-_48gcy;Px> z?8)A5x9Op@c5 z@AmZA^T5@4F0J)929lD4|O4K`CHi(A)xG+bFEW~!1? zOIs$XVpLn{l(@eHSYQUVnGVYE8oGuco1;*JtYThCW_^Dwg`O~i+|^W-V*p@&N(P~g&}<`C2DbQ4Cxu)EgY z=Rf-aJYKidxbn0n4}(K}zyT52Q5QgR*wYVWP9; z@p&xfkMgg`rEmMs2kD*m?|jM0r)o`9&~%!$NBqwjlC8rW5fx)=_nf!+bWKW-$)8AT z52xn&tDLs=>e@!@9~sT=vO&4wg7@##z`MvAE{E%urFMN~<`tG4I-%YB0>jP~i%3bY zHg6@vdhwXU+O_$$3p6W5UHJE?S(Ec)H$XrL`r()zN;&GS@lw)g!M&ok9lb6SH*H?n=?u4O^8G3tq~+7iaOpxJrm z;KC3-?yilFoCCG9>_PkXf#8=~<63X|%d7kA_8;z_>t0OX67D(Ac%xQ&&26!b@=UU9NFBTVfN44uTq?x*LDPJLD5HMyEiZ=K}t(J+dO#o7cJN(YONFS6Sz z?~%Hf_JW=X*Fe(~Ug_KRsp?rZ1f*eQhlBp}DlV^=Q2`!Csp3}_Pm*PYc;ojRI)=OjX#Svn|-V1 zV~>3w0z%y*yrfb#AVu$7yTf7ZOHG?CiodQCw0&RNb|f3=nmvI0e`Ke^H=cZJT?YdE zHsT>LeT#~(_IEV9Iep4J!iP;W9amISd^6hY-aRAbBuAHzQ>8Lqc~0G1xl|{w2bb}5 zk|{$(8qqGfdvx`Bl@4-|Hp^pYy~=eLe5B0J5yophvx!aYr{N^_5g3uI=A^c#PTj_v zLPx)s2TJ}9G4FARIcM3JpKO=4nDJdL``%w!ykJ^ie88KMPWa1PSyy=R zXIchrDs_s)eoX6W)U0v|G_L``6~RTJ* z)BRsG{C{c|vHuO@e~?8ie>oaaTN@`qL0dO`O&SK)zhn_3`@hK|M&|!>vdF}o&e+Y+ zO5d8!-r3gauTJz2S@i$dF>L9?Jxc7n15>jUjEtgpDNQow$Xo? zMt^0h|GU?J-us`u__xONZ=LBMd+DE^|Fiv{<-giw|A!3wXAk?|(!cloE53h@`=|8Z zX48KvPXCJGU+e#^ldEfOUAP&BqPbC z?XT~-E3LY7C#1BpLEf`7bHC4>2XjTU!^9=|Yna${{Fe8l-lE@Vk9^CFsPWzSJ?b>B z6I`?!-^*H>|Sh&+XjN+=B_O zw|%$Y;0@66akW|Bbo<_%-Tc6Wd2!5{iE}9D6kZd(#=5)v#ryf~%hS`RZoQU+@4u{e z2ERuE-74@-gcZHt<=E5n1HG6ti5sLli0u9+X&D7#Eg|sxV8L zwcHY2f&bOI7}R-GLbe*q>=ROXx)gf;X&EUbOb4v@ zCVaHq6l`Nh;v{{ek_)M&k;~3&UnO#&KDC!^)_#d4S`{P0SUS*Fy*J`t))i(Qc_D;K zKMK_7N6=Z@LF|(DX^h2bJEG6RZIui(m!y3VUG_>p3Z)2z)O%fQd_b9y@%1`NNJ@=` zCQnhvP+G0C6moMO5=+|~io-RmmKy>&Ef-}@+Ar2+r{il~Vl4x8R8(z|MOW4`Y@{ad zG5NBoeVenivC5~&DsE*sQnn#qLeh3H*hkyJmZVkJG73pgtT6T{!Um(*%5d%87+L8@ z9D~)dWbeF=C4)G0UV-bRRo41NB$2`#w{;0b`bxdGq{a>h>eO;k`39j7+7rAs)djsfHuY-CG{{m2grvR>y>(mjQ|B$3j^!}(f2 zk2KKn@CaM8H-v^GJc6Wk@gX-k89Wj}=@JS$O@qaTOQLW3AfX#IF+y~k`T)k--bA+H z*jRGgdl(uj{Su=QYAgh~T2?Vfx=@3`E!xisT&MFsGdKEWwybLl?MU~1TsExcSU8}G zIdVMdSOUx1HehASfBS8>dg`~ciwpDS?dq?7xDdTrZZ>ic2Or2i{Kxg<22b$P@N{E7 zTqJ*c1#K5OP`(ORmh&PnY<9QV7u=a{F3rC$`DiXLXS;p3-4Ay$>u|w!vsbScKi|&& E2A#qzfB*mh