change global variable names in test
parent
7d9cf47579
commit
223ea468d6
|
|
@ -38,24 +38,24 @@ using namespace boost::assign;
|
|||
|
||||
// Some common constants
|
||||
|
||||
static const boost::shared_ptr<Cal3_S2> sharedCal = //
|
||||
static const boost::shared_ptr<Cal3_S2> kSharedCal = //
|
||||
boost::make_shared<Cal3_S2>(1500, 1200, 0.1, 640, 480);
|
||||
|
||||
// Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
static const Rot3 upright = Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2);
|
||||
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
||||
static const Pose3 kPose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
||||
static const PinholeCamera<Cal3_S2> kCamera1(kPose1, *kSharedCal);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
|
||||
static const Pose3 kPose2 = kPose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
static const PinholeCamera<Cal3_S2> kCamera2(kPose2, *kSharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
static const Point3 landmark(5, 0.5, 1.2);
|
||||
static const Point3 kLandmark(5, 0.5, 1.2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
static const Point2 kZ1 = kCamera1.project(kLandmark);
|
||||
static const Point2 kZ2 = kCamera2.project(kLandmark);
|
||||
|
||||
//******************************************************************************
|
||||
// Simple test with a well-behaved two camera situation
|
||||
|
|
@ -63,22 +63,22 @@ TEST(triangulation, twoPoses) {
|
|||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += kZ1, kZ2;
|
||||
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
// 1. Test simple DLT, perfect in no noise situation
|
||||
bool optimize = false;
|
||||
boost::optional<Point3> actual1 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-7));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
|
||||
|
||||
// 2. test with optimization on, same answer
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-7));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
|
||||
|
||||
// 3. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -86,22 +86,22 @@ TEST(triangulation, twoPoses) {
|
|||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
optimize = false;
|
||||
boost::optional<Point3> actual3 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-4));
|
||||
|
||||
// 4. Now with optimization on
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual4 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-4));
|
||||
}
|
||||
|
||||
TEST(triangulation, twoCamerasUsingLOST) {
|
||||
CameraSet<PinholeCamera<Cal3_S2>> cameras;
|
||||
cameras.push_back(camera1);
|
||||
cameras.push_back(camera2);
|
||||
cameras.push_back(kCamera1);
|
||||
cameras.push_back(kCamera2);
|
||||
|
||||
Point2Vector measurements = {z1, z2};
|
||||
Point2Vector measurements = {kZ1, kZ2};
|
||||
SharedNoiseModel measurementNoise = noiseModel::Isotropic::Sigma(2, 1e-4);
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
|
|
@ -111,7 +111,7 @@ TEST(triangulation, twoCamerasUsingLOST) {
|
|||
cameras, measurements, rank_tol,
|
||||
/*optimize=*/false, measurementNoise,
|
||||
/*use_lost_triangulation=*/true);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-12));
|
||||
EXPECT(assert_equal(kLandmark, *actual1, 1e-12));
|
||||
|
||||
// 3. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -167,18 +167,18 @@ TEST(triangulation, twoPosesCal3DS2) {
|
|||
boost::make_shared<Cal3DS2>(1500, 1200, 0, 640, 480, -.3, 0.1, 0.0001,
|
||||
-0.0003);
|
||||
|
||||
PinholeCamera<Cal3DS2> camera1Distorted(pose1, *sharedDistortedCal);
|
||||
PinholeCamera<Cal3DS2> camera1Distorted(kPose1, *sharedDistortedCal);
|
||||
|
||||
PinholeCamera<Cal3DS2> camera2Distorted(pose2, *sharedDistortedCal);
|
||||
PinholeCamera<Cal3DS2> camera2Distorted(kPose2, *sharedDistortedCal);
|
||||
|
||||
// 0. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1Distorted = camera1Distorted.project(landmark);
|
||||
Point2 z2Distorted = camera2Distorted.project(landmark);
|
||||
Point2 z1Distorted = camera1Distorted.project(kLandmark);
|
||||
Point2 z2Distorted = camera2Distorted.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += z1Distorted, z2Distorted;
|
||||
|
||||
double rank_tol = 1e-9;
|
||||
|
|
@ -188,14 +188,14 @@ TEST(triangulation, twoPosesCal3DS2) {
|
|||
boost::optional<Point3> actual1 = //
|
||||
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements,
|
||||
rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
|
||||
|
||||
// 2. test with optimization on, same answer
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements,
|
||||
rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
|
||||
|
||||
// 3. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -224,18 +224,18 @@ TEST(triangulation, twoPosesFisheye) {
|
|||
boost::make_shared<Calibration>(1500, 1200, .1, 640, 480, -.3, 0.1,
|
||||
0.0001, -0.0003);
|
||||
|
||||
PinholeCamera<Calibration> camera1Distorted(pose1, *sharedDistortedCal);
|
||||
PinholeCamera<Calibration> camera1Distorted(kPose1, *sharedDistortedCal);
|
||||
|
||||
PinholeCamera<Calibration> camera2Distorted(pose2, *sharedDistortedCal);
|
||||
PinholeCamera<Calibration> camera2Distorted(kPose2, *sharedDistortedCal);
|
||||
|
||||
// 0. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1Distorted = camera1Distorted.project(landmark);
|
||||
Point2 z2Distorted = camera2Distorted.project(landmark);
|
||||
Point2 z1Distorted = camera1Distorted.project(kLandmark);
|
||||
Point2 z2Distorted = camera2Distorted.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += z1Distorted, z2Distorted;
|
||||
|
||||
double rank_tol = 1e-9;
|
||||
|
|
@ -245,14 +245,14 @@ TEST(triangulation, twoPosesFisheye) {
|
|||
boost::optional<Point3> actual1 = //
|
||||
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements,
|
||||
rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
|
||||
|
||||
// 2. test with optimization on, same answer
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements,
|
||||
rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
|
||||
|
||||
// 3. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -277,17 +277,17 @@ TEST(triangulation, twoPosesFisheye) {
|
|||
TEST(triangulation, twoPosesBundler) {
|
||||
boost::shared_ptr<Cal3Bundler> bundlerCal = //
|
||||
boost::make_shared<Cal3Bundler>(1500, 0.1, 0.2, 640, 480);
|
||||
PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera1(kPose1, *bundlerCal);
|
||||
PinholeCamera<Cal3Bundler> camera2(kPose2, *bundlerCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
Point2 z1 = camera1.project(kLandmark);
|
||||
Point2 z2 = camera2.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
|
|
@ -296,7 +296,7 @@ TEST(triangulation, twoPosesBundler) {
|
|||
boost::optional<Point3> actual = //
|
||||
triangulatePoint3<Cal3Bundler>(poses, bundlerCal, measurements, rank_tol,
|
||||
optimize);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-7));
|
||||
|
||||
// Add some noise and try again
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
|
|
@ -313,12 +313,12 @@ TEST(triangulation, fourPoses) {
|
|||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += kZ1, kZ2;
|
||||
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -326,37 +326,37 @@ TEST(triangulation, fourPoses) {
|
|||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
Pose3 pose3 = kPose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
|
||||
Point2 z3 = camera3.project(kLandmark);
|
||||
|
||||
poses += pose3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
EXPECT(assert_equal(kLandmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> triangulated_3cameras_opt =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, 1e-9, true);
|
||||
EXPECT(assert_equal(kLandmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 pose4 = Pose3(Rot3::Ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> camera4(pose4, *sharedCal);
|
||||
PinholeCamera<Cal3_S2> camera4(pose4, *kSharedCal);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException);
|
||||
|
||||
poses += pose4;
|
||||
measurements += Point2(400, 400);
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements),
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
|
||||
TriangulationCheiralityException);
|
||||
#endif
|
||||
}
|
||||
|
|
@ -364,33 +364,33 @@ TEST(triangulation, fourPoses) {
|
|||
//******************************************************************************
|
||||
TEST(triangulation, threePoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
Pose3 pose3 = kPose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
|
||||
Point2 z3 = camera3.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose2, pose3;
|
||||
measurements += z1, z2, z3;
|
||||
poses += kPose1, kPose2, pose3;
|
||||
measurements += kZ1, kZ2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.26m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.2);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
EXPECT( (kLandmark - *actual2).norm() >= 0.2);
|
||||
EXPECT( (kLandmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
|
|
@ -398,27 +398,27 @@ TEST(triangulation, threePoses_robustNoiseModel) {
|
|||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
poses, kSharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
EXPECT(assert_equal(kLandmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
Pose3 pose3 = kPose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
|
||||
Point2 z3 = camera3.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose1, pose2, pose3; // 2 measurements from pose 1
|
||||
measurements += z1, z1, z2, z3;
|
||||
poses += kPose1, kPose1, kPose2, pose3; // 2 measurements from pose 1
|
||||
measurements += kZ1, kZ1, kZ2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
|
|
@ -429,14 +429,14 @@ TEST(triangulation, fourPoses_robustNoiseModel) {
|
|||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.17m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.1);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
EXPECT( (kLandmark - *actual2).norm() >= 0.1);
|
||||
EXPECT( (kLandmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
|
|
@ -444,24 +444,24 @@ TEST(triangulation, fourPoses_robustNoiseModel) {
|
|||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
poses, kSharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
EXPECT(assert_equal(kLandmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, K1);
|
||||
PinholeCamera<Cal3_S2> camera1(kPose1, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
||||
PinholeCamera<Cal3_S2> camera2(pose2, K2);
|
||||
PinholeCamera<Cal3_S2> camera2(kPose2, K2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
Point2 z1 = camera1.project(kLandmark);
|
||||
Point2 z2 = camera2.project(kLandmark);
|
||||
|
||||
CameraSet<PinholeCamera<Cal3_S2>> cameras;
|
||||
Point2Vector measurements;
|
||||
|
|
@ -471,7 +471,7 @@ TEST(triangulation, fourPoses_distinct_Ks) {
|
|||
|
||||
boost::optional<Point3> actual = //
|
||||
triangulatePoint3<Cal3_S2>(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -480,25 +480,25 @@ TEST(triangulation, fourPoses_distinct_Ks) {
|
|||
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Pose3 pose3 = kPose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Cal3_S2 K3(700, 500, 0, 640, 480);
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, K3);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
Point2 z3 = camera3.project(kLandmark);
|
||||
|
||||
cameras += camera3;
|
||||
measurements += z3 + Point2(0.1, -0.1);
|
||||
|
||||
boost::optional<Point3> triangulated_3cameras = //
|
||||
triangulatePoint3<Cal3_S2>(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *triangulated_3cameras, 1e-2));
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> triangulated_3cameras_opt =
|
||||
triangulatePoint3<Cal3_S2>(cameras, measurements, 1e-9, true);
|
||||
EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *triangulated_3cameras_opt, 1e-2));
|
||||
|
||||
// 4. Test failure: Add a 4th camera facing the wrong way
|
||||
Pose3 pose4 = Pose3(Rot3::Ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
|
|
@ -506,7 +506,7 @@ TEST(triangulation, fourPoses_distinct_Ks) {
|
|||
PinholeCamera<Cal3_S2> camera4(pose4, K4);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException);
|
||||
|
||||
cameras += camera4;
|
||||
measurements += Point2(400, 400);
|
||||
|
|
@ -519,15 +519,15 @@ TEST(triangulation, fourPoses_distinct_Ks) {
|
|||
TEST(triangulation, fourPoses_distinct_Ks_distortion) {
|
||||
Cal3DS2 K1(1500, 1200, 0, 640, 480, -.3, 0.1, 0.0001, -0.0003);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
PinholeCamera<Cal3DS2> camera1(pose1, K1);
|
||||
PinholeCamera<Cal3DS2> camera1(kPose1, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Cal3DS2 K2(1600, 1300, 0, 650, 440, -.2, 0.05, 0.0002, -0.0001);
|
||||
PinholeCamera<Cal3DS2> camera2(pose2, K2);
|
||||
PinholeCamera<Cal3DS2> camera2(kPose2, K2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
Point2 z1 = camera1.project(kLandmark);
|
||||
Point2 z2 = camera2.project(kLandmark);
|
||||
|
||||
CameraSet<PinholeCamera<Cal3DS2>> cameras;
|
||||
Point2Vector measurements;
|
||||
|
|
@ -537,22 +537,22 @@ TEST(triangulation, fourPoses_distinct_Ks_distortion) {
|
|||
|
||||
boost::optional<Point3> actual = //
|
||||
triangulatePoint3<Cal3DS2>(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, outliersAndFarLandmarks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, K1);
|
||||
PinholeCamera<Cal3_S2> camera1(kPose1, K1);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Cal3_S2 K2(1600, 1300, 0, 650, 440);
|
||||
PinholeCamera<Cal3_S2> camera2(pose2, K2);
|
||||
PinholeCamera<Cal3_S2> camera2(kPose2, K2);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z2 = camera2.project(landmark);
|
||||
Point2 z1 = camera1.project(kLandmark);
|
||||
Point2 z2 = camera2.project(kLandmark);
|
||||
|
||||
CameraSet<PinholeCamera<Cal3_S2>> cameras;
|
||||
Point2Vector measurements;
|
||||
|
|
@ -565,7 +565,7 @@ TEST(triangulation, outliersAndFarLandmarks) {
|
|||
1.0, false, landmarkDistanceThreshold); // all default except
|
||||
// landmarkDistanceThreshold
|
||||
TriangulationResult actual = triangulateSafe(cameras, measurements, params);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
EXPECT(assert_equal(kLandmark, *actual, 1e-2));
|
||||
EXPECT(actual.valid());
|
||||
|
||||
landmarkDistanceThreshold = 4; // landmark is farther than that
|
||||
|
|
@ -577,10 +577,10 @@ TEST(triangulation, outliersAndFarLandmarks) {
|
|||
|
||||
// 3. Add a slightly rotated third camera above with a wrong measurement
|
||||
// (OUTLIER)
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Pose3 pose3 = kPose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
Cal3_S2 K3(700, 500, 0, 640, 480);
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, K3);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
Point2 z3 = camera3.project(kLandmark);
|
||||
|
||||
cameras += camera3;
|
||||
measurements += z3 + Point2(10, -10);
|
||||
|
|
@ -603,18 +603,18 @@ TEST(triangulation, outliersAndFarLandmarks) {
|
|||
//******************************************************************************
|
||||
TEST(triangulation, twoIdenticalPoses) {
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
||||
PinholeCamera<Cal3_S2> camera1(kPose1, *kSharedCal);
|
||||
|
||||
// 1. Project two landmarks into two cameras and triangulate
|
||||
Point2 z1 = camera1.project(landmark);
|
||||
Point2 z1 = camera1.project(kLandmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
|
||||
poses += pose1, pose1;
|
||||
poses += kPose1, kPose1;
|
||||
measurements += z1, z1;
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements),
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
|
|
@ -629,7 +629,7 @@ TEST(triangulation, onePose) {
|
|||
poses += Pose3();
|
||||
measurements += Point2(0, 0);
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements),
|
||||
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
|
|
@ -745,12 +745,12 @@ TEST(triangulation, twoPoses_sphericalCamera) {
|
|||
std::vector<Unit3> measurements;
|
||||
|
||||
// Project landmark into two cameras and triangulate
|
||||
SphericalCamera cam1(pose1);
|
||||
SphericalCamera cam2(pose2);
|
||||
Unit3 u1 = cam1.project(landmark);
|
||||
Unit3 u2 = cam2.project(landmark);
|
||||
SphericalCamera cam1(kPose1);
|
||||
SphericalCamera cam2(kPose2);
|
||||
Unit3 u1 = cam1.project(kLandmark);
|
||||
Unit3 u2 = cam2.project(kLandmark);
|
||||
|
||||
poses += pose1, pose2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += u1, u2;
|
||||
|
||||
CameraSet<SphericalCamera> cameras;
|
||||
|
|
@ -762,25 +762,25 @@ TEST(triangulation, twoPoses_sphericalCamera) {
|
|||
// 1. Test linear triangulation via DLT
|
||||
auto projection_matrices = projectionMatricesFromCameras(cameras);
|
||||
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
|
||||
EXPECT(assert_equal(landmark, point, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, point, 1e-7));
|
||||
|
||||
// 2. Test nonlinear triangulation
|
||||
point = triangulateNonlinear<SphericalCamera>(cameras, measurements, point);
|
||||
EXPECT(assert_equal(landmark, point, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, point, 1e-7));
|
||||
|
||||
// 3. Test simple DLT, now within triangulatePoint3
|
||||
bool optimize = false;
|
||||
boost::optional<Point3> actual1 = //
|
||||
triangulatePoint3<SphericalCamera>(cameras, measurements, rank_tol,
|
||||
optimize);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
|
||||
|
||||
// 4. test with optimization on, same answer
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<SphericalCamera>(cameras, measurements, rank_tol,
|
||||
optimize);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-7));
|
||||
EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
|
||||
|
||||
// 5. Add some noise and try again: result should be ~ (4.995,
|
||||
// 0.499167, 1.19814)
|
||||
|
|
@ -825,7 +825,7 @@ TEST(triangulation, twoPoses_sphericalCamera_extremeFOV) {
|
|||
EXPECT(assert_equal(Unit3(Point3(1.0, 0.0, -1.0)), u2,
|
||||
1e-7)); // behind and to the right of PoseB
|
||||
|
||||
poses += pose1, pose2;
|
||||
poses += kPose1, kPose2;
|
||||
measurements += u1, u2;
|
||||
|
||||
CameraSet<SphericalCamera> cameras;
|
||||
|
|
|
|||
Loading…
Reference in New Issue