diff --git a/gtsam_unstable/examples/SFMExampleExpressions.cpp b/gtsam_unstable/examples/SFMExampleExpressions.cpp index 941f3dcb8..254d25718 100644 --- a/gtsam_unstable/examples/SFMExampleExpressions.cpp +++ b/gtsam_unstable/examples/SFMExampleExpressions.cpp @@ -24,14 +24,11 @@ // The two new headers that allow using our Automatic Differentiation Expression framework #include -#include +#include // Header order is close to far #include -#include -#include #include -#include #include #include #include @@ -40,27 +37,29 @@ using namespace std; using namespace gtsam; +using namespace noiseModel; /* ************************************************************************* */ int main(int argc, char* argv[]) { Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0); - noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v + Isotropic::shared_ptr measurementNoise = Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph - NonlinearFactorGraph graph; + ExpressionFactorGraph graph; // Specify uncertainty on first pose prior - noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); + Vector6 sigmas; sigmas << Vector3(0.3,0.3,0.3), Vector3(0.1,0.1,0.1); + Diagonal::shared_ptr poseNoise = Diagonal::Sigmas(sigmas); // Here we don't use a PriorFactor but directly the ExpressionFactor class - // The object x0 is an Expression, and we create a factor wanting it to be equal to poses[0] + // x0 is an Expression, and we create a factor wanting it to be equal to poses[0] Pose3_ x0('x',0); - graph.push_back(ExpressionFactor(poseNoise, poses[0], x0)); + graph.addExpressionFactor(x0, poses[0], poseNoise); // We create a constant Expression for the calibration here Cal3_S2_ cK(K); @@ -74,25 +73,26 @@ int main(int argc, char* argv[]) { // Below an expression for the prediction of the measurement: Point3_ p('l', j); Point2_ prediction = uncalibrate(cK, project(transform_to(x, p))); - // Again, here we use a ExpressionFactor - graph.push_back(ExpressionFactor(measurementNoise, measurement, prediction)); + // Again, here we use an ExpressionFactor + graph.addExpressionFactor(prediction, measurement, measurementNoise); } } // Add prior on first point to constrain scale, again with ExpressionFactor - noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); - graph.push_back(ExpressionFactor(pointNoise, points[0], Point3_('l', 0))); + Isotropic::shared_ptr pointNoise = Isotropic::Sigma(3, 0.1); + graph.addExpressionFactor(Point3_('l', 0), points[0], pointNoise); // Create perturbed initial - Values initialEstimate; + Values initial; + Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); for (size_t i = 0; i < poses.size(); ++i) - initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); + initial.insert(Symbol('x', i), poses[i].compose(delta)); for (size_t j = 0; j < points.size(); ++j) - initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); - cout << "initial error = " << graph.error(initialEstimate) << endl; + initial.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15))); + cout << "initial error = " << graph.error(initial) << endl; /* Optimize the graph and print results */ - Values result = DoglegOptimizer(graph, initialEstimate).optimize(); + Values result = DoglegOptimizer(graph, initial).optimize(); cout << "final error = " << graph.error(result) << endl; return 0;